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Abstract:

In this paper, we consider a Bayesian network structure estimation problem as a two step
problem based on an independence model representation. We first perform an evolutionary
search for an approximation of an independence model. A deterministic algorithm is then
used to deduce a Bayesian network which represents the equivalence class of the independence
model. This paper is a shortened version of a paper that has been published in a genetic
algorithms conference [2].

Résumé :

Nous abordons dans cet article le problème de l’estimation de la structure d’un réseau Bayésien
en deux étapes, à partir d’un représentation sous forme de modèle d’indépendance. Nous con-
sidérons d’abord le problème de la recherche d’un modèle d’indépendance approché à l’aide
d’un algorithme évolutionnaire. Un algorithme déterministe est ensuite employé pour déduire
un représentant du modèle d’indépendance. Cet article est une version condensée d’une
précédente publication présentée dans une conférence sur les algorithmes génétiques [2].
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1 Introduction

Bayesian networks structure learning is a NP-Hard problem [7], which has applications in many
domains, as soon as one tries to analyse a large set of samples in terms of statistical dependence
or causal relationship. In agrifood industries for example, the analysis of experimental data
using Bayesian networks helps to gather technical expert knowledge and know-how on complex
processes [3]. In a comparative study by O. Francois and P. Leray [11], authors present
various approaches used to cope with the problem of structure learning: PC [24] or IC/IC∗

[21] (causality search using statistical tests to evaluate conditional independence), BN Power
Constructor (BNPC) [5] (also uses conditional independence tests) and other methods based
on scoring criterion, such as Minimal weight spanning tree (MWST) [8] (intelligent weighting
of the edges and application of the well-known algorithms for the problem of the minimal
weight tree), K2 [9] (maximisation of P (G|D) using Bayes and a topological order on the
nodes), Greedy search [6] (finding the best neighbour and iterate) or SEM [12] (extension of
the EM meta-algorithm to the structure learning problem).

Evolutionary techniques were also used to solve the Bayesian network structure learning
problem, but were facing crucial problems like BN representation (an individual being a whole
structure like in [16], or a sub-structures like in [20]), or fitness function choice [20]. Various
strategies were used, based on evolutionary programming [25], immune algorithms [15], multi-
objective strategies [23], lamarkian evolution [26] or hybrid evolution [27].

We propose here to use an alternate representation, independence models, in order to solve
the Bayesian network structure learning in two steps. Independence model learning is still a
combinatorial problem, but it is easier to embed within an evolutionary algorithm.

The paper is organised as follows. Section 2 gives some basics about Independence Models
and describes the PC estimation algorithm that is used for comparison in this paper. Then,
section 3 sketches the components of the evolutionary algorithm that is used in the first
step of the algorithm (named IMPEA). The second step of IMPEA is detailed in section 4.
Experimental analysis has been developed on two test-cases (section 5). Conclusions and
further works are sketched in section 6.

2 Independence models

In this work, we consider Independence Models (IMs), which can be seen as underlying models
of Bayesian networks. They are defined as follows:

• Let N be a non-empty set of variables, then T (N) denotes the collection of all triplets
〈X, Y |Z〉 of disjoint subsets of N , X 6= ∅ and Y 6= ∅. The class of elementary triplets
E(N) consists of 〈x, y|Z〉 ∈ T (N), where x, y ∈ N are distinct and Z ⊂ N\ {x, y}.

• Let P be a joint probability distribution over N and 〈X, Y |Z〉 ∈ T (N). 〈X, Y |Z〉 is
called an independence statement (IS) if X is conditionally independent of Y given Z
with respect to P (i.e., X ⊥⊥ Y | Z)

• An independence model (IM) is a subset of T (N): each probability distribution P defines
an IM, namely, the model {〈X, Y |Z〉 ∈ T (N) ; X ⊥⊥ Y | Z}, called the independence
model induced by P .

To summarize, an independence model is the set of all the independence statements, that
is the set of all 〈X, Y |Z〉 satisfied by P , and different Markov-equivalent Bayesian networks
induce the same independence model. By following the paths in a Bayesian network, it is
possible (even though it can be combinatorial) to find a part of its independence model using
algorithms based on directional separation (d-separation) or moralization criteria. Recipro-
cally, an independence model is a guide to produce the structure of a Bayesian network.
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PC, the reference causal discovery algorithm, was introduced by Sprites, Glymour and
Scheines in 1993 [24]. A similar algorithm, IC, was proposed simultaneously by Pearl and
Verma [21]. It is based on chi-square tests to evaluate the conditional independence between
two nodes. It is then possible to rebuild the structure of the network from the set of discovered
conditional independences. PC algorithm actually starts from a fully connected network and
every time a conditional independence is detected, the corresponding edge is removed.

The complexity of this algorithm depends on N , the size of the network and k, the upper
bound on the fan-in, and is equal to O(Nk). In practice, this implies that the value of k must
remain very small when dealing with big networks.

Consequently, as the problem of finding an independence model can be turned to an opti-
misation problem, we investigate here the use of an evolutionary algorithm. More precisely, we
build an algorithm that let a population of triplets 〈X, Y |Z〉 evolve until the whole population
comes near to the independence model.

3 Evolutionary estimation of an Independence Model

Our algorithm (Independence Model Parisian Evolutionary Algorithm - IMPEA) is a Parisian
cooperative co-evolution. This scheme corresponds to a rather recent way of fomulating the
resolution of problems in the EA community 1. It has already been used with success for
example in real-time evolutionary algorithms, such as the flies algorithm [17].

IMPEA is actually a two steps algorithm. First, it generates a subset of the independence
model of a Bayesian network from data by evolving elementary triplets 〈x, y|Z〉, where x and
y are two distinct nodes and Z is a subset of the other ones, possibly empty. Then, it uses
the independence statements that it found at the first step to build the structure of a repre-
sentative network.

3.1 Search space and local fitness

Individuals are elementary triplets 〈x, y|Z〉. Each individual is evaluated through a chi-square
test of independence which tests the null hypothesis H0: “The nodes x and y are independent
given Z”. The chi-square statistic χ2 is calculated by finding the difference between each
observed Oi and theoretical Ei frequencies for each of the n possible outcomes, squaring
them, dividing each by the theoretical frequency, and taking the sum of the results: χ2 =∑n

i=1
(Oi−Ei)

2

Ei
. The chi-square statistic can then be used to calculate a p-value p by comparing

the value of the statistic χ2 to a chi-square distribution with n− 1 degrees of freedom.
p represents the probability to make a mistake if the null hypothesis is not accepted. It is

then compared to a significance level α (0.05 is often chosen as a cut-off for significance) and
finally the independence is rejected if p < α. Given that the higher the p-value, the stronger
the independence, p seems to be a good candidate to represent the local fitness (which measure
the quality of individuals). Nevertheless, this fitness suffers from two drawbacks:

• When dealing with small datasets, individuals with long constraining set Z tends to have
good p-values only because dataset is too small to get enough samples to test efficiently
the statement x ⊥⊥ y | Z.

• Due to the exponential behaviour of the chi-square distribution, its tail vanishes so
quickly that individuals with poor p-values are often rounded to 0, making then indis-
tinguishable.

1The searched solution is embedded in several individuals, or even in the whole population, instead of being
embedded in a single individual. This allow to design in some cases very efficient evolutionary algorithms.
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First, p has to be adjusted in order to promote independence statements with small Z. This
is achieved by setting up a parsimony term as a positive multiplicative malus parcim(#Z)
which decrease with #Z, the number of nodes in Z. Then, when p < α we replace the
exponential tail with something that tends to zero slower. This modification of the fitness
landscape allows to avoid plateaus which would prevent the genetic algorithm to travel all
over the search space2:

AdjLocalF itness =

{
p× parcim(#Z) if p ≥ α

α× parcim(#Z)× X2
α

X2 if p < α

3.2 Genetic operators

The genome of an individual, being 〈x, y|Z〉 where x and y are simple nodes and Z is a set
of nodes is straightforward: It consists in an array of three cells (see figure 1), the first one
containing the index of the node x, the second cell containing the index of y and the last one
is the array of the indexes of the nodes in Z.

Figure 1: Representation of 〈x, y|Z〉

This coding implies specific genetic operators because of the constraints resting upon a
chromosome: there must not be doubles appearing when doing mutations or crossovers. A
quick-and-dirty solution would have been to first apply classical genetic operators and then
apply a repair operator a posteriori. Instead, we propose wise operators (which do not create
doubles), namely two types of mutations and a robust crossover.

• Genome content mutation

This mutation operator involves a probability pmG that an arbitrary node will be changed
from its original state. In order to avoid the creation of doubles, this node can be muted
into any nodes in N except the other nodes of the individual, but including itself (see
figure 2).

• Add/remove mutation

The previous mutation randomly modifies the content of the individuals, but does not
modify the length of the constraining set Z. We introduce a new mutation operator
called add/remove mutation, represented on figure 3, that allows to randomly add or
remove nodes in Z. If this type of mutation is selected, with probability PmAR, then
new random nodes are either added with a probability PmAdd or removed with 1−PmAdd.
These probabilities can vary along generations. Moreover, the minimal and the maximal
number of nodes allowed in Z can evolve as well along generations, allowing to tune the
growth of Z.

• Crossover

The crossover consists in a simple swapping mechanism on x, y and Z. Two individuals
〈x, y|Z〉 and 〈x′, y′|Z ′〉 can exchange x or y with probability pcXY and Z with probability
pcZ (see figure 4). When a crossover occurs, only one swapping among x ↔ x′, y ↔
y′, x ↔ y′, y ↔ x′ and Z ↔ Z ′ is selected via a wheel mechanism which implies
that 4pcXY + pcZ = 1. If the exchange is impossible, then the problematic nodes are
automatically muted in order to keep clear of doubles.

2Note: This can be viewed as an “Ockham’s Razor” argument.
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Figure 2: Genome content mutation

Figure 3: Add/remove mutation

Figure 4: Robust crossover

3.3 Sharing

So as not to converge to a single optimum, but enable the genetic algorithm to identify mul-
tiple optima, we use a sharing mechanism that maintains diversity within the population by
creating ecological niches. The complete scheme is described in [10] and is based on the fact
that fitness is considered as a shared resource, that is to say that individuals having too many
neighbours are penalized. Thus we need a way to compute the distance between individuals
so that we can count the number of neighbours of a given individual. A simple Hamming
distance was chosen: two elementary triplets 〈x, y|Z〉 and 〈x′, y′|Z ′〉 are said to be neighbours
if they test the same two nodes (i.e., {x, y} = {x′, y′}), whatever Z. Finally, dividing the fit-
ness of each individual by the number of its neighbours would result in sharing the population
into sub-populations whose size is proportional to the height of the peak they are colonising
[14]. Instead, we take into account the relative importance of an individual with respect to
its neighbourhood, and the fitness of each individual is divided by the sum of the fitnesses of
its neighbours [18]. This scheme allows one to equilibrate the sub-populations within peaks,
whatever their height.

3.4 Immortal archive and embossing points

Recall that the aim of IMPEA is to construct a subset of the independence model, and thus
the more independence statements we get, the better. Using a classical Parisian Evolutionary
Algorithm scheme would allow to evolve a number of independence statements equal to the
population size. In order to be able to evolve larger independence statements sets, IMPEA
implements an immortal archive that gather the best individuals found so far. An individual
〈x, y|Z〉 can become immortal if any of the following rules applies:

• Its p-value is equal to 1 (or numerically greater than 1 − ε, where ε is the precision of
the computer)

• Its p-value is greater than the significance level and Z = ∅

• Its p-value is greater than the significance level and 〈x, y|∅〉 is already immortal
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This archive serves two purposes: the most obvious one is that at the end of the genera-
tions, not only we get all the individuals of the current population but also all the immortal
individuals, which can make a huge difference. But this archive also plays a very important
role as embossing points: when computing the sharing coefficient, immortal individuals that
are not in the current population are added to the neighbours counting. Therefore a region
of the search space that has already been explored but that has disappeared from the current
population is marked as explored since immortal individuals count as neighbours and thus
penalize this region, encouraging the exploration of other zones.

3.5 Clustering and partial restart

Despite the sharing mechanism, we observed experimentally that some individuals became
over-represented within the population. Therefore, we add a mechanism to reduce this un-
desirable effect: if an individual has too many redundant representatives then the surplus is
eliminated and new random individuals are generated to replace the old ones.

3.6 Description of the main parameters

The table 1 describes the main parameters of IMPEA and their typical values or range of
values, in order of appearance in the paper. Some of these parameters are scalars, like the
number of individuals, and are constant along the whole evolution process. Other parameters,
like the minimum or maximum number of nodes in Z, are arrays indexed by the number of
generations, allowing these parameters to follow a given path during evolution.

Name Description Typical value
MaxGens Number of generations 50 . . . 200

Ninds Number of individuals 50 . . . 500

Alpha Significance level of the χ2 test 0.01 . . . 0.25

Parcim (#Z)
Array of parsimony coefficient (decreases with the

length of Z)
0.5 . . . 1

PmG Probability of genome content mutation 0.1/(2 + #Z)
PmAR Probability of adding or removing nodes in Z 0.2 . . . 0.5

PmAdd (#Gen)
Array of probabilities of adding nodes in Z along

generations
0.25 . . . 0.75

MinNodes
(#Gen)

Array of minimal numbers of nodes in Z along
generations

0 . . . 2

MaxNodes
(#Gen)

Array of maximal numbers of nodes in Z along
generations

0 . . . 6

Pc Probability of crossover 0.7
PcXY Probability of swapping x and y 1/6
PcZ Probability of swapping Z 1/3

Epsilon Numerical precision 10−5

MaxRedundant
Maximal number of redundant individuals in the

population
1 . . . 5

Table 1: Parameters of IMPEA. Values are chosen within their typical range depending on
the size of the network and on the desired computation time.

4 Bayesian network structure estimation

The last step of IMPEA consists in reconstructing the structure of the Bayesian network. This
is achieved by aggregating all the immortal individuals and only the good ones of the final
population. An individual 〈x, y|Z〉 is said to be good if its p-value allows not to reject the
null hypothesis x ⊥⊥ y | Z. There are two strategies in IMPEA: a pure one, called P-IMPEA,
which consists in strictly enforcing independence statements and an constrained one, called
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C-IMPEA, which adds a constraint on the number of desired edges.

Pure conditional independence
Then, as in PC, P-IMPEA starts from a fully connected graph, and for each individual

of the aggregated population, it applies the rule “x ⊥⊥ y | Z ⇒ no edge between x and y” to
remove edges whose nodes belong to an independence statement. Finally, the remaining edges
(which have not been eliminated) constitute the undirected structure of the network.

Constrained edges estimation
C-IMPEA needs an additional parameter which is the desired number of edges in the final

structure. It proceeds by accumulation: it starts from an empty adjacency matrix and for
each 〈x, y|Z〉 individual of the aggregated population, it adds its fitness to the entry (x, y).
An example of a matrix obtained this way is shown on figure 12.

At the end of this process, if an entry (at the intersection of a row and a column) is still
equal to zero, then it means that there was no independence statement with this pair of nodes
in the aggregated population. Thus, these entries exactly correspond to the strict application
of the conditional independences. If an entry has a low sum, then it is an entry for which
IMPEA found only a few independence statements (and/or independence statements with low
fitness) and thus there is a high expectancy of having an edge between its nodes. Therefore,
to add more edges in the final structure (up to the desired number of edges), we just have to
select edges with the lowest values and construct the corresponding network.

This approach seems to be more robust since it allows some “errors” in the chi-square
tests, but strictly speaking, if an independence statement is discovered, there cannot be any
edge between the two nodes.

5 Experiments and results

5.1 Test case 1: comb network

To evaluate the efficiency of IMPEA, we forge a test-network which looks like a comb. A
n-comb network has n + 2 nodes: x, y, and z1, z2, . . . , zn, as one can see on figure 5. The
Conditional Probability Tables (CPT) are filled in with a uniform law. It can be seen as a
kind of classifier: given the input z1, z2, . . . , zn, it classifies the output as x or y. For example,
it could be a classifier that accepts a person’s salary details, age, marital status, home address
and credit history and classifies the person as acceptable/unacceptable to receive a new credit
card or loan.

n

x

y

z1 z2
...

n−1
z z

Figure 5: A n-comb network

The interest of such a network is that its independence model can be generated (using

7



5mes Journes Francophones sur les Rseaux Baysiens, Nantes, 10-11 Mai 2010

semi-graphoid rules) from the following independence statements:

∀i, j such as i 6= j, zi ⊥⊥ zj

x ⊥⊥ y | {z1, z2, . . . , zn}

Thus it has only one complex independence statement and a lot of simple (short) ones. In
particular, the only way to remove the edge between x and y using statistical chi-square tests
is to test the triplet 〈x, y | {z1, z2, . . . , zn}〉. This cannot be achieved by the PC algorithm as
soon as k < n (and in practice, k is limited to 3 due to combinatorial complexity).

Typical run: We choose to test P-IMPEA with a simple 6-comb network. It has been
implemented using an open source toolbox, the Bayes Net Toolbox for Matlab [19] available at
http://bnt.sourceforge.net/. We draw our inspiration from PC and initialise the popula-
tion with individuals with an empty constraining set and let it grow along generations up to 6
nodes, in order to find the independence statement x ⊥⊥ y | {z1, . . . , z6}. As shown on figure 6,
the minimal number of nodes allowed in Z is always 0, and the maximal number is increasing
on the first two third of the generations and is kept constant to 6 on the last ones. The average
number of nodes in the current population is also slowly rising up but remains rather small
since in this example, there are a lot of small easy to find independence statements and only
a single big one.
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added deleted totalFigure 6: Evolution of Minimal, Maximal and Average number of nodes in Z along generations

The correct structure (figure 7) is found after 40 (out of 50) generations.
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Figure 7: Final evolved structure for the comb network

The figure 8 represents the evolution of the number of errors along generations. The current
evolved structure is compared with the actual structure: an added edge is an edge present in
the evolved structure but not in the actual comb network, and a deleted edge is an edge that
has been wrongly removed. The total number of errors is the sum of added and deleted edges.
Note that even if the number of errors of the discovered edges is extracted at each generation,
it is by no means used by IMPEA or reinjected in the population because this information
is only relevant in that particular test-case where the Bayesian network that generated the
dataset is known.

Statistical results: The previous example gives an idea of the behaviour of P-IMPEA,
but to compare it fairly with PC we must compare them not only over multiple runs but also
with respect to the size of the dataset. So we set up the following experimental protocol:

• A 4-comb network is created and we use the same Bayesian network (structure and CPT)
throughout the whole experiment.
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Figure 8: Evolution of the number of erroneous edges of the structure along generations

• We chose representative sizes for the dataset:
{500, 1000, 2000, 5000, 10000}, and for each size, we generate the corresponding number
of cases from the comb network.

• We run 100 times both PC and P-IMPEA, and extract relevant information (see tables
2 and 3):

– How many edges were found? Among these, how many were erroneous? (added or
deleted)

– What is the percentage of runs in which the x− y edge is removed?

• PC is tuned with a fan-in k equal to 3 and P-IMPEA is tuned with 50 generations of
50 individuals in order to take the same computational time as PC. 50 generations are
more than enough to converge to a solution due to the small size of the problem. Both
algorithms share the same significance level α.

The actual network contains 8 edges and 6 nodes. Therefore, the number of possible
alternatives is 26 = 64 and if we roughly want to have 30 samples per possibility, we would
need approximatively 64 ∗ 30 ≈ 2000 samples. That explains why performances of the chi-
square test are very poor with only 500 and 1000 cases in the dataset. Indeed, when the size
of the dataset is too small, PC removes the x− y edge (see the last column of table 2) while
it does not even test 〈x, y | {z1, z2, z3, z4}〉 because it is limited by k to 3 nodes in Z. This
could appear like an unfair comparison but the value of k is limited to 3 by default in most
implementations of the PC algorithm.

500 1000 2000 5000 10000
0

1
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3

4

Size of the dataset

Er
ro

ne
ou

s 
ed

ge
s

 

 
PC P IMPEA

Figure 9: Number of erroneous edges (added+deleted) for PC and P-IMPEA, depending on
the size of the dataset

Regarding the global performance, the figure 9 puts up the average number of erroneous
nodes (either added or deleted) of both algorithms. As one can expect, the number of errors
decreases with the size of the dataset, and it is clear that P-IMPEA clearly outperforms PC
in every case.

Finally, if one has a look to the average number of discovered edges, it is almost equal
to 8 (which is the actual number of edges in the 4-comb structure) for P-IMPEA (table 3)
whereas it is greater than 9 for the PC algorithm since it can’t remove the x−y edge (table 2).
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Cases Edges Added Removed Errors x-y?
500 5.04± 0.85 0.38± 0.50 3.34± 0.78 3.72± 1.01 97%
1000 6.50± 1.24 0.66± 0.71 2.16± 1.01 2.82± 1.23 83%
2000 8.09± 1.18 1.27± 0.80 1.18± 0.68 2.45± 0.91 39%
5000 9.71± 0.74 1.93± 0.57 0.22± 0.46 2.15± 0.73 0%
10000 9.84± 0.58 1.84± 0.58 0± 0 1.84± 0.58 0%

Table 2: Averaged results of PC algorithm after 100 runs

Cases Edges Added Removed Errors x-y?
500 6.64± 0.79 0.05± 0.21 1.73± 1.90 1.78± 1.94 100%
1000 7.32± 0.91 0.18± 0.50 0.78± 1.01 0.96± 1.24 100%
2000 8.87± 1.04 0.24± 0.51 0.29± 0.60 0.53± 0.82 97%
5000 8.29± 0.32 0.30± 0.59 0.03± 0.17 0.33± 0.63 90%
10000 8.27± 0.31 0.27± 0.54 0± 0 0.27± 0.54 89%

Table 3: Averaged results of P-IMPEA algorithm after 100 runs

5.2 Test case 2: the Insurance Bayesian Network

Insurance [4] is a network for evaluating car insurance risks. The Insurance Bayesian network
contains 27 variables and 52 arcs. We use in our experiments a database containing 50000
cases generated from the network.

Once again, we start from a population with small Z and let it increase up to 4 nodes. The
figure 10 illustrates this growth: the average size of the number of nodes in Z of the current
population follows the orders given by the minimum and the maximum values.
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Figure 10: Evolution of Minimal, Maximal and Average number of nodes in Z along genera-
tions

Concerning the evolution of the number of erroneous edges, represented on figure 11, it
quickly decreases during the first half of the generation (the completely connected graph has
more than 700 edges) and then stagnates. At the end, P-IMPEA finds 39 edges out of 52
among which there is no added edge, but 13 which are wrongly removed. It is slightly better
than PC which also wrongly removes 13 edges, but which adds one superfluous one.

The best results are obtained with C-IMPEA and a desired number of edges equal to 47.
Then, only 9 errors are made (see table 4). When asking for 52 edges, the actual number of
edges in the Insurance network, it makes 14 errors (7 additions and 7 deletions).

5.3 Analysis

We compared performances on the basis of undirected graphs produced by both algorithms.
The edge directions estimation has not been yet programmed in IMPEA, this will be done in
future developments, using a low combinatorial strategy similar to PC. Comparisons between
both algorithms do not actually depend on this step.

The two experiments of section 5 prove that IMPEA favourably compares to PC, actu-
ally, besides the fact that IMPEA relies on a convenient problem encoding, PC performs a
deterministic and systematic search while IMPEA uses evolutionary mechanisms to prune
computational efforts and to concentrate on promising parts of the search space. The limita-
tion of PC according to problem size is obvious in the first test (Comb network): PC is unable
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Figure 11: Evolution of the number of erroneous
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Algorithm Edges Added Removed Errors
PC 40 1 13 14

P-IMPEA 39 0 13 13
C-IMPEA 47 2 7 9
C-IMPEA 52 7 7 14

Table 4: Number of detected edges for all algorithms

to capture a complex dependency, even on a small network. Additional tests performed on
real data collected during a cheese ripening process [1] proves that IMPEA better resists when
using sparse data (insufficient number of available samples).

6 Conclusion

IMPEA has allowed to overcome some known drawbacks of the classical artificial evolution
approach to Bayesian Network structure learning (in other words, to find an efficient represen-
tation of a direct acyclic graph). We have shown that the scheme we propose is particularly
adapted to an alternate representation of Bayesian Networks: Independence Models.

The major difficulty, which is to build a Bayesian Network representative at each generation
has been overcome for the moment by a scheme that only built a global solution at the end
of the evolution (second step of IMPEA). Future work on this topic will be focused on an
improvement of the global fitness management within IMPEA. The major improvement of
IMPEA is actually that it only performs difficult combinatorial computations when local
mechanisms have pushed the population toward “interesting” area of the search space, thus
avoiding to make complex global computations on obviously “bad” solutions. In this sense,
CCEAs take into account a priori information to avoid computational waste, in other words,
complex computations in unfavourable areas of the search space.
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bayésiens. In Rencontres des Jeunes Chercheurs en IA, 2003.

[12] N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In 14th Interna-
tional Conference on Machine Learning, pages 125–133. Morgan Kaufmann, 1997.

[13] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian Network to analyze expression data. J.
Computational Biology, 7:601–620, 2000.

[14] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function optimization. In
Second International Conference on Genetic Algorithms and their application, pages 41–49. Lawrence Erlbaum
Associates, Inc., 1987.

[15] H. Jia, D. Liu, and P. Yu. Learning dynamic Bayesian Network with immune evolutionary algorithm. 2005.

[16] P. Larra naga and M. Poza. Structure learning of Bayesian Networks by genetic algorithms: A performance
analysis of control parameters. IEEE Journal on Pattern Analysis and Machine Intelligence, 18(9):912–926,
1996.

[17] J. Louchet, M. Guyon, M. J. Lesot, and A. M. Boumaza. Dynamic flies: a new pattern recognition tool applied
to stereo sequence processing. Pattern Recognition Letters, 23(1-3):335–345, 2002.

[18] E. Lutton and P. Martinez. A genetic algorithm with sharing for the detection of 2d geometric primitives in
images. In AE ’95: Selected Papers from the European conference on Artificial Evolution, pages 287–303.
Springer-Verlag, 1995.

[19] K. Murphy. The Bayes Net Toolbox for Matlab. Computing Science and Statistics, 33(2):1024–1034, 2001.

[20] J. W. Myers, K. B. Laskey, and K. A. DeJong. Learning Bayesian Networks from incomplete data using evolu-
tionary algorithms. In Genetic and Evolutionary Computation Conference, volume 1, pages 458–465. Morgan
Kaufmann, 1999.

[21] J. Pearl and T. Verma. A theory of inferred causation. In Second International Conference on the Principles
of Knowledge Representation and Reasoning, 1991.

[22] R. W. Robinson. Counting unlabeled acyclic digraphs. Combinatorial mathematics V, 622:28–43, 1977.

[23] B. J. Ross and E. Zuviria. Evolving dynamic Bayesian Networks with multi-objective genetic algorithms. Applied
Intelligence, 26, 2007.

[24] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. The MIT Press, second edition,
2001.

[25] A. Tucker and X. Liu. Extending evolutionary programming methods to the learning of dynamic Bayesian
Networks. In GECCO ’99, 1999.

[26] S. C. Wang and S. P. Li. Learning Bayesian Networks by lamarckian genetic algorithm and its application to
yeast cell-cycle gene network reconstruction from time-series microarray data. 3141/2004:49–62.

[27] M. L. Wong and K. S. Leung. An efficient data mining method for learning Bayesian networks using an evolu-
tionary algorithm-based hybrid approach. 8:378–404, 2004.

12


	Introduction
	Independence models
	Evolutionary estimation of an Independence Model
	Search space and local fitness
	Genetic operators
	Sharing
	Immortal archive and embossing points
	Clustering and partial restart
	Description of the main parameters

	Bayesian network structure estimation
	Experiments and results
	Test case 1: comb network
	Test case 2: the Insurance Bayesian Network
	Analysis

	Conclusion

