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Abstract

It has been known for some time that solutions of linear Schrödinger operators on the
torus, with bounded, smooth, time dependent potential, have Sobolev norms growing at most
like tǫ when t→ +∞ for any ǫ > 0. This property is proved exploiting the fact that, on the
circle, successive eigenvalues of the laplacian are separated by increasing gaps (and a more
involved but similar property for clusters of eigenvalues in higher dimension). We study here
the case of solutions of

(
i∂t − ∂2

∂x2 + x2 + V
)
u = 0, where V is a time periodic order zero

perturbation. In this case, the gap between successive eigenvalues of the stationary operator
is constant. We show that there are order zero potentials V for which some solutions u have
Sobolev norms of order s growing like ts/2 when t→ +∞.

0 Introduction

Let P0 be an elliptic self-adjoint differential operator of positive order on some Riemannian
manifold M . Consider t→ V (t) a smooth family of self-adjoint operators on M , or order zero,
and the Schrödinger equation

(1) (i∂t + P0 + V (t))u = 0.

Then ‖u(t, ·)‖L2 = ‖u(0, ·)‖L2 . Denote by Hs the Sobolev space associated to P0, defined when
s is an even integer 2k by ‖u‖Hs = ‖u‖L2 +‖P k0 u‖L2 . We are interested in estimating ‖u(t, ·)‖Hs
when t goes to infinity. If V is time independent, it is immediate that ‖u(t, ·)‖Hs = ‖u(0, ·)‖Hs .
Over the last fifteen years, several results have been obtained by different authors for time
dependent potentials V , under convenient spectral assumptions on P0 and V . Our aim is to
study this question when P0 is the harmonic oscillator in one dimension, as this is the most
important case which has not been studied by preceding authors. Before presenting our results,
we discuss in a relatively lengthy way known results and the methods that have been developed
to prove them.

This work was partially supported by the ANR project Equa-disp.
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The problem of finding optimal bounds for ‖u(t, ·)‖Hs has been addressed by Nenciu [10] and
Barbaroux and Joye [1], in the abstract framework of an operator P0 and a perturbation V (t)
acting on elements of an Hilbert space, when the spectrum of P0 is discrete and has increas-
ing gaps. This means that the distinct eigenvalues (λn)n of P0 satisfy conditions of type
|λn+1 − λn| ≥ c(λn + λn+1)ρ/2 for some positive ρ. This assumption is satisfied for instance
if M = S

d and P0 = −∆ (with λn ∼ n2 and ρ = 1/2). If Πn denotes the spectral projector
associated to the eigenvalue λn, and if one assumes that V (t) is an operator obeying conditions
of type ‖Πn∂

ℓ
tV (t)Πn′‖L(L2) ≤ CN 〈n− n′〉−N for any N, ℓ, it follows from the results of [10, 1],

that solutions of (1) verify ‖u(t, ·)‖Hs ≤ Cǫ|t|ǫ when t goes to infinity, for any ǫ > 0. Actually,
because of the fact that L2 norms are conserved, and since Hs spaces are stable by interpolation,
such a result follows from a seemingly weaker bound ‖u(t, ·)‖Hs ≤ C(1+ |t|)M , where M is some
positive number independent of s.

Let us recall the basic idea of the proof of such a result following the method of [10, 1], when
for instance P0 is of order 2: One looks for an operator Q such that

(2) Q∗(i∂t + P0 + V (t))Q = i∂t + P0 +W (t) + remainders,

where the remainders are of very negative order, and where [W (t), P0] = 0 for any t. Clearly, any
solution of (i∂t+P0+W (t))w = 0 will satisfy ‖P k0 w(t, ·)‖L2 = ‖P k0 w(0, ·)‖L2 for any t ∈ R, k ∈ N.
Taking the remainder in the right hand side of (2) into account, one easily deduces from that
bounds ‖u(t, ·)‖Hs ≤ C(1 + |t|)‖u(0, ·)‖Hs for solutions of (1). The operator Q is looked for as
Q = Q0 + Q1 + · · · , with Q0 = Id, Q1 = Q′1 + Q′′1, where Q′1 is of order −ρ, Q′′1 of order −2ρ,
(Q′1)∗ = −Q′1, (Q′′1)∗ = Q′′1. Decompose V (t) = VD(t) + VND(t), where ΠnVDΠn′ = 0 if n 6= n′

and ΠnVNDΠn = 0 for any n. Then VD will contribute to W in the right hand side of (2), and
VND will be eliminated solving equation

(3) −[Q′1, P0] + VND = 0.

Since this equation may be written, applying the spectral projectors Πn (resp. Πn′) on the left
(resp. right), as

(4) (λn − λn′)ΠnQ
′
1Πn′ + ΠnVNDΠn′ = 0 (n 6= n′),

one sees that the gap condition on the λn’s implies that Q′1 will be of order −ρ. In particular,
terms in the right hand side of (2) of form −[Q′1, i∂t] are of order −ρ, so enter the construction
of Q at subsequent orders.

The above approach uses in an essential way the gap condition on the eigenvalues of P0. In
particular, it does not apply a priori to the case when P0 = −∆ on the torus T

d (d ≥ 2).
Nevertheless, Bourgain [2, 3] could prove that, if V is a smooth time dependent potential bounded
as well as its derivatives, solutions of (i∂t − ∆ + V )u = 0 on T

d obey bounds ‖u(t, ·)‖Hs ≤
Cǫ(1 + |t|)ǫ for any ǫ > 0. The method of proof is quite different from what we outlined
above, and relies on reduction to a time periodic potential, and study of the eigenfunctions
of the corresponding operator on S

1 × T
d. The main technical ingredient is a partition of Z

d

(considered as the dual group of T
d) in clusters, which are well separated for the distance

|n− n′| + ||n|2 − |n′|2| naturally associated to the Schrödinger operator. The same method
has been applied in dimension one by Wei-Min Wang [12] to prove logarithmic bounds for the
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Sobolev norm of solutions of (1), when V is analytic. We gave in [4] an alternative proof of
the result of Bourgain, rediscovering the method used by Nenciu and Barbaroux-Joye, that we
ignored at that time (We owe to discussions with J.-M. Combes and S. Kuksin references to these
works and to related papers). The key point is a combination of the diagonalization method
outlined above with the Bourgain lemma on separated clusters, which allows one to solve again
(4) with a gain −ρ on the order of Q versus the order of V . Moreover, we could extend such
results to some other manifolds, like convenient surfaces of revolution. This method has been
recently adapted to the case of analytic potentials by D. Fang and Q. Zhang [7] to recover and
make more precise the logarithmic estimates of Wang. Remind that Bourgain [2] constructed
examples of time periodic potentials for which ‖u(t, ·)‖Hs is bounded from below by a power of
log t when s > 0 and t→ +∞.

A natural question is to determine whether estimates of type ‖u(t, ·)‖Hs = O(tǫ), t→ +∞ hold
true when the assumption of increasing gaps |λn+1 − λn| ≥ c(λn + λn+1)ρ/2 is not satisfied with
a positive ρ. Howland [9] obtained results on the structure of the spectrum of i∂t + P0 + V (t)
on S

1 × S
1, when V is time periodic and when the eigenvalues λn of P0 satisfy a shrinking gap

condition, like λn ∼ nα with 0 < α < 1. Duclos, Lev and Štovíček [5] have studied Sobolev
bounds for solutions of such operators, under the same assumption of shrinking gap conditions.
If one sets γ = 1−α

2 , and if the perturbation V (t) in (1) is periodic in time, small enough, and
satisfies conditions of type

‖ΠnV (t)Πn′‖L(L2) = O((1 + |n|+ |n′|)−2γ〈n− n′〉−N )

for any N , they could prove O(|t|ǫ)-bounds for Sobolev norms. These assumptions on V are
verified for instance when V is a pseudo-differential operator of order −2γ on S

1. The method
of proof still relies on a conjugation of type (2), except that it is done in two steps. One first
decomposes the potential V (t) as V + Ṽ (t), where V is the time average of V on a period. One
eliminates Ṽ (t) looking for an operator Q such that, instead of (3),

(5) −[Q, i∂t + P0 + V + Ṽ (t)] + Ṽ (t) = terms of lower order.

This equation is solved taking Q such that −[Q, i∂t] + Ṽ (t) = 0. Since Ṽ (t) is of order −2γ, Q
will be of order −2γ. The shrinking gap condition on P0 implies then that [Q,P0] is of order
−4γ, so will contribute to the lower order terms in the right hand side. The same is true for the
[Q,V + Ṽ (t)] contribution.

After the first step, one is morally reduced to to an operator of the form i∂t + P0 + V , where V
is time independent. The second step of the proof of the results of [5] is to find another operator
Q such that

(6) Q∗(i∂t + P0 + V )Q = i∂t + P0 + V D + remainders,

where V D commutes to P0. The method is similar to the one used in the case of increasing
gaps, i.e. finding Q solving an equation of form (3). The difference is that under a shrinking gap
condition, the operator Q that one finds is not of order smaller than the order of V . Actually,
since V is of order −2γ, where γ s related to the width of the gaps, one finds an operator Q of
order zero. The key point is that Q is now time independent so that [i∂t, Q] = 0, and is small
since V is small. Because of that, after finding the first approximation of Q to solve equation
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(6), one generates remainders which are of the same order as V , but whose magnitude is ǫ2 if
the magnitude of V is ǫ. Iterating the process, and showing that the resulting ǫ-series converges,
allows one to make a reduction of (6) at infinite order i.e. to remove the remainders in the right
hand side.

The results we describe so far use in an essential way that the gaps in the spectrum of P0 are
either increasing or shrinking. They do not apply to the case of the harmonic oscillator in one

dimension P0 = 1
2

(
− d2

dx2 + x2
)
, for which the eigenvalues are the integers (up to translation):

this corresponds to the forbidden case α = 1 or γ = 0 in the preceding results.

The goal of this paper is to study this problem, and to show that one may find order zero time
dependent perturbations of P0 such that there are solutions whose Hs-norms grow like ts/2,
when t goes to infinity (This growth will be seen to be optimal). In other words, our results are
in contrast with those of the cases of increasing or shrinking gaps, as one cannot obtain a bound
for the Sobolev norms in terms of |t|M with a power M independent of s.

Let us describe the approach we follow. We consider an operator

(7) i∂t + P0 + OpW(V ),

where P0 is the harmonic oscillator in one dimension, and OpW(V ) the Weyl quantization of a
time periodic order zero symbol V belonging to the symbolic classes naturally associated to P0.
One first looks for an operator of order zero Q, such that

(8) Q∗(i∂t + P0 + OpW(V ))Q = i∂t + P0 + OpW(V Z) + remainders,

where V Z is such that [i∂t+P0, V
Z ] = 0. The construction of Q is essentially reduced to solving

an equation of the from

(9) [i∂t + P0, Q] + OpW(V − V Z)Q = lower order operator.

Note that the difference with the case of increasing or shrinking gaps is that in the left hand
side of (9), [i∂t, Q] and [P0, Q] are of the same order (In the results described above, one of
these commutators was of lower order, so that the equation to solve was either [i∂t, Q] = B or
[P0, Q] = B for a given B). Using symbolic calculus, we easily find V Z with [i∂t + P0, V

Z ] = 0
and Q solving (9), so that, forgetting the remainders, the conjugation equation (8) reduces (7)
to

(10) i∂t + P0 + OpW(V Z).

Conjugating the above operator by eitP0 , one reduces it to

(11) i∂t + OpW(W ),

where OpW(W ) = e−itP0OpW(V Z)eitP0 . The commutator properties of OpW(V Z) and i∂t + P0

imply that W is independent of t. In that way, (7) is reduced to an autonomous ODE (11).

The second step of the proof is to construct a convenient W and an approximate solutions wa
of (11), whose Hs-norm behaves like ts/2 when t goes to infinity. We look for this function as
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wa(t, x) = eiψ(t,x)b(t, x) where, for large t, |∂xψ(t, x)| ∼
√
t, |b(t, x)| ≤ Ct−1/4, x → b(t, x) is

supported for x/
√
t in a compact set K and |b(t, x)| ≥ ct−1/4 for x/

√
t in another compact set K ′.

In that way, ‖wa(t, ·)‖L2 ∼ 1 and ‖∂sxwa(t, ·)‖L2 + ‖xswa(t, ·)‖L2 ∼ ts/2 i.e. ‖wa(t, ·)‖Hs ∼ ts/2

when t goes to infinity. To determine ψ, we construct the Lagrangian

Λt = {(x, ∂xψ(t, x));x ∈ R}.

At the initial time, we take a Lagrangian which is a graph above an interval [A, 2A], and which
stays inside an angular sector of angle 1/A around the positive x-axis of R

2 ≃ T ∗R, where A
is a large enough constant. We take an autonomous symbol W that may be written in polar
coordinates as W∞(θ)+ perturbation of order < −2. The main contribution W∞ is assumed to
satisfy convenient non-degeneracy conditions along the positive x-axis θ = 0. These conditions
imply that the flow-out of the Hamiltonian vector field of W pulls the initial Lagrangian far
away from zero, inside the sector of angle 1/A. At large time t, the transported Lagrangian lies
at a distance of order

√
t from the x-axis, and is the graph of a function x → ∂xψ(t, x), which

has thus to verify |∂xψ(t, x)| ∼
√
t. Once ψ has been constructed, one finds b so that eiψb be

an approximate solution, solving transport equations. In that way, an approximate solution of
(i∂t + OpW(W ))wa = 0 has been constructed, for some convenient W . The last step of the
proof is to show that one may find a time depending symbol V such that the reductions (8),
(10), (11) bring to this W (up to remainders), and to deduce from the approximate solution wa
an approximate solution – and then an exact solution – of the initial operator (7), enjoying the
wanted asymptotics at infinity.

1 Growth of Sobolev norms

1.1 Statement of the main theorem

The main result of this paper asserts that one may construct time dependent self-adjoint order
zero perturbations of the harmonic oscillator P0 = 1

2

(
− d2

dx2 + x2
)

in one space dimension, with
solutions whose Sobolev norm grows at an optimal rate when time goes to infinity. Before stating
the theorem, we need to introduce some notations.

Let us recall the definition of standard classes of pseudo-differential symbols adapted to the
harmonic oscillator.

Definition 1.1.1 Let d ∈ N
∗, m ∈ R. One denotes by Sm(S1 × R

d × R
d) the space of smooth

functions (t, x, ξ) → a(t, x, ξ) defined on R × R
d × R

d, with values in C, which are 2π-periodic
in t, and such that for any j, α, β ∈ N, there is a constant C > 0 so that, for any (t, x, ξ),

(1.1.1) |∂jt ∂αx ∂βξ a(t, x, ξ)| ≤ C(1 + |x|+ |ξ|)m−|α|−|β|.

We endow Sm(S1 × R
d × R

d) with its natural semi-norms. We denote by Sm(Rd × R
d) the

subspace of time independent symbols.

We shall use Weyl quantization for the above symbols.
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Definition 1.1.2 If a ∈ Sm(S1 × R
d × R

d), we denote by OpW(a(t, ·)) the operator defined on
S(Rd) by

(1.1.2) OpW(a(t, ·))u =
1

(2π)d

∫
ei(x−y)ξa

(
t,
x+ y

2
, ξ
)
u(y) dydξ.

We refer to chapter 4 of the book of Shubin [11] for the main properties of these operators. We
shall recall those which will be useful for us in subsection 1.2 below. Let us just mention at this
point that if a ∈ S0(S1 × R

d × R
d), for fixed t, OpW(a(t, ·)) extends as a bounded operator on

L2(Rd) and on S ′(Rd). Moreover, if one defines, for s ∈ R, the Sobolev space Hs associated to
the harmonic oscillator, by

(1.1.3) Hs(Rd) = {u ∈ S ′(Rd); OpW((1 + |x|2 + |ξ|2)s/2)u ∈ L2(Rd)}

or equivalently, when s ∈ N,

(1.1.4) Hs(Rd) = {u ∈ S ′(Rd); for any α, β ∈ N
d × N

d with |α|+ |β| ≤ s, xα∂βu ∈ L2(Rd)},

the operator OpW(a(t, ·)) is bounded from Hs(Rd) to Hs−m(Rd), uniformly in t, for any s, when
a is a symbol of order m.

Let state our main theorem.

Theorem 1.1.3 Let d = 1. There is a real valued symbol V ∈ S0(S1 × R × R) and, for any
s > 0, a constant c > 0, and a smooth solution u : R× R→ C of the equation

(1.1.5) (i∂t + P0 + OpW(V (t, ·)))u = 0,

such that for any t ≥ 0, u(t, ·) ∈ Hs(R) and satisfies

(1.1.6) ‖u(t, ·)‖Hs ≥ cts/2

for any large enough t.

Remarks: • We shall see, in the following subsection, that a solution of equation (1.1.5) with
any V of order zero and with Hs-Cauchy data, always satisfies a bound ‖u(t, ·)‖Hs ≤ Cts/2 when
t→ +∞. The lower bound (1.1.6) is thus optimal.

• The symbol V that we construct will be an element of S0(S1 × R × R). In particular, it
depends on x and on ξ. We do not know if a result of type (1.1.6) could be proved replacing in
(1.1.5) the order zero perturbation OpW(V (t, ·)) by a local potential V (t, x). On the other hand,
Grébert and Thomann [8] have studied recently equations of the form (1.1.5), where V is a small
time quasi-periodic local potential satisfying convenient assumptions. They have been able to
prove that, when the parameter of quasi-periodicity stays outside a subset of small measure,
the equation may be reduced to a linear equation with constant coefficients. Consequently,
the solutions of the Cauchy problem are time quasi-periodic, and so have uniformly bounded
Sobolev norms. We refer to theorem 1.2 and corollary 1.3 of [8] for precise statements, and to
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corollary 1.4 of the same paper, as well as to the paper of Wang [13], for interpretation of such
results in terms of Floquet spectrum. Note also that similar results for the Schrödinger equation
on the torus, with time quasi-periodic potential, had been previously proved by Eliasson and
Kuksin [6].

• The conditions on the potential that we need to obtain (1.1.6) will be made more precise in
subsection 3.1.

1.2 Symbolic calculus

In this subsection, we recall classical properties of operators of the form (1.1.2) and establish
some related results that will be useful in the sequel.

Remind that if a is in Sm(S1 × R
d × R

d), then

(1.2.1) OpW(a(t, ·))∗ = OpW(ā(t, ·)),

so that real valued symbols give rise to self-adjoint operators. If a ∈ Sm1(S1 × R
d × R

d),
b ∈ Sm2(S1 × R

d × R
d), there is a symbol c ∈ Sm1+m2(S1 × R

d × R
d) such that

(1.2.2) OpW(a(t, ·)) ◦OpW(b(t, ·)) = OpW(c(t, ·)).

Moreover, there is a sequence (ck)k of symbols, ck ∈ Sm1+m2−2k(S1 × R
d × R

d), such that
c−∑N−1

k=0 ck ∈ Sm1+m2−2N (S1 × R
d × R

d), where

(1.2.3) ck(t, x, ξ) = 2−k
∑

|α|+|β|=k

(−1)|β|

α!β!
(∂αξ D

β
xa)(∂βξD

α
x b).

The above expression is bilinear in (a, b) and symmetric (resp. antisymmetric) if k is even (resp.
odd). This implies that

(1.2.4) [OpW(a(t, ·)),OpW(b(t, ·))] = OpW(e(t, ·)),

where e ∈ Sm1+m2−2(S1 × R
d × R

d) is such that there is a sequence (e2k+1)k of symbols, with
e2k+1 ∈ Sm1+m2−4k−2(S1 × R

d × R
d), and

e(t, x, ξ)−
N−1∑

k=0

e2k+1(t, x, ξ) ∈ Sm1+m2−4N−2(S1 × R
d × R

d)

e1(t, x, ξ) = i{a, b} = i
d∑

j=1

(
− ∂a
∂ξj

∂b

∂xj
+

∂a

∂xj

∂b

∂ξj

)
.

(1.2.5)

We set p0(x, ξ) = 1
2(|x|2 + |ξ|2). If a ∈ Sm(S1 × R

d × R
d) we get

P0 = OpW(p0) = −1
2

∆ +
1
2
|x|2,

[P0,OpW(a(t, ·))] = iOpW({p0, a}(t, ·)).
(1.2.6)

The above properties of symbolic calculus provide immediately a bound for the Sobolev norm
of solutions of equations of form (1.1.5):
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Lemma 1.2.1 Let V ∈ S0(S1 × R
d × R

d) a real valued symbol. If t, t′ ∈ R, denote by S(t, t′)
the operator solving

[i∂t + P0 + OpW(V (t, ·))]S(t, t′) = 0

S(t, t′)|t=t′ = Id.
(1.2.7)

Then, for any s ∈ R+, there is a constant Cs > 0 such that, for any t, t′ ∈ R,

(1.2.8) ‖S(t, t′)‖L(Hs,Hs) ≤ Cs〈t− t′〉s/2
.

In particular, any solution u of (1.1.5) with initial data in Hs satisfies ‖u‖Hs = O(ts/2), t →
+∞.

Proof: Consider w solution of

[i∂t + P0 + OpW(V (t, ·))]w(t, ·) = 0

w(t′, x) = w0.

Then, since OpW(V (t, ·)) is self-adjoint on L2, ‖w(t, ·)‖L2 = ‖w0‖L2 . Moreover, if k ∈ N, it
follows from (1.2.6) that

[i∂t + P0 + OpW(V (t, ·))](P k0 w) = g,

where ‖g‖L2 ≤ C‖w(t, ·)‖H2k−2 . It follows by induction that

‖w(t, ·)‖H2k ≤ Ck〈t− t′〉k‖w(t′, ·)‖H2k .

Inequality (1.2.8) follows for any positive s by interpolation. ✷

In section 3, we shall study the action of operators of the form (1.1.2) (with d = 1) on some
functions, given by the product of an oscillating term and a compactly supported profile. The
classes of profiles we shall use is defined below.

Definition 1.2.2 Let j ∈ N, t → µℓ(t), ℓ = 1, 2 be two continuous functions from [2,+∞[ to
R
∗
+ such that µ1(t) < µ2(t) for any t ≥ 2. Set K(t) = [µ1(t), µ2(t)] and K = (K(t))t≥2. One

denotes by Σ−jK the space of smooth functions (t, x)→ b(t, x), defined on [2,+∞[×R, with values
in C, such that for any t ≥ 2, x → b(t, x) is supported for x√

t
∈ K(t) and satisfies, for any

α, β ∈ N, estimates

(1.2.9) |∂αt ∂βx b(t, x)| ≤ Cα,βt−
1

4
−α−β

2
−j(log t)α+β+2j ,

for any t ≥ 2, x ∈ R.

We assume from now on that we are given two positive real numbers µ′1 < µ′2 and ν > 0 such
that, for any t ≥ 2, µ′1 + ν ≤ µ1(t) < µ2(t) ≤ µ′2 − ν. Let (t, x) → ψ(t, x) be a smooth real
valued function, such that Z(t, y) = 1√

t
(∂xψ)(t,

√
ty) is defined on [2,+∞[×[µ′1, µ

′
2] and satisfies

for any (t, y)

(1.2.10) |∂αt ∂βyZ(t, y)| ≤ Cα,βt−α.

8



Proposition 1.2.3 Assume that there is c > 0 such that |Z(t, y)| ≥ c for any t ≥ 2, any
y ∈ [µ′1, µ

′
2]. Let m ∈ R, N ∈ N, j ∈ N, a ∈ Sm(R × R). There is, for any j′ ∈ N, a linear map

L : Σ−j
′

K → Σ−j
′

K and, for any b ∈ Σ−jK , there is a smooth function r : [2,+∞[×R→ C, satisfying
for any α, β ∈ N estimates

(1.2.11) |∂αt ∂βx r(t, x)| ≤ Cαβt−
1

4
−α−β

2
−N−1〈x/

√
t〉−N (log t)α+β,

such that

OpW(a)[eiψ(t,x)b(t, x)] = eiψ(t,x)[a(x, ∂xψ(t, x))b(t, x)

− i(∂ξa)(x, ∂xψ(t, x))∂xb(t, x)

− i

2

(
(∂x∂ξa)(x, ∂xψ(t, x)) + (∂2

ξa)(x, ∂xψ(t, x))∂2
xψ(t, x)

)
b(t, x)

]

− ieiψ(t,x) (log t)2

t2−
m
2

L(b)(t, x) + eiψ(t,x)r(t, x).

(1.2.12)

Proof: Write the left hand side of (1.2.12)

(1.2.13) T (x) =
1

2π

∫
ei(x−y)ξa

(x+ y

2
, ξ
)
eiψ(t,y)b(t, y) dydξ.

Define B(t, y) = b(t,
√
ty) and compute

(1.2.14) T (x
√
t) =

t

2π

∫
eit(x−y)ξ+iψ(t,y

√
t)a

(√
t
(x+ y

2

)
,
√
tξ

)
B(t, y) dydξ.

Note first that for |x| large enough, ∂αx [T (x
√
t)] = O(t−

M
2 |x|−M ) for any α,M . Actually, since

∂αx ∂
β
ξ

[
a

(√
t
(x+ y

2

)
,
√
tξ

)]
= O
(
t
m++α+β

2 (1 + |x|+ |ξ|)m+
)
,

|tξ −
√
t(∂xψ)(t, y

√
t)| = t|ξ − Z(t, y)|,

and since y stays in [µ′1, µ
′
2], performing, for large |ξ|, ∂y-integrations by parts, makes appear a

O((
√
t|ξ|)−M ) decay inside the integral in (1.2.14). Moreover, ∂ξ-integrations by parts provide a

gainO((
√
t|x|)−M ) for large x. This shows that for x large enough, (1.2.14) and its derivatives are

bounded by CM t−M/2|x|−M for any M . Returning to the original variables, we get a contribution
to r in (1.2.12). We may therefore assume from now on that x in (1.2.14) satisfies |x| ≤ C for a
fixed constant C. We perform the following change of variables

y = x− z, ξ =
1√
t

(
∂ψ

∂x

)(
t,
√
t
(
x− z

2

))
+ η = Z

(
t, x− z

2

)
+ η.

The phase in (1.2.14) may be expanded, using the expression of ∂xψ in terms of Z, as

tz
(
η + Z

(
t, x− z

2

))
+ ψ(t,

√
t(x− z)) = ψ(t,

√
tx) + tzη + tz3g(t, x, z),
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where g is smooth and satisfies estimates of type ∂αt ∂
β
x∂

γ
z g = O(t−α). We rewrite (1.2.14) as

(1.2.15)

T (x
√
t) =

t

2π
eiψ(t,x

√
t)
∫
eit[zη+z3g(t,x,z)]a

(√
t
(
x− z

2

)
,
√
t
(
Z
(
t, x− z

2

)
+ η
))
B(t, x− z) dzdη.

Let us write

(1.2.16) a
(√

t
(
x− z

2

)
,
√
t
(
Z
(
t, x− z

2

)
+ η
))

=
M∑

k=0

(
√
tη)kak

(
t, x− z

2
, η
)
,

where a0, . . . , aM−1 are independent of η and

ak
(
t, x− z

2

)
=

1
k!

(∂kξ a)
(√

t
(
x− z

2

)
,
√
tZ
(
t, x− z

2

))
, 0 ≤ k ≤M − 1,

aM
(
t, x− z

2
, η
)

=
1

(M − 1)!

∫ 1

0
(∂Mξ a)

(√
t
(
x− z

2

)
,
√
tZ
(
t, x− z

2

)
+
√
tση
)
(1− σ)M−1 dσ.

(1.2.17)

Decompose from (1.2.16), T (x
√
t) =

∑M
k=0 Tk(x

√
t). For 0 ≤ k ≤M − 1

(1.2.18) Tk(x
√
t) = eiψ(t,x

√
t)
(
i√
t

)k
∂kz

[
eitz

3gak
(
t, x− z

2

)
B(t, x− z)

]∣∣∣
z=0

.

The contributions coming from k = 0 or 1 give, returning to the original variables, the main
contributions to the right hand side of (1.2.12). Let us show that for k = 3, . . . ,M − 1, we
get expressions that may be incorporated to the L(b) term in (1.2.12). Note that every time
a ∂z-derivative acts on the exponential in (1.2.18), we have to make act at least two more
derivatives on ∂z[itz3g] if we want to get a non-vanishing term. Consequently, (1.2.18) is a
linear combination of quantities

(1.2.19) eiψ(t,x
√
t)
(
i√
t

)k
tℓhk(t, x),

where 3ℓ ≤ k and hk is computed from derivatives of order smaller than k − 3ℓ of ak(t, x −
z/2)B(t, x− z) taken at z = 0. The logarithmic losses coming, because of the derivatives, from
B(t, x) = b(t,

√
tx) will be at most (log t)k−3ℓ. Moreover, the expression of ak, estimates (1.1.1),

and the fact that
√
tx and

√
tZ(t, x) are of size

√
t when x is in the support of B(t, ·), show that

tℓ−
k
2 |hk(t, x)| ≤ Ctℓ−k(log t)k−3ℓt−

1

4
−j+m

2 (log t)2j .

The conditions 3ℓ ≤ k, k ≥ 2, k, ℓ ∈ N, show that the prefactor tℓ−k(log t)k−3ℓ is always smaller
than Ct−2(log t)2. Since, moreover, ∂x (resp. ∂t) derivatives of hk give a loss of log t (resp. a
gain of t−1 and a loss of log t), we conclude, returning to the original variables, that (1.2.18)

gives to the right hand side of (1.2.12) a contribution of form eiψ(t,x) (log t)2

t2−
m
2
c, where c is a local

linear expression in terms of b and its derivatives, belonging to Σ−jK when b is in Σ−jK .

We are left with studying TM . Let χ ∈ C∞0 (R2) with small support, equal to one close to zero.
Write
(1.2.20)

TM (x
√
t) =

t

2π
eiψ(t,

√
tx)
∫
eit[zη+z3g(t,x,z)](

√
tη)Mχ(z, η)aM

(
t, x− z

2
, η
)
B(t, x− z) dzdη+ r̃(t, x),
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where r̃ is defined by a similar integral, with χ replaced by 1− χ. In particular, the support of
the integrand in the expression of r̃ does not contain (0, 0), which is the only critical point of the
phase zη+ z3g(t, x, z). Taking into account that a ∂z or ∂η integration by parts makes gain t−1

and lose at most
√
t, we conclude that r̃ = O(t−∞) as well as its derivatives (Note that for large

|η|, ∂z-integrations by parts provide a gain of (
√
t|η|)−M ′ for any M ′, which makes converge

the η-integral). Consequently, r̃ contributes to r in (1.2.12), after returning to the original
coordinates, since we have already reduced ourselves to the case of bounded x in (1.2.14).

To conclude the proof, let us show that the first term in the right hand side of (1.2.20) contributes
to r in (1.2.12), up to the change of variables x→ x/

√
t. Rewrite this quantity as the product

of eiψ(t,
√
tx) and

(1.2.21) I =
1

2π

∫
eitzηt1+M

2 (η − z2g(t, x, z))Mc(t, x, z, η) dzdη

with
c(t, x, z, η) = χ(z, η − z2g(t, x, z))aM

(
t, x− z

2
, η − z2g

)
B(t, x− z).

If Suppχ is small enough, it follows from (1.1.1), (1.2.9) and (1.2.17), and from the fact that
x− z

2 and Z(t, x− z
2) stay between two positive constants in the expression of aM , that

(1.2.22) |∂αt ∂βx∂γz ∂δη[c(t, x, z, η)]| ≤ Ct−M2 −α+m
2
− 1

4
−j(log t)α+β+γ+2j .

We may perform in (1.2.21) M integrations by parts in ∂z or ∂η to get

|∂αt ∂βx I| ≤ Ct1−M−α+m
2
− 1

4
−j(log t)α+β+2j+M .

If we remember that we reduced ourselves to x remaining in a compact subset, we see, returning
to the original variables, that we get estimates of form (1.2.11), if M has been chosen large
enough relatively to N . This concludes the proof. ✷

2 Reduction to an autonomous equation

The goal of this section is to reduce by conjugation equation (1.1.5) to an autonomous one. We
study, in the first subsection, an homological equation on symbols, that will be the key of the
arguments of the second subsection. Since our reduction works in any dimension, we present
the arguments for a d-dimensional harmonic oscillator.

2.1 Homological equation on symbols

Let us define subspaces of the class of symbols Sm(S1 × R
d × R

d) of definition 1.1.1.
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Definition 2.1.1 Set for m ∈ R

SmZ (S1 × R
d × R

d) = {a ∈ Sm(S1 × R
d × R

d); ∂ta+ {p0, a} = 0},
SmB (S1 × R

d × R
d) = {a ∈ Sm(S1 × R

d × R
d); there is b ∈ Sm(S1 × R

d × R
d)

with a = ∂tb+ {p0, b}}.
(2.1.1)

For t ∈ R, denote by ρ(t) the rotation of angle t acting on each couple of variables (xj , ξj) of
T ∗Rd = R

d × R
d. In complex coordinates

(2.1.2) ρ(t) · (x1 + iξ1, . . . , xd + iξd) = eit(x1 + iξ1, . . . , xd + iξd).

Note that ρ̇(t) = ρ(t)J , where J is the (2k)× (2k) block diagonal matrix whose diagonal blocks
are
[

0 −1
1 0

]
.

If a ∈ Sm(S1 × R
d × R

d), define

(2.1.3) M0(a)(t, x, ξ) =
1

2π

∫ 2π

0
a(s+ t, ρ(s) · (x, ξ)) ds.

Note that if a0 = M0(a),

∂ta0+{p0, a0} =
1

2π

∫ 2π

0
(∂ta)(s+t, ρ(s)·(x, ξ)) ds+ 1

2π

∫ 2π

0
(Da)(s+t, ρ(s)·(x, ξ))·ρ(s)J ·(x, ξ) ds,

where Da is differentiation with respect to the variables of R
d × R

d. Performing an integration
by parts in the first integral, and using that ρ̇ = ρJ , we obtain ∂ta0 + {p0, a0} = 0 i.e. M0(a) ∈
SmZ (S1 × R

d × R
d).

Proposition 2.1.2 For any a ∈ Sm(S1 × R
d × R

d), there is b ∈ Sm(S1 × R
d × R

d) such that

(2.1.4) ∂tb+ {p0, b} = a−M0(a)

(i.e. a−M0(a) ∈ SmB (S1 ×R
d ×R

d)). Moreover, the semi-norms of b are estimated in terms of
those of a, and b is real valued if a is real valued.

Proof: Set ã = a−M0(a) and define

(2.1.5) b(t, x, ξ) =
∫ t

0
ã(s, ρ(s− t) · (x, ξ)) ds.

Then b solves (2.1.4) and satisfies estimates (1.1.1). We just have to check that b is 2π-periodic
in time. Since ρ is 2π-periodic, we need to check that

∫ 2π

0
ã(s+ t, ρ(s) · (x, ξ)) ds = 0

for all t, i.e. coming back to the definition of ã and M0(a),
∫ 2π

0
a(s+ t, ρ(s) · (x, ξ)) ds =

1
2π

∫ 2π

0

∫ 2π

0
a(s′ + s+ t, ρ(s′)ρ(s) · (x, ξ)) ds′ds

which follows from the group property of ρ(·). This concludes the proof. ✷
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2.2 Conjugation to an autonomous ODE

Definition 2.2.1 Let ℓ ∈ R+. One denotes by P−ℓ the space of maps Ω defined on
⋃
m Sm(S1×

R
d × R

d), with values in the same space, satisfying the following: for any N ∈ N, there is a
family (ΩN

j )1≤j≤kN of j-linear maps

ΩN
j :

j∏

j′=1

Smj′ (S1 × R
d × R

d)→ S−ℓ+
∑j

1
mj′ (S1 × R

d × R
d),

such that if ΩN (a) =
∑kN
j=1 ΩN

j (a, . . . , a), for any a ∈ S0(S1 × R
d × R

d)

(2.2.1) Ω(a)− ΩN (a) ∈ S−2N−ℓ(S1 × R
d × R

d).

Remark: It follows from the definition and from (1.2.2), (1.2.3), that if Ω(1) ∈ P−ℓ1 , Ω(2) ∈
P−ℓ2 , then for any a ∈ S0(S1 × R

d × R
d), OpW(Ω(1)(a)) ◦ OpW(Ω(2)(a)) may be written as

OpW(Ω(a)) for some Ω ∈ P−(ℓ1+ℓ2).

Proposition 2.2.2 Let N ∈ N
∗. There is a map Ω belonging to the class P−2 such that the

following holds: for any real valued symbol V in S0(S1 × R
d × R

d), there are symbols U in
S−2N (S1 × R

d × R
d), S in S−2N−2(S1 × R

d × R
d), m in S0(S1 × R

d × R
d) and a symbol of

S0(Rd × R
d), independent of time,

(2.2.2) W = [M0(V ) + Ω(V )]|t=0,

such that

e−itP0OpW(m)∗[i∂t + P0 + OpW(V )]OpW(m)eitP0

= i∂t + OpW(W ) + e−itP0OpW(U)eitP0

+ e−itP0OpW(S)eitP0 ◦ (i∂t) + (i∂t) ◦ e−itP0OpW(S)eitP0 .

(2.2.3)

Moreover W , U , S are real valued and

(2.2.4) OpW(m)∗OpW(m)− Id = OpW(r) with r ∈ S−4(S1 × R
d × R

d).

We shall prove the proposition in several steps. We first construct a conjugation allowing one
to replace the given symbol of order zero V , by the sum of an element of S0

Z(S1 ×R
d ×R

d) and
of a symbol of lower order.

Lemma 2.2.3 Let V ∈ S0(S1×R
d×R

d), real valued. One may find a symbol q ∈ S0(S1×R
d×R

d)
satisfying

(2.2.5) |q|2 = 1, {q, q̄} = 0,

and real valued symbols V Z
0 = M0(V ) ∈ S0

Z(S1 × R
d × R

d), V1 ∈ S−2(S1 × R
d × R

d), S1 ∈
S−4(S1 × R

d × R
d), such that

OpW(q)∗(i∂t + P0 + OpW(V ))OpW(q) = i∂t + P0 + OpW(V Z
0 ) + OpW(V1)

+ OpW(S1)(i∂t + P0) + (i∂t + P0)OpW(S1).
(2.2.6)

Moreover V1 (resp. S1) may be written as Ω(−2)(V ) (resp. Ω(−4)(V )) for some Ω(−ℓ) ∈ P−ℓ.
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Proof: Define V Z
0 = M0(V ), V B

0 = V −V Z
0 and take, according to proposition 2.1.2, an element

b ∈ S0(S1×R
d×R

d), real valued, solving the equation ∂tb+{p0, b} = V B
0 . Setting Q = OpW(q),

the left hand side of (2.2.6) may be written

(2.2.7) i∂t + P0 +
1
2

[Q∗Q− I](i∂t + P0) +
1
2

(i∂t + P0)[Q∗Q− I] + Σ +Q∗OpW(V Z
0 )Q,

where

(2.2.8) Σ =
1
2
Q∗([i∂t + P0, Q] + OpW(V B

0 )Q) +
1
2

([Q∗, i∂t + P0] +Q∗OpW(V B
0 ))Q.

We want to choose Q so that [i∂t+P0, Q]+OpW(V B
0 )Q be of order −2. By (1.2.6) and symbolic

calculus, it is enough to solve
i∂tq + i{p0, q}+ V B

0 q = 0.

We take q = eib. Since b is of order zero and real valued, we get an element of S0(S1×R
d×R

d)
satisfying |q| = 1. Moreover, {q, q̄} = 0. By (1.2.2) and (1.2.3), it follows that Σ may be written
as OpW(σ) for some symbol σ in S−2(S1×R

d×R
d), which is real valued since Σ is self-adjoint.

Consequently, Σ contributes to OpW(V1) in the right hand side of (2.2.6).

Since Q∗ = OpW(q̄) and since qq̄ = 1, {q, q̄} = 0, it follows from (1.2.2) and the fact that in
(1.2.3) c1 = i

2{a, b}, that 1
2(Q∗Q−I) may be written as OpW(S1) for some real valued symbol S1

in S−4(S1×R
d×R

d). Let us show that the last term in (2.2.7), Q∗OpW(V Z
0 )Q, may be written

as OpW(V Z
0 ) + OpW(σ), where σ will be again a real valued element of S−2(S1 ×R

d ×R
d) that

will contribute to V1 in (2.2.6). Actually, this follows from (1.2.4) and the fact that Q∗Q− I is
of order −4.

To conclude the proof, we still have to show that V1 (resp. S1) may be written as Ω(−2)(V )
(resp. Ω(−4)(V )) for some Ω(−ℓ) ∈ P−ℓ. Note first that b, given by (2.1.5) with a replaced by V ,
is linear in V . Moreover, it follows from (1.2.2), (1.2.3) that if a is a symbol, OpW(a) ◦OpW(q)
may be written as OpW(eibc), where c has an expansion

∑
ck, in which each ck is a finite sum

of expressions that are linear in a and multi-linear in b (and their derivatives). Applying this
to a = q̄, we see that 1

2

[
OpW(q)∗OpW(q) − I

]
= OpW(S1) is given by a symbol S1, such that

each term in its expansion is a finite sum of multi-linear expressions in V and its derivatives.
Since S1 is of order −4, this means that S1 may be written as Ω(−4)(V ) for Ω(−4) ∈ P−4. In the
same way, the contributions to V1 coming from Σ, or from the symbol of Q∗OpW(V Z

0 )Q, may
be written as Ω(−2)(V ) for some Ω(−2) ∈ P−2. This concludes the proof. ✷

The second step of the proof of proposition 2.2.2 is to conjugate the right hand side of (2.2.6)
to an expression where V1 and S1 will be replaced by symbols of arbitrary negative order. We
do that by induction. Next lemma is the general step.

Lemma 2.2.4 Let j be a positive integer. Assume given real valued symbols V Z
j−1 in S0

Z(S1 ×
R
d × R

d), Vj in S−2j(S1 × R
d × R

d), Sj in S−2j−2(S1 × R
d × R

d), a′ in S−2j(S1 × R
d × R

d),
a′′ in S−2j−2(S1 × R

d × R
d). One may find real valued symbols Ṽj+1 ∈ S−2j−2(S1 × R

d × R
d),

S̃j+1 ∈ S−2j−4(S1 × R
d × R

d) such tat if a = ia′ + a′′, the operator

(I + OpW(a))∗
[
i∂t + P0 + OpW(V Z

j−1) + OpW(Vj)

+ OpW(Sj)(i∂t + P0) + (i∂t + P0)OpW(Sj)
]
(I + OpW(a))

(2.2.9)
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may be written as

i∂t + P0 + OpW(V Z
j−1) + OpW(Vj)− i[OpW(a′), i∂t + P0]

+ [OpW(a′′) + OpW(Sj) +
1
2

OpW(a′)∗OpW(a′)](i∂t + P0)

+ (i∂t + P0)[OpW(a′′) + OpW(Sj) +
1
2

OpW(a′)∗OpW(a′)]

+ OpW(Ṽj+1) + OpW(S̃j+1)(i∂t + P0) + (i∂t + P0)OpW(S̃j+1).

(2.2.10)

Moreover, if we assume that V Z
j−1 (resp. Vj, resp. Sj, resp. a′, resp. a′′) may be written in

terms of a given symbol of order zero V as Ω(0)(V ) (resp. Ω(−2j)(V ), resp. Ω(−2j−2)(V ), resp.
Ω(−2j)(V ), resp. Ω(−2j−2)(V )) for elements Ω(−ℓ) ∈ P−ℓ, then Ṽj+1 (resp. S̃j+1) is of the form
Ω(−2j−2)(V ) (resp. Ω(−2j−4)(V )) for other elements Ω(−ℓ) of P−ℓ.

Proof: Since OpW(a′),OpW(a′′),OpW(Sj) are self-adjoint, we may write (2.2.9) as

i∂t + P0 + OpW(V Z
j−1) + OpW(Vj)− i[OpW(a′), i∂t + P0]

+ (OpW(a′′) + OpW(Sj))(i∂t + P0) + (i∂t + P0)(OpW(a′′) + OpW(Sj))

− i[OpW(a′),OpW(V Z
j−1)] + OpW(a′′)OpW(V Z

j−1) + OpW(V Z
j−1)OpW(a′′)

+ OpW(a)∗OpW(Vj) + OpW(Vj)OpW(a)

+ OpW(a)∗OpW(Sj)
∗(i∂t + P0) + (i∂t + P0)OpW(Sj)OpW(a)

+ OpW(a)∗(i∂t + P0)OpW(a)

+ OpW(a)∗OpW(V Z
j−1 + Vj)OpW(a)

+ OpW(a)∗OpW(Sj)
∗(i∂t + P0)OpW(a) + OpW(a)∗(i∂t + P0)OpW(Sj)OpW(a).

(2.2.11)

The first two lines of (2.2.11) give contributions to the first three lines of (2.2.10). Consider the
sixth line in (2.2.11). Write

OpW(a)∗(i∂t + P0)OpW(a) =
1
2

[
OpW(a)∗OpW(a)(i∂t + P0) + (i∂t + P0)OpW(a)∗OpW(a)

]

+
1
2

[
OpW(a)∗, i∂t + P0

]
OpW(a) +

1
2

OpW(a)∗
[
i∂t + P0,OpW(a)

]
.

Since a is of order −2j, (1.2.2) and (1.2.4) show that the last two terms are of order −4j ≤
−2j − 2, so contribute to the Ṽj+1 term in (2.2.10). On the other hand

OpW(a)∗OpW(a)(i∂t + P0) = OpW(a′)∗OpW(a′)(i∂t + P0) + OpW(b)(i∂t + P0)

for some symbol b of order −4j−2 ≤ −2j−2, again by (1.2.2). The first term in the right hand
side gives the missing contribution in the second line of (2.2.10). The second term contributes
to the Sj+1 term in (2.2.10). These contributions are real valued by self-adjointness.

By (1.2.2) and (1.2.4), the third and fourth lines of (2.2.11) are made of self-adjoint operators
of order −2j − 2, so will contribute to the OpW(Ṽj+1) term in (2.2.10). In the fifth line, write

OpW(Sj)OpW(a) = OpW(c1) + OpW(c2)
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where c1, c2 are of order −4j−2 ≤ −2j−4, c1 real, c2 purely imaginary. The fifth line of (2.2.11)
is thus

OpW(c1)(i∂t + P0) + (i∂t + P0)OpW(c1) + [i∂t + P0,OpW(c2)].

The last term contributes to OpW(Ṽj+1) and the first two ones to the last two expressions in
(2.2.10).

The last but one line in (2.2.11) is of order −4j ≤ −2j − 2 and self-adjoint, so contributes to
OpW(Ṽj+1) in (2.2.10).

Consider finally the first term in the last line of (2.2.11) and write it as

OpW(a)∗OpW(Sj)
∗OpW(a)(i∂t + P0) + OpW(a)∗OpW(Sj)

∗[i∂t + P0,OpW(a)].

Again, by symbolic calculus, the last term is of order −6j − 2 ≤ −2j − 2, so contributes to
OpW(Ṽj+1) in (2.2.10). The coefficient of (i∂t + P0) in the first term is also of order −6j − 2 ≤
−2j− 4, so gives rise to a contribution to the last but one term in (2.2.10). These contributions
are real by self-adjointness. The assertions of the end of the statement of the lemma, concerning
the structure of Ṽj+1, S̃j+1 as expressions of form Ω(−2j−2)(V ), Ω(−2j−4)(V ), follow from the
fact that the corresponding operators are obtained by composition from operators of the same
form, using the remark following definition 2.2.1. ✷

The last but one step in the proof of proposition 2.2.2 is the following:

Lemma 2.2.5 Let V be a real valued symbol in S0(S1×R
d×R

d) and N a positive integer. One
may find a real symbol V Z in S0

Z(S1 ×R
d ×R

d), a real symbol VN+1 in S−2N−2(S1 ×R
d ×R

d),
a real symbol SN+1 in S−2N−4(S1 × R

d × R
d), a symbol m ∈ S0(S1 × R

d × R
d), such that

(2.2.12) OpW(m)OpW(m)∗ − I = OpW(r) with r ∈ S−4(S1 × R
d × R

d),

and

OpW(m)∗(i∂t + P0 + OpW(V ))OpW(m) = i∂t + P0 + OpW(V Z) + OpW(VN+1)

+OpW(SN+1)(i∂t + P0) + (i∂t + P0)OpW(SN+1).
(2.2.13)

Moreover we may write

(2.2.14) V Z = M0(V ) + Ω(−2)(V ),

where M0 is given by (2.1.3) and Ω(−2) is an element of P−2.

Proof: We proceed by induction on N . By lemma 2.2.3, formula (2.2.13) holds with N =
0,m = q. Assume that (2.2.13) has been proved at some order N = j − 1, with V Z in the
right hand side replaced by some V Z

j−1, and with a symbol Vj (resp. Sj) that may be written

as Ω(−2j)(V ) (resp. Ω(−2j−2)(V )) for some Ω(−2j) in P−2j (resp. Ω(−2j−2) in P−(2j+2)). We
compose this equality on the left with (I + OpW(a)), for some symbol a = ia′+a′′ to be chosen,
with a′ in S−2j(S1 × R

d × R
d), a′′ in S−2j−2(S1 × R

d × R
d), a′ and a′′ real valued. We apply
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lemma 2.2.4 to get expressions (2.2.10), in which we decompose Vj = M0(Vj) + V B
j , where

M0(Vj) ∈ S−2j
Z (S1×R

d×R
d), V B

j ∈ S
−2j
B (S1×R

d×R
d). We define V Z

j = V Z
j−1 +M0(Vj). Since

Vj may be written Ω(−2j)(V ), we obtain from assumption (2.2.14) for V Z
j−1 that the same type

of equality will be satisfied by V Z
j . We choose next a′ so that

(2.2.15) −i[OpW(a′), i∂t + P0] + OpW(V B
j )

is an operator of order −2j − 2. At the level of symbols, we have to solve ∂ta′ + {p0, a
′} = V B

j ,
which is possible by proposition 2.1.2. We get a real symbol a′ of order −2j given by a linear
expression in V B

j , so that may be written as Ω(−2j)(V ) for some Ω(−2j) in P−2j . In that way,
(2.2.15) is an operator of order −2j − 2, self-adjoint, which contributes to Vj+1 in (2.2.13) at
rank N = j. The Ṽj+1 contribution to (2.2.10) may be as well incorporated inside Vj+1. We
choose next

a′′ = −Sj −
1
2
|a′|2 ∈ S−2j−2(S1 × R

d × R
d).

By the induction hypothesis, a′′ may be written Ω(−2j−2)(V ) for some Ω(−2j−2) in P−(2j+2), and
this definition of a′′ implies that the coefficient of (i∂t + P0), in the second and third lines of
(2.2.10), may be written OpW(c) for a real symbol c in S−2j−4(S1×R

d×R
d). Moreover, c may

be written as Ω(−2j−4)(V ) for some Ω(−2j−4) in P−2(j+2). This symbol, together with S̃j+1 in
(2.2.10), contributes to Sj+1 in (2.2.13) at rank N = j. Since (2.2.12), with OpW(m) replaced
by OpW(m)(I + OpW(a)), holds as

(I + OpW(a))∗(I + OpW(a))− I = 2OpW(a′′) + OpW(a)∗OpW(a)

is of order −2j − 2 ≤ −4, we have obtained (2.2.12) and (2.2.13) at rank j. This concludes the
proof of the lemma. ✷

Proof of proposition 2.2.2: We multiply (2.2.13) with N replaced by N − 1 by e−itP0 on the
left and eitP0 on the right. The main contribution of the right hand side of (2.2.13) is

(2.2.16) e−itP0(i∂t + P0 + OpW(V Z))eitP0 = i∂t + e−itP0OpW(V Z)eitP0 .

Note that
d

dt

[
e−itP0OpW(V Z)eitP0

]
= ie−itP0 [OpW(V Z), P0]eitP0 .

By the second formula (1.2.6) and the fact that V Z is in S0
Z(S1×R

d×R
d), i.e. Poisson commutes

to p0, we see that this quantity vanishes. Consequently, (2.2.16) is equal to i∂t+OpW(V Z)|t=0).
We define W (x, ξ) = V Z(0, x, ξ). This is a symbol of order 0, independent of time, and (2.2.14)
gives (2.2.2). The contributions coming by conjugation from the VN and SN terms of the right
hand side of (2.2.13) give the last three terms of (2.2.3). This concludes the proof. ✷

3 Construction of the solution

This section is devoted to the construction of a potential V and of a solution u to (1.1.5) for
which (1.1.6) holds. The main step will be to show that, if W is a convenient autonomous
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symbol belonging to S0(R × R), we may construct an approximate solution of the equation
(i∂t+OpW(W ))u = 0 satisfying (1.1.6). Then, inverting (2.2.2), we shall obtain a time dependent
potential V , such that the corresponding Schrödinger equation i∂t + P0 + OpW(V ) may be
reduced by conjugation to the right hand side of (2.2.3). This right hand side being equal to
(i∂t+OpW(W )) modulo operators of very negative order, we shall deduce from the approximate
solution already constructed an approximate solution of (i∂t + P0 + OpW(V ))u = 0. Modifying
it to get an exact solution, we shall obtain the conclusion of theorem 1.1.3.

We first study the Hamiltonian flow of an autonomous symbol of order zero satisfying convenient
assumptions. From now on, the space dimension is d = 1.

3.1 The Hamiltonian flow associated to a potential

We use polar coordinates (ρ, θ) on T ∗R (x = ρ cos θ, ξ = ρ sin θ). A function W on T ∗R will
be denoted indifferently by W (x, ξ) or W (ρ, θ). Let W ∈ S0(R × R) satisfy the following
assumptions: There is m > 2, a symbol W̃ ∈ S−m(R×R) and a symbol W∞ in S0(R×R), with
W∞(λ(x, ξ)) = W∞(x, ξ) for any λ ≥ 1, any (x, ξ) with x2 + ξ2 ≥ 1, such that W = W∞ + W̃ .
In polar coordinates, we may write for ρ ≥ 1

(3.1.1) W (ρ, θ) = W∞(θ) + W̃ (ρ, θ),

with uniform estimates for ρ ≥ 1

(3.1.2) ∂αθW∞(θ) = O(1), (ρ∂ρ)
α∂βθ W̃ (ρ, θ) = O(ρ−m).

For A a large positive constant to be chosen, we consider the Lagrangian submanifold of T ∗R
given in cartesian and polar coordinates by

ΛA0 = {(As cos(s/A), As sin(s/A)); s ∈ [1, 2]}
= {(ρ0(s), θ0(s)); ρ0(s) = As, θ0(s) =

s

A
; s ∈ [1, 2]}.

(3.1.3)

Our objective is to show that, under convenient assumptions on W , and for large enough A, the
Hamiltonian flow of the symbol, given in cartesian coordinates by

(3.1.4) ẋ = −∂W
∂ξ

, ξ̇ =
∂W

∂x
,

and in polar coordinates by

(3.1.5) ρ̇ = −1
ρ

∂W

∂θ
, θ̇ =

1
ρ

∂W

∂ρ
,

is globally well defined for initial data in ΛA0 , and transports at large time t > 0 the Lagrangian
ΛA0 onto a Lagrangian ΛAt , which is the graph of a function.

Proposition 3.1.1 Assume

(3.1.6)
∂W∞
∂θ

(0) < 0,
∂2W∞
∂θ2

(0) 6= 0.
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Denote by (ρ(t, s), θ(t, s)) the flow of (3.1.5) at time t, issued from the point (ρ0(s), θ0(s)) with
parameter s on ΛA0 at time t = 0. There are A0 > 0, C > 0, such that for any A ≥ A0, any
s ∈ [1, 2], the flow is defined for any t ≥ 0 and satisfies

(3.1.7) C−1(A2 + t)1/2 ≤ ρ(t, s) ≤ C(A2 + t)1/2.

Moreover, there are smooth functions s→ λ(s), s→ θ∞(s), defined on [1, 2], satisfying for any
s ∈ [1, 2]

(3.1.8) C−1 ≤ λ(s) ≤ C, C−1A−1 ≤
∣∣∣
∂λ

∂s
(s)
∣∣∣ ≤ CA−1,

∣∣∣θ∞(s)− s

A

∣∣∣ ≤ C

Am
,

and smooth functions σj : [0,+∞[×[1, 2]→ R, satisfying

|∂αt ∂βs σ1(t, s)| ≤ Cαβ(A2 + t)−1−α

|∂αt ∂βs σ2(t, s)| ≤ Cαβ(A2 + t)−
m
2
−α,

(3.1.9)

such that

ρ(t, s) = (tλ(s) + (As)2)1/2(1 + σ1(t, s))

θ(t, s) = θ∞(s) + σ2(t, s).
(3.1.10)

Before starting the proof, we introduce some notation. Let us write equation (3.1.5) under an
integral form

ρ(t, s)2 = (As)2 − 2
∫ t

0

∂W

∂θ
(ρ(t′, s), θ(t′, s)) dt′

θ(t, s) =
s

A
+
∫ t

0

1
ρ(t′, s)

∂W̃

∂ρ
(ρ(t′, s), θ(t′, s)) dt′

(3.1.11)

so that, in the second equation, the right hand side depends only on W̃ , which is of order
−m. One sees by induction that there are, for any j ∈ N

∗, and for any (a, b) ∈ N × N with
2 ≤ a+ b ≤ j,
• symbols W ′ab (resp. W ′′ab) of degree −m − 2a when a > 0 and 0 when a = 0 (resp. of degree
−m− 2− 2a),
• polynomials P ′ab(X1, . . . , Xj+1−a−b, Y1, . . . , Yj+1−a−b), which are homogeneous of degree a in
X = (X1, . . . , Xj+1−a−b) and b in Y = (Y1, . . . , Yj+1−a−b), such that

∂js [ρ(t, s)2] = ∂js [(As)
2]−
∫ t

0

1
ρ(t′, s)

∂2W̃

∂ρ∂θ
(ρ(t′, s), θ(t′, s))∂js [ρ(t′, s)2] dt′

− 2
∫ t

0

∂2W

∂θ2
(ρ(t′, s), θ(t′, s))∂jsθ(t

′, s) dt′

+
∑

2≤a+b≤j

∫ t

0
W ′ab(ρ(t′, s), θ(t′, s))P ′ab((∂

α
s ρ

2)α>0, (∂
β
s θ)β>0) dt′

(3.1.12)
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and

∂js [θ(t, s)] = ∂js

[ s
A

]
+

1
2

∫ t

0

(1
ρ

∂

∂ρ

[1
ρ

∂W̃

∂ρ

])
(ρ(t′, s), θ(t′, s))∂js [ρ(t′, s)2] dt′

+
∫ t

0

∂

∂θ

[1
ρ

∂W̃

∂ρ

]
(ρ(t′, s), θ(t′, s))∂jsθ(t

′, s) dt′

+
∑

2≤a+b≤j

∫ t

0
W ′′ab(ρ(t′, s), θ(t′, s))P ′′ab((∂

α
s ρ

2)α>0, (∂
β
s θ)β>0) dt′.

(3.1.13)

In (3.1.12), a (resp. b) represents the number of times ∂W
∂θ has been differentiated by 1

ρ
∂
∂ρ (resp.

∂
∂θ ) to compute W ′ab. In the same way, in (3.1.13), a (resp. b) is the number of 1

ρ
∂
∂ρ (resp. ∂

∂θ )

derivatives acting on 1
ρ
∂W̃
∂ρ to give W ′′ab. The polynomial expressions P ′ab, P

′′
ab give the multi-linear

expressions, homogeneous of degree a (resp. b) in the derivatives of ρ2 (resp. θ), that multiply
these symbols. The conditions on the orders of W ′ab,W

′′
ab come from the fact that 1

ρ
∂
∂ρ (resp.

∂
∂θ ) acting on a symbol gives a gain of two powers of ρ in decay (resp. does not ameliorate the
decay). The order of the symbol W ′ab is better when a > 0 since, as soon as one takes at least
one ρ-derivative of (3.1.1), the W∞ contribution disappears.

Proof of proposition 3.1.1: Let us check that the flow is global and that (3.1.7) holds. In
particular, this will imply that, if A is large enough, ρ(t, s) stays larger than 1, so that the
decomposition (3.1.1) holds. Let c > 0, δ0 > 0, be two small constants so that by (3.1.6)

(3.1.14) −∂W∞
∂θ

(θ) ≥ c for any θ with |θ| ≤ δ0.

Denote by T the supremum of those t ∈ [0,+∞[ such that the solution of (3.1.5) exists on [0, t[,
and satisfies for any t′ ∈ [0, t[, any s ∈ [1, 2],

(3.1.15) ρ(t′, s)2 ≥ 1
2

(As)2 + ct′ and |θ(t′, s)| ≤ δ0.

To check that T = +∞ if A ≥ A0 for a large enough A0, we just need to see that there is C0 > 0,
such that (3.1.15) implies

(3.1.16) C2
0 (A2 + t′) ≥ ρ(t′, s)2 ≥ 3

4
(As)2 + 2ct′ and |θ(t′, s)| ≤ δ0

2
,

for any t′ ∈ [0, t[, any s ∈ [1, 2]. Since, in the right hand side of the second equation (3.1.5),

ρ(t′, s)−1
∣∣∣
∂W̃

∂ρ
(ρ(t′, s), θ(t′, s))

∣∣∣ ≤ C
(1

2
(As)2 + ct′

)−m
2
−1

by (3.1.15), we get for s ∈ [1, 2], 0 < t < T ,

|θ(t, s)| ≤ s

A
+

C ′

Am
≤ δ0

2

for large enough A’s. It follows from (3.1.14), (3.1.1), (3.1.15) and the first equation in (3.1.5)
that

d

dt
ρ(t, s)2 ≥ 2c− C

(1
2

(As)2 + ct
)−m/2

,
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for any s ∈ [1, 2], t ∈ [0, T [. Since m > 2, this implies

ρ(t, s)2 ≥ (As)2 + 2ct− C ′(As)−m+2,

which gives the lower bound in the first estimate (3.1.16) for large enough A. The upper bound
follows from (3.1.11). We have thus established global existence and (3.1.7).

To prove (3.1.8), we notice that (3.1.5) and (3.1.7) imply for t ≤ t′

(3.1.17) |θ(t, s)− θ(t′, s)| ≤ C(A2 + t)−
m
2 .

Consequently, θ∞(s) = limt→+∞ θ(t, s) exists and satisfies the last estimate in (3.1.8). We set

(3.1.18) λ(s) = −2
∂W∞
∂θ

(θ∞(s)).

Since, for A large enough, |θ∞(s)| ≤ δ0 for any s ∈ [1, 2], we deduce from (3.1.14) the first
formula in (3.1.8). Let us prove that there are numbers Bj such that, for any j ∈ N, any t ≥ 0,
any s ∈ [1, 2],

(3.1.19)
∣∣∣
∂j

∂sj
[ρ(t, s)2]

∣∣∣ ≤ Bj(A2 + t),
∣∣∣
∂j

∂sj
θ(t, s)

∣∣∣ ≤ Bj
A
.

Note that if such estimates hold for derivatives of order up to j−1, (3.1.12), (3.1.13) and (3.1.7)
give for

w1(t, s) = |∂js [ρ(t, s)2]|, w2(t, s) = |∂jsθ(t, s)|,
estimates

(3.1.20) w1(t, s) ≤ w1(0, s) + C

∫ t

0
(A2 + t′)−

m
2
−1w1(t′, s) dt′ + C

∫ t

0
w2(t′, s) dt′ + B̃j−1(t+ 1)

and

w2(t, s) ≤ w2(0, s) + C

∫ t

0
(A2 + t′)−

m
2
−2w1(t′, s) dt′

+ C

∫ t

0
(A2 + t′)−

m
2
−1w2(t′, s) dt′ + B̃j−1

∫ t

0
(A2 + t′)−

m
2
−1 dt′,

(3.1.21)

where B̃j−1 is a constant depending only on B1, . . . , Bj−1, and where we have used that in the
last terms of (3.1.12), (3.1.13), the decay of W ′ab,W

′′
ab compensates the growth of ∂αs ρ

2. If Bj is
large enough relatively to B̃j−1, and if A is large enough relatively to the constant C in the right
hand side of (3.1.20), (3.1.21), one deduces by bootstrap from these inequalities that (3.1.19)
holds at rank j (using that m > 2).

It follows from (3.1.5), (3.1.7) and estimates (3.1.19) that, for any s, any t ≤ t′,

(3.1.22) |∂js [θ(t, s)− θ(t′, s)]| ≤ Cj(A2 + t)−
m
2 .

We conclude that θ∞ is smooth and that ∂js
[
θ∞(s)− s

A

]
= O(A−m). Plugging this information

in (3.1.18) and using the second condition in (3.1.6), we get the estimate of ∂λ/∂s in (3.1.8),
taking A large enough. Moreover, (3.1.22) shows that ∂js [θ(t, s) − θ∞(s)] = O((A2 + t)−m/2).

21



This, together with time derivative estimates for ρ, θ coming from (3.1.5), shows that the second
formula in (3.1.10) holds. To get the first one, compute from (3.1.11), ρ(t, s)2 = (As)2 +λ(s)t+
σ(t, s) with

(3.1.23) σ(t, s) = −2
∫ t

0

[∂W∞
∂θ

(θ(t′, s))− ∂W∞
∂θ

(θ∞(s))
]
dt′ − 2

∫ t

0

∂W̃

∂θ
(ρ(t′, s), θ(t′, s)) dt′.

Since m > 2, it follows from the estimates of σ2 in (3.1.9), (3.1.19) and (3.1.5) that

|∂αt ∂βs σ(t, s)| ≤ Cα,β(A2 + t)−α.

This implies the first formula in (3.1.9) and concludes the proof. ✷

We denote by Λ̃A0 the submanifold of the characteristic variety of i∂t + OpW(W ) given by

Λ̃A0 = {(t, x; τ, ξ); t = 0, τ = W (x, ξ), (x, ξ) ∈ ΛA0 } ⊂ T ∗R2.

The flow-out of Λ̃A0 by the Hamiltonian vector field of the symbol −τ +W (x, ξ) is given by

(3.1.24) Λ̃A = {(t, x; τ, ξ); τ = W (x, ξ), (x, ξ) ∈ ΛAt , t ≥ 0},

where ΛAt ⊂ T ∗R is the image of ΛA0 by the flow of (3.1.4) at time t. If we denote by (3.1.10)
this flow expressed in polar coordinates, we get

(3.1.25) ΛAt = {(ρ(t, s) cos θ(t, s), ρ(t, s) sin θ(t, s)); s ∈ [1, 2]}.

Our next task will be to show that for large enough A, t, (3.1.25) may be written as the graph
of a function.

Define Y (+∞, s) = λ(s)1/2 cos θ∞(s). To fix ideas, we suppose from now on that ∂λ/∂s, which
has fixed sign on [1, 2] by (3.1.8), is positive (this corresponds, according to (3.1.18), to the case
when ∂2W∞

∂θ2 (0) < 0 in (3.1.6)). Consequently,

C−1A−1 ≤ ∂λ

∂s
(s) ≤ CA−1, s ∈ [1, 2].

By these inequalities and (3.1.19),

∂

∂s
Y (+∞, s) =

λ′(s)

2
√
λ(s)

cos θ∞(s)−
√
λ(s)θ′∞(s) sin θ∞(s),

≥ 1
2
C−3/2A−1 +O(A−2),

(3.1.26)

uniformly for s ∈ [1, 2]. We fix from now on A larger than the constant A0 of proposition 3.1.1,
and large enough so that the above lower bound is strictly positive and so that 3

A ≥ θ∞(s) ≥ 1
2A

for any s ∈ [1, 2] (using (3.1.8)). Then s → Y (+∞, s) is a strictly increasing diffeomorphism
from [1, 2] onto [Y (+∞, 1), Y (+∞, 2)]. Fix a small positive number δ and define

µ′1 = Y (+∞, 1 + δ) < Y (+∞, 1 + 2δ) < µ1 = Y (+∞, 1 + 3δ)

< µ2 = Y (+∞, 2− 3δ) < Y (+∞, 2− 2δ) < µ′2 = Y (+∞, 2− δ).
(3.1.27)
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By (3.1.10), there are symbols σ̂1, σ̂2 of order −1 in t such that the flow of (3.1.4) may be written

X(t, s)
def
= ρ(t, s) cos θ(t, s) =

√
tλ(s)1/2 cos θ∞(s)(1 + σ̂1(t, s))

Ξ(t, s)
def
= ρ(t, s) sin θ(t, s) =

√
tλ(s)1/2 sin θ∞(s)(1 + σ̂2(t, s)).

(3.1.28)

If we set Y (t, s) = 1√
t
X(t, s) = Y (+∞, s)(1+σ̂1(t, s)), for t ≥ t0 with t0 large enough, s→ Y (t, s)

is a diffeomorphism from [1, 2] onto its image. Set µ1(t) = Y (t, 1 + 2δ), µ2(t) = Y (t, 2 − 2δ).
Then µ1(t) = Y (+∞, 1 + 2δ) +O(1/t), µ2(t) = Y (+∞, 2− 2δ) +O(1/t), so that (3.1.27) implies
that for t ≥ t0 large enough and some ν > 0,

(3.1.29) [µ1, µ2] ⊂ [µ1(t), µ2(t)] ⊂ [µ′1 + ν, µ′2 − ν] ⊂ [µ′1, µ
′
2] ⊂]Y (t, 1), Y (t, 2)[.

Proposition 3.1.2 Assume that A has been fixed as above. There is t0 ≥ 2 and a smooth func-
tion (t, y) → Z(t, y), defined on [t0,+∞[×[µ′1, µ

′
2], with values in a compact subset of ]0,+∞[,

such that ∂αt ∂
β
yZ(t, y) = O(t−α) and, for any t ≥ t0,

(3.1.30) ΛAt ∩ π−1([µ′1
√
t, µ′2
√
t]) =

{(
x,
√
tZ
(
t,
x√
t

))
;µ′1
√
t ≤ x ≤ µ′2

√
t
}
,

where π : (x, ξ)→ x.

Proof: By (3.1.29), for x√
t
∈ [µ′1, µ

′
2], we may solve the equation x√

t
= Y (t, s) in s. The

solution may be written s = g(t, x/
√
t) where g : [t0,+∞[×[µ′1, µ

′
2]→ [1, 2] is a smooth function

with ∂αt ∂
β
y g(t, y) = O(t−α). Plugging this expression in the second formula (3.1.28), we get

ξ =
√
tZ(t, x/

√
t) for a function Z satisfying the conclusions of the statement. Note that Z(t, y)

stays larger than a fixed positive constant, for t ≥ t0 large enough, y ∈ [µ′1, µ
′
2], since in the

second formula (3.1.28), θ∞(s) ∼ A−1. ✷

Proposition 3.1.2 shows that for t ≥ t0, ΛAt is the graph of a function above [µ′1
√
t, µ′2
√
t], so

that
Λ̃A ∩ π−1({(t, x); t ≥ t0, µ′1 ≤

x√
t
≤ µ′2})

is also the graph of a function of (t, x). Since Λ̃A is Lagrangian, there is a smooth function

(3.1.31) ψ : {(t, x); t ≥ t0, µ′1
√
t ≤ x ≤ µ′2

√
t} → R

such that for any (t, x) in the domain of definition

(3.1.32) ∂xψ(t, x) =
√
tZ
(
t,
x√
t

)
, ∂tψ(t, x) = W

(
x,
√
tZ
(
t,
x√
t

))
.

3.2 Construction of an approximate solution

We assume from now on that the constants A and t0 have been fixed large enough, as in the
statement of proposition 3.1.2. Our objective is to prove the following:
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Proposition 3.2.1 Let µ1(t), µ2(t) be defined as in (3.1.29) and set K(t) = [µ1(t), µ2(t)], K =
(K(t))t≥t0. Let N be a fixed integer. There is a sequence bj of elements of the class Σ−jK of
definition 1.2.2, 0 ≤ j ≤ N − 1, and a smooth function (t, x)→ rN (t, x) from [t0,+∞[×R to C,
satisfying for any α, β

(3.2.1) |∂αt ∂βx rN (t, x)| ≤ Cαβt−
1

4
−N−α−β

2
−1(log t)α+β+2N

(
1 +
|x|√
t

)−N
,

such that if b =
∑N−1
j=0 bj,

(3.2.2) (i∂t + OpW(W ))[eiψ(t,x)b(t, x)] = eiψ(t,x)rN (t, x)

and ‖b0(t, ·)‖L2 is a positive constant independent of t.

We shall prove the proposition solving transport equations. Define for x ∈ [µ′1
√
t, µ′2
√
t]

(3.2.3) U(t, x) = −(∂ξW )(x, ∂xψ(t, x))

and consider transport equations of the form

(3.2.4)
∂b

∂t
+ U(t, x)

∂b

∂x
+

1
2

(∂xU(t, x))b =
1
t2
f,

where f is a given source term and t ≥ t0. Since the Hamiltonian flow of τ−W (x, ξ) foliates Λ̃A,
we may write for any s ∈ [1, 2] that the integral curves t → (X(t, s),Ξ(t, s)), given by (3.1.28),
satisfy for t ≥ t0,

Ξ(t, s) = ∂xψ(t,X(t, s))

d

dt
X(t, s) = U(t,X(t, s)).

(3.2.5)

We denote by X−1(t, x) the inverse of the diffeomorphism X(t, ·). By definition of µ1(t), µ2(t),
X−1(t, ·) sends the interval [

√
tµ1(t),

√
tµ2(t)] onto [1 + 2δ, 2 − 2δ], and (3.1.29) shows that

X−1(t, ·) is defined on [
√
tµ1,
√
tµ2] for any t ≥ t0.

Lemma 3.2.2 (i) There is a constant C > 0 such that for any t ≥ t′ ≥ t0, any s ∈ [1+2δ, 2−2δ],

(3.2.6) C−1
( t′

t

)1/2
≤ exp

[
−
∫ t

t′
(∂xU)(τ,X(τ, s)) dτ

]
≤ C
( t′

t

)1/2
.

(ii) For any (α, β) ∈ N × N, there is Cαβ > 0 such that, for any t, τ in [t0,+∞[, any x ∈
[
√
tµ1(t),

√
tµ2(t)],

|∂αt ∂βxU(t, x)| ≤ Cαβt−
1

2
−α−β

2

|∂αt ∂βx [(∂xU)(τ,X(τ,X−1(t, x)))]| ≤ Cαβτ−1t−α−
β

2 .
(3.2.7)

24



Proof: (i) Let γ0 be a smooth given function, compactly supported in ]
√
t0µ1(t0),

√
t0µ2(t0)[

and consider the solution of

∂γ

∂t
+ U(t, x)

∂γ

∂x
+

1
2

(∂xU(t, x))γ = 0

γ(t0, x) = γ0(x).
(3.2.8)

Since

(3.2.9)
d

dt
γ(t,X(t, s)) = −1

2
(∂xU)(t,X(t, s))γ(t,X(t, s))

for any t ≥ t0, x→ γ(t, x) is compactly supported in ]
√
tµ1(t),

√
tµ2(t)[ and, since the equation

is on divergence form,

(3.2.10)
∫
γ(t0, x)2 dx =

∫
γ(t, x)2 dx

for any t ≥ t0. By (3.2.9) we may write

γ(t,X(t, s)) exp
[

1
2

∫ t

t0
(∂xU)(τ,X(τ, s)) dτ

]
= γ(t0, X(t0, s)),

so that
∫
γ(t, x)2 dx =

∫
γ(t0, X(t0, X

−1(t, x)))2 exp
[
−
∫ t

t0
(∂xU)(τ,X(τ,X−1(t, x))) dτ

]
dx.

Using (3.2.10) to express the left hand side and changing variables in the right hand one, we get

∫
γ0(x)2 dx =

∫
γ0(X(t0, s))

2
∣∣∣
∂X

∂s
(t, s)
∣∣∣ exp

[
−
∫ t

t0
(∂xU)(τ,X(τ, s)) dτ

]
ds.

Taking γ0(x) = 1√
ǫ
χ
(
x−X(t0,a)

ǫ

)
, where

∫
χ(z)2 dz = 1, a ∈ [1, 2], ǫ ∈]0, 1], we obtain when ǫ→ 0

Γ(a) =
∣∣∣
∂X

∂s
(t, a)

∣∣∣ exp
[
−
∫ t

t0
(∂xU)(τ,X(τ, a)) dτ

]
,

where Γ(a) is some positive continuous function of a. Since by (3.1.26), (3.1.28),
∣∣∣∂X∂s (t, a)

∣∣∣ ∼
√
t,

we get (3.1.27) in the special case t′ = t0. The general case follows by division.

(ii) The first inequality in (3.2.7) follows from (3.2.3), (3.1.32), the fact that W is a symbol of
order zero, and the bounds of Z and its derivatives given in proposition 3.1.2.

The left hand side of the second inequality in (3.2.7) has modulus bounded in terms of expressions

|(∂p+1
x U)(τ,X(τ,X−1(t, x)))||∂α1

t ∂β1

x X(τ,X−1(t, x))| · · · |∂αpt ∂βpx X(τ,X−1(t, x))|,

where α1 + · · ·+ αp = α, β1 + · · ·+ βp = β, αj + βj ≥ 1. By (3.2.3) and (3.1.32), for any q ∈ N,

|∂qxU(τ, x)| =
∣∣∣
∂q

∂xq

[
(∂ξW )

(
x,
√
τZ
(
τ,

x√
τ

))]∣∣∣ = O(τ−
1

2
− q

2 ),
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when x is replaced by X(τ, s), s ∈ [1 + 2δ, 2− 2δ], since Z stays between two positive constants
as well as 1√

τ
X(τ, s). Moreover, by (3.1.28),

(3.2.11) |∂αjt ∂
βj
x X(τ,X−1(t, x))| = O(

√
τt−αj−

βj

2 ).

This gives the second upper bound in (3.2.7) and concludes the proof. ✷

Lemma 3.2.3 (i) Let c : ]
√
t0µ1(t0),

√
t0µ2(t0)[→ C be a smooth compactly supported function.

The solution b0, defined for t ≥ t0, of the equation

∂b0

∂t
(t, x) + U(t, x)

∂b0

∂x
(t, x) +

1
2

(∂xU(t, x))b0(t, x) = 0

b0(t, x) = c(x),
(3.2.12)

is an element of Σ0
K . Moreover, for any t ≥ t0, ‖b0(t, ·)‖L2 = ‖c‖L2.

(ii) Let j ∈ N
∗, cj−1 a given element of Σ−(j−1)

K , defined for t ≥ t0. The equation

(3.2.13)
∂bj
∂t

(t, x) + U(t, x)
∂bj
∂x

(t, x) +
1
2

(∂xU(t, x))bj(t, x) =
(log t)2

t2
cj−1(t, x)

has a solution bj ∈ Σ−jK defined for t ≥ t0.

Proof: (i) Writing the equation under form (3.2.9), we get for t ≥ t0 and x√
t
∈ [µ1(t), µ2(t)]

(3.2.14) b0(t, x) = c(X(t0, X
−1(t, x)))E(t0, t, x)

with

(3.2.15) E(t′, t, x) = exp
[
−1

2

∫ t

t′
(∂xU)(τ,X(τ,X−1(t, x))) dτ

]
.

It follows from the assumption on c and from the definition of µ1(t), µ2(t), that b0(t, x) is
supported for x/

√
t in K(t) = [µ1(t), µ2(t)]. By (3.2.6), we get that |b0(t, x)| ≤ Ct−1/4. We may

write ∂βxE(t′, t, x) in terms of expressions

q∏

j=1

(
−1

2

∫ t

t′
∂
βj
x [(∂xU)(τ,X(τ,X−1(t, x)))] dτ

)
E(t′, t, x)

with β1 + · · · + βq = β, βj ≥ 1. By (3.2.7) the absolute value of each integral is bounded from
above by C

∣∣log t
t′

∣∣t−βj/2 so that, taking (3.2.6) into account,

(3.2.16) |∂βxE(t′, t, x)| ≤ C
( t
t′

)−1/4
C
〈
log

t

t′

〉β
t−β/2.

We deduce from this and (3.2.11) that b0(t, x) satisfies estimates (1.2.9) with j = α = 0. Using
(3.2.12) and (3.2.7) we obtain that estimates (1.2.9) with α > 0 are also valid, so that b0 belongs
to Σ0

K . The fact that the L2-norm of b0 is conserved has been already checked in (3.2.10).
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(ii) We write equation (3.2.13) under the form

∂

∂t
bj(t,X(t, s)) +

1
2

(∂xU)(t,X(t, s))bj(t,X(t, s)) =
(log t)2

t2
cj−1(t,X(t, s)).

We solve this equation writing

(3.2.17) bj(t, x) = b̃j(t,X
−1(t, x))

with

(3.2.18) b̃j(t, s) = −
∫ +∞

t

(log τ)2

τ2
cj−1(τ,X(τ, s)) exp

[1
2

∫ τ

t
(∂xU)(τ ′, X(τ ′, s)) dτ ′

]
dτ.

By (3.2.6), the exponential inside the integral is O((t/τ)−1/4) and by (1.2.9), cj−1(τ,X(τ, s)) =

O(τ−
1

4
−(j−1)(log τ)2(j−1)). This shows that the integral in (3.2.18) converges and that

|b̃j(t, s)| ≤ Ct−j−
1

4 (log t)2j .

We get a solution vanishing when t→ +∞, supported at time t in the same interval as cj−1(t, ·).
Let us write ∂βx bj(t, x) as a linear combination of expressions

(3.2.19)
∫ +∞

t

(log τ)2

τ2
∂β1

x [cj−1(τ,X(τ,X−1(t, x)))]∂β2

x E(τ, t, x) dτ

with β1 + β2 = β. By (3.2.11) and (1.2.9)

|∂β1

x [cj−1(τ,X(τ,X−1(t, x)))]| ≤ Cτ− 1

4
−(j−1)t−β1/2(log τ)β1+2(j−1).

Using (3.2.16), we conclude that (3.2.19) is bounded from above by Ct−
1

4
−β

2
−j(log t)β+2j for

any j ≥ 1. This gives (1.2.9) with α = 0. One recovers the estimates for α > 0 using equation
(3.2.13) and (3.2.7). This concludes the proof. ✷

Proof of proposition 3.2.1: If b is an element of Σ0
K with K(t) = [µ1(t), µ2(t)], it follows from

proposition 1.2.3 applied with m = 0, j = 0 that, using notation (3.2.3),

(i∂t + OpW(W ))(eiψ(t,x)b(t, x)) = eiψ(t,x)[−∂tψ(t, x) +W (x, ∂xψ(t, x))]b(t, x)

+ieiψ(t,x)[∂tb(t, x) + U(t, x)∂xb(t, x) +
1
2
∂xU(t, x)b(t, x)− (log t)2

t2
L(b)(t, x)]

+eiψ(t,x)r(t, x),

(3.2.20)

where L is a linear operator acting from Σ−jK to itself for any j, and r satisfies (1.2.11). By
(3.1.32) the first term in the right hand side vanishes. We look for b as a sum b =

∑N−1
j=0 bj with

bj ∈ Σ−j . We take for b0 the solution of (3.2.12) with some non trivial initial data c at time
t = t0, compactly supported inside ]µ1(t0)

√
t0, µ2(t0)

√
t0[. We next solve (3.2.13) with j = 1

and c0 = L(b0) ∈ Σ0
K . We obtain by lemma 3.2.3 an element b1 ∈ Σ−1

K . Iterating the process, we

construct recursively b2, . . . , bN−1. The term (log t)2

t2
L(bN−1) satisfies estimates of type (3.2.1) as

well as r, because of (1.2.11). This concludes the proof. ✷
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3.3 Proof of the theorem

This subsection will be devoted to the proof of theorem 1.1.3. Let W ∈ S0(R × R) be a
time independent symbol satisfying conditions (3.1.1), (3.1.2), (3.1.6). Let us construct a time
dependent symbol V in S0(S1 × R × R) satisfying equation (2.2.2) up to some remainder. The
right hand side of that equation is

(3.3.1) M0(V )|t=0 + Ω(V )|t=0,

where M0 is given by (2.1.3) and, for a given N and a family Ωj , 1 ≤ j ≤ kN−1, of j-linear maps
sending Sm1(S1 × R × R)× · · · × Smj (S1 × R × R) to Sm1+···+mj−2(S1 × R × R),

(3.3.2) Ω(V )−
kN−1∑

j=1

Ωj(V, . . . , V ) ∈ S−2N (S1 × R × R).

Lemma 3.3.1 Let N ∈ N, W ∈ S0(R × R). One may find for j = 0, . . . , N − 1 symbols
Vj ∈ S−2j(S1 × R × R) such that if V =

∑N−1
j=0 Vj

(3.3.3) W −M0(V )|t=0 − Ω(V )|t=0 ∈ S−2N (R × R).

Proof: Define for U ∈ Sm(R × R) an element EU ∈ Sm(S1 × R × R) by (EU)(t, x, ξ) =
U(ρ(−t) · (x, ξ)). Then (M0EU)|t=0 = U . Using (3.3.2), we decompose

Ω(V ) =
N−1∑

j=1

Ω̃j((Vk)0≤k≤j−1) +R(V0, . . . , VN−1)

where Ω̃j belongs to S−2j(S1×R×R) and depends only on Vk for k < j, and R is in S−2N (S1×
R × R). We define recursively

V0 = EW, Vj = −E[Ω̃j(V0, . . . , Vj−1)|t=0], 1 ≤ j ≤ N − 1.

We obtain equation (3.3.3). ✷

Let us apply proposition 2.2.2 with the symbol V associated to W by lemma 3.3.1. We obtain
a symbol m ∈ S0(S1 × R × R) such that

e−itP0OpW(m)∗[i∂t + P0 + OpW(V )]OpW(m)eitP0

= i∂t + OpW(W ) + OpW(U2) + e−itP0OpW(U1)eitP0

+ e−itP0OpW(S)eitP0 ◦ (i∂t) + (i∂t) ◦ e−itP0OpW(S)eitP0 ,

(3.3.4)

where U1 and U2 are in S−2N (S1 × R × R) and S belongs to S−2N−2(S1 × R × R).

The main remaining step in the proof of theorem 1.1.3 is given by the following:
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Proposition 3.3.2 Let s ∈ R+, N ∈ N with N > s + 2. There is a smooth function (t, x) →
wa(t, x) defined for t ≥ t0, x ∈ R, compactly supported in x at fixed t, and a constant C > 0
such that, for t ≥ t0,

‖wa(t, ·)‖Hs ≥ C−1ts/2,

‖(i∂t + P0 + OpW(V ))wa(t, ·)‖Hs ≤ Ct
s
2
−N+1.

(3.3.5)

Proof: Let b be the function given by proposition 3.2.1 and set

(3.3.6) va(t, x) = eiψ(t,x)b(t, x).

By (3.2.2)
(i∂t + OpW(W ))va = eiψ(t,x)rN (t, x)

with rN satisfying estimate (3.2.1). We set

(3.3.7) wa(t, x) = OpW(m(t, ·))eitP0va(t, x).

We apply the operator (3.3.4) to va. We get

OpW(m)∗[i∂t + P0 + OpW(V )]wa = eitP0 [eiψ(t,x)rN ] + eitP0OpW(U2)va

+ OpW(U1)eitP0va + OpW(S)eitP0(i∂tva)

+ eitP0i∂t[e
−itP0OpW(S)eitP0va].

(3.3.8)

Proposition 1.2.3 applied to a symbol a of order s−2N shows that OpW(a)va = eiψ(t,x)(c(t, x)+
r(t, x)), where c is supported for x/

√
t staying in a fixed compact set and satisfies |c(t, x)| ≤

Ct−
1

4
+ s

2
−N , and where r satisfies (1.2.11) with an arbitrary large N . We conclude that

(3.3.9) ‖va(t, ·)‖Hs−2N ≤ Ct s2−N , ‖∂tva(t, ·)‖Hs−2N−2 ≤ Ct s2−N .

Using these inequalities, together with the fact that eitP0 is isometric, and that U1, U2 are of
order −2N , and S of order −2N − 2, we rewrite (3.3.8) as

OpW(m)∗[i∂t + P0 + OpW(V )]wa = g

with ‖g(t, ·)‖Hs ≤ Ct
s
2
−N (log t)2N . Using (2.2.4), we may construct a symbol q of order zero

such that OpW(q)OpW(m)∗ = Id−OpW(r), where r is of order −2N − 2. We get

(3.3.10) (i∂t + P0 + OpW(V ))wa = g̃

with
g̃ = OpW(q)g(t, ·) + OpW(r)(i∂t + P0 + OpW(V ))wa.

Since by (3.3.7)
‖∂twa‖Hs−2N−2 ≤ C[‖∂tva‖Hs−2N−2 + ‖va‖Hs−2N ]

we get ‖g̃(t, ·)‖Hs ≤ Ct
s
2
−N (log t)2N . This implies the second estimate in (3.3.5).
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We are left with showing that if b is conveniently chosen in (3.3.6), the lower bound in (3.3.5)
holds. Denoting now by q a symbol of order 0 such that OpW(q)OpW(m) = Id+ OpW(r) with
r of order −2N , we may write

‖va(t, ·)‖Hs = ‖eitP0va(t, ·)‖Hs
≤ ‖OpW(q)OpW(m)eitP0va(t, ·)‖Hs + ‖OpW(r)eitP0va(t, ·)‖Hs
≤ C‖wa(t, ·)‖Hs + C‖va(t, ·)‖Hs−2N .

Because of (3.3.9), we see that we just need to get a lower bound for

‖va(t, ·)‖Hs ∼ ‖OpW((x2 + ξ2 + 1)s/2)va(t, ·)‖L2 .

By (3.3.6) and proposition 1.2.3,

OpW((x2 + ξ2 + 1)s/2)va(t, x) = eiψ(t,x)[b̃(t, x) + c̃(t, x)]

where

b̃(t, x) = (x2 + (∂xψ(t, x))2 + 1)s/2b(t, x)

|c(t, x)| ≤ Ct− 1

4
+ s

2
(log t)
t

〈 x√
t

〉−M
,

whereM > 1 and where we have used that on the support of b(t, ·), |x| ∼
√
t and |∂xψ(t, x)| ∼

√
t.

These properties show that

‖va(t, ·)‖Hs ≥ cts/2‖b(t, ·)‖L2 + o(ts/2), t→ +∞.

We just need to check that ‖b(t, ·)‖L2 ≥ c > 0 for large enough t. This follows from propo-
sition 3.2.1, as b =

∑N−1
j=0 bj with ‖b0(t, ·)‖L2 equal to a positive constant and ‖bj(t, ·)‖L2 =

O(t−j(log t)2j), t→ +∞ when j ≥ 1. This concludes the proof of the proposition. ✷

Proof of theorem 1.1.3: Let wa be the function of proposition 3.3.2, that we extend smoothly
for all t ≥ 0. We look for an exact solution u of (1.1.5) as u = wa + ũ, where ũ satisfies

(i∂t + P0 + OpW(V ))ũ = −g̃

with g̃ given by (3.3.10). By (3.3.5), ‖g̃‖Hs ≤ Ct
s
2
−N+1. Using the notation introduced in the

statement of lemma 1.2.1 we may take

ũ(t, ·) =
∫ +∞

t
S(t, t′)g̃(t′, ·) dt′

and by (1.2.8)

‖ũ(t, ·)‖Hs ≤ C
∫ +∞

t
〈t− t′〉s/2〈t′〉−N+ s

2
+1
dt′ ≤ C〈t〉−N+s+2

if N has been taken strictly larger than s+ 2. Consequently

‖u(t, ·)‖Hs ≥ ‖wa(t, ·)‖Hs − ‖ũ(t, ·)‖Hs ≥
1
2
C−1ts/2

when t→ +∞, using (3.3.5). This concludes the proof. ✷
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