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A new model-based algorithm for optimizing the
MPEG-AAC in MS-stereo

Olivier Derrien and Gag¢l Richard, Senior Member, IEEE

Abstract— In this paper, a new model-based algorithm
for optimizing the MPEG-Advanced Audio Coder (AAC)
in MS-stereo mode is presented. This algorithm is an ex-
tension to stereo signals of prior work on a statistical model
of quantization noise. Traditionally, MS-stereo coding ap-
proaches replace the Left (L) and Right (R) channels by the
Middle (M) and Sides (S) channels, each channel being in-
dependently processed, almost like a monophonic signal. In
contrast, our method proposes a global approach for coding
both channels in the same process. A model for the quan-
tization error allows us to tune the quantizers on channels
M and S with respect to a distortion constraint on the re-
constructed channels L and R as they will appear in the
decoder. This approach leads to a more efficient percep-
tual noise-shaping and avoids using complex psychoacoustic
models built on the M and S channels. Furthermore, it pro-
vides a straightforward scheme to choose between LR and
MS modes in each subband for each frame. Subjective lis-
tening tests prove that the coding efficiency at a medium
bitrate (96 kbits/s for both channels) is significantly bet-
ter with our algorithm than with the standard algorithm,
without increase of complexity.

Keywords— Perceptual audio coding, MPEG-AAC, MS-
stereo, statistical model, quantization, scalefactor, bitrate
constraint, distortion constraint, optimization algorithm.

I. INTRODUCTION

The MPEG-4 Advanced Audio Coder (AAC) is the lat-
est international standard for high-quality lossy audio cod-
ing [1], [2]. Its application field is still expanding, includ-
ing consumer audio equipment and digital video broad-
casting. This codec has been derived in several profiles
i.e. variations, for different applications: Low Complexity
(LC-AACQC), Low Delay (LD-AAC), High Efficiency (HE-
AAC/AACPlus) etc. The MPEG-AAC is a frame-based
transform-coder. Its apparent complexity is due to a large
variety of coding parameters, which make the optimization
process difficult to engineer and recent publications show
that AAC optimization is still a current issue [3].

The MPEG-AAC is a multichannel codec, designed for
stereo and surround audio applications. An AAC audio
stream can include single channels and channel pairs. A
single channel corresponds to a monophonic audio scene, a
channel pair to a stereophonic scene (Left and Right chan-
nels). With the basic coding scheme for a channel pair,
called LR-stereo in MPEG-AAC, each channel is processed
as a monophonic signal. However, when a stereo signal ex-
hibits significant inter-channel redundancy, the LR mode is
quite ineffective. Improving the coding efficiency by remov-
ing the redundancy is possible with stereo coding modes.

A popular method for inter-channel decorrelation is the
sum-difference transformation [4]. This technique, also re-
ferred to as MS joint channel coding, consists of a linear
combination of the Left (L) and Right (R) channels to get

Middle (M) and Sides (S) channels. M and S are coded
instead of L and R and the reverse transformation is per-
formed at the decoder side. In MPEG-AAC, LR and MS
mode can be used alternatively for each frequency subband
and each frame. The moderate coding gain is compen-
sated by a small amount of side-information (one bit per
subband). Other linear transformations have been pro-
posed in the literature: Inter-channel decorrelation with
a Karhunen-Loeve transform [5], inter-channel prediction
[6], [7], and more recently a time-aligned version of the MS
transformation [8]. With all these techniques, the coding
gain is increased for some signals, but at the expense of
additional side information.

Parametric stereo coding is another popular scheme for
increasing the coding efficiency. A core monophonic coder
is used in combination with additional parameters that de-
scribe the stereo information. The resulting auxiliary bit-
stream usually requires very few coding bits, but the orig-
inal signals in channels L and R can not be totally recov-
ered, even for very high bitrates. Thus, parametric stereo
schemes are suitable for low bitrate applications. Orig-
inally, a simple parametric stereo mode, called Intensity
Stereo (IS), was specified in the MPEG-AAC standard.
It consists of coding only the M channel and an inter-
channel intensity difference parameter for each subband.
Since, many studies have been carried out on parametric
stereo (see for instance [9], [10]) and in the latest exten-
sion of MPEG-AAC, called HE-AAC v2 [11], the paramet-
ric stereo mode can be considered as an improved version
of the original IS mode: more parameters can be used
to describe the stereo image (intensity difference, cross-
correlation, phase/time difference). However, the typical
bitrate for the HE-AAC v2 is quite low: 24kbps for both
channels.

In this paper, we consider high-quality /high-bitrate ap-
plications and focus on the MS-stereo mode for the MPEG-
AAC, especially on the implementation of the optimization
algorithm which is strongly related to the coding efficiency.
In a previous paper [12], we proposed a new algorithm for
the single channel case, based on a statistical model of the
quantization noise. In the informative annex of the MPEG-
AAC standard [1], an implementation of the coding algo-
rithm is described. In this paper, it will be referred to as
the standard algorithm. Compared to this algorithm, our
method exhibits a lower complexity and a better sound
quality for the same bitrate. In this paper, we extend this
model to the MS-stereo case, and propose a new efficient
algorithm for coding a channel pair.

This article is divided in three parts. First, we briefly
describe the MPEG-AAC codec and the MS-stereo mode.
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Fig. 1.

Then, after recalling the main results of the monophonic
model, we describe our stereophonic model and the new op-
timization algorithm. Finally, we compare our algorithm to
the standard MPEG-AAC, both in terms of audio quality
and computational complexity.

II. MPEG-AAC MS-STEREO MODE
A. Quantization and coding

Figure 1 presents the general scheme of a MPEG-AAC
codec. The audio signal is segmented in variable-length
analysis windows (256 or 2048 samples) with 50% over-
lap. Over each window, the signal is transformed in a fre-
quency domain with a Modified Discrete Cosine Transform
(MDCT) [13]. In this paper, we denote X (k) the MDCT
coeflicients corresponding to a single channel, over the cur-
rent analysis window. k is a frequency index. Variable
length frequency subbands are defined as non-overlapping
subsets of frequency indexes: k € {kmin($)- - kmax(s)}
where s is a subband index. Subband width K increases
along the frequency scale.

The MDCT coefficients are quantized subband by sub-
band according to:

== ([3]") 0

where A(s) is a scaling parameter, R is a rounding func-
tion and i(k) are the quantization indexes. A(s) follows a
logarithmic scale:

A(s) = 2590) (2)

where ¢ is an integer parameter called scalefactor. The
rounding function is not set by the MPEG standard. The
function which minimizes the quantization error is defined
in [12]. A sub-optimal function is proposed in the informa-
tive annex of the MPEG document [1].

Both quantization index (k) and scalefactor ¢(s) are
coded with a noiseless Huffman coding module. Coded au-
dio data are segmented in frames. One frame corresponds
either to a single 2048-samples window or to a sequence
of 8 256-samples window. Optimizing the coding process

Synopsis of a MPEG AAC codec.

consists of finding the scaling parameters A(s) which max-
imize the audio quality under a bitrate constraint. This
is generally implemented with an iterative algorithm in-
cluding quantization and Huffman coding modules, and a
psycho-acoustic model. Both psychoacoustic model and
optimization algorithm are not specified in the standard,
in order to allow for future advances in technology that will
improve the coding efficiency.

B. The MS-stereo mode

When the audio signal is a channel pair, we denote X, (k)
and Xp(k) the MDCT coefficients corresponding respec-
tively to channels Left and Right. The MS transformation
is defined by:

Xu(k) = 5[Xp(k)+Xr(k)]
(3)

Xs(k) = 35[Xr(k)— Xr(K)]

N =

It can be used independently for each subband. A one-
bit flag per subband indicates whether the MS transforma-
tion is used. In MS mode, Xj; and Xg are quantized and
coded instead of X7, and Xg. On the decoder side, the re-
constructed MDCT coefficients X M and X s are obtained
after the reverse quantization process. Finally the reverse
MS transformation is performed:

XL(k') = XM(k’) + Xs(k')
) ) ) (4)
Xg(k) = Xwm(k)— Xs(k)

Compared to the single channel case, the MS-stereo
mode raises three additional problems: 1) the LR/MS de-
cision, 2) the hearing model and 3) the inter-channel bit-
allocation. The classical approach was originally proposed
by J.D. Johnston et al. [4], [14]: The MS mode is enabled
when the energy difference between channels M and S ex-
ceeds a given threshold. Masking thresholds for M and S
are computed by extending the monophonic psychoacous-
tic model. The inter-channel bit-allocation is performed
according to a Perceptual Entropy criterion (see also [15]).



Then, a single channel noise-shaping algorithm is applied
twice to M and S.

In the standard algorithm, some improvements have
been made concerning problems 1) and 3): LR and MS
channels are optimized in an iterative process which uses
two nested-loops and a local decoder inside the outer-loop.
The outer-loop (distortion loop) changes the scalefactor
values independently for each channel (L,R,M,S) accord-
ing to a Noise-To-Mask criterion. The inner-loop (bitrate
loop) performs a global translation of the scalefactors for
all channels in parallel, in order to meet the global bitrate
constraint (solves problem 3). On each iteration, quan-
tization and Huffman coding are performed for channels
LR and MS, and the mode which minimizes the number of
coding bits in each subband is selected (solves problem 1).

An improvement to this framework has been proposed
by C.M. Liu et al. [16], applied to the MPEG-1 Layer III
codec, which is very close to the MPEG-AAC. The main
advances are: a new method for computing the masking
threshold for M and S (solves problem 2), an inter-channel
bit-allocation based on a new criterion called Allocation
Entropy (solves problem 3), and a new intra-channel noise-
shaping process.

Our method is radically different on three major issues:
First, it relies on a specific MS distortion model which al-
lows us to tune the quantization for both channels at the
same time. Second, with our method, the inter-channel bit-
allocation problem (problem 3) is solved jointly with the
noise-shaping process. Third, we consider only the distor-
tion constraint on channels L and R, even in the MS-mode.
Thus, problem 2) is no more an issue, as psychoacoustics
only involve channels L and R.

III. DESCRIPTION OF THE NEW CODING ALGORITHM
A. Single channel error model

In this section, we briefly recall the main results of our
prior work on the single-channel case (see [12] for more
details). The quantization error in the transform domain
is defined by:

e(k) = X (k) — X (k) (5)
and the error energy in subband s is:

kmax(s)

Y £k (6)

k=kmin(s)

The usual criterion for evaluating the perceived distortion
in one subband is the distance between E.(s) and a so-
called masking threshold T,,(s), computed by the psycho-
acoustic model. If E.(s) < Ty,(s), the masking constraint
is verified, and no distortion will be perceived in this fre-
quency subband. As the MPEG-AAC usually operates in
a fixed-bitrate mode, the available bitrate is not sufficient
for the masking constraint to be verified in each subband.

The fixed-bitrate problem can be efficiently tackled by
solving successive variable-bitrate problems: At each step
of an iterative process, a distortion level per subband T'(s)

is defined and a fast method is used to solve a variable-
bitrate problem, i.e. to determine the set of scaling pa-
rameters which minimizes the bitrate under a distortion
constraint:

E.(s) <T(s) (7)

At the first step of the iterative process, T'(s) is initialized
to Thn(s). If the resulting bitrate matches the bitrate con-
straint, the coding problem is solved. Else, the distortion
levels T'(s) are raised until the bitrate constraint is verified.

Finding the exact solution to the variable-bitrate prob-
lem is practically too much time-consuming and therefore,
it is often preferred to find a near-optimal solution with
a fast method. For that purpose, a new error model was
developed. This method is statistically optimal, and thus
practically near-optimal.

We assume that the variable-bitrate problem can be
solved independently in each subband, which is almost
true. In the remaining of this paper, we omit the sub-
band index s, but subband dependant variables are noted
with a bold font. Three different quantization modes have
to be considered:

1) High resolution: When the scaling parameter is small
enough for the quantizer to work in high resolution mode
(which means that the energy of the quantization error is
small compared to the energy of the input signal), all quan-
tization indexes i(k) are greater than zero. We consider the
error coefficients (k) as random variables. The energy E.
is also a random variable, and the strict distortion con-
straint (7) is replaced by a statistical version:

Prob{E. < T} > « (8)

where a € [0.5, 1] is a confidence parameter. It reflects the
confidence we have on the masking threshold. « close to
1 means that the threshold is judged reliable, « close to
0.5 means that the threshold is not reliable. We showed in
[12] that @ = 1 results in a high bitrate, whereas a = 0.9
significantly reduces the bitrate for approximately the same
error level.

The probability density function (pdf) of E. must be
known to solve (8). Its exact expression would be far too
complex, so we chose a simple model. Equation (6) shows
that, if (k) are independent and equally distributed, and
if K (number of MDCT coefficients) is large enough, E,.
will follow a Gaussian law according to the central-limit
theorem. Its mean and variance are:

u KE [?] (9)
o = K(E[']-E[]")

1

1R

(10)

We have also considered a nonasymptotic model using a
Gamma-law. With this finer model, there is no assump-
tion made on K. Both models are equivalent on large sub-
bands. We expected similar performances on large sub-
bands and an improvement on narrow subbands. However,
as we observed no significant improvement, we finally chose
the simple Gaussian model.



In high-resolution, approximations for the second- and
fourth-order moments of the quantization error can be ob-
tained, assuming that the rounding error is a white and
uniformly distributed random variable:

E[EQ} ~
E[Eﬂ ~

3
a2m1A2
2

a4m1A3

as and a4 are multiplying factors which depend on the
rounding function R, m,, is defined in the current subband

as:
1 p
my, = Ek | X (k)]

and A is the scaling parameter. For the sub-optimal round-
ing function proposed in the MPEG document, the analytic
expression for the multiplying factors is:

(13)

4P
_ _ p+1 p+1
= Gy (L Mot 4 0]

where N,,, = 0.4054, referred to as the magic number in [1].
For the optimal rounding function, the analytic expression
for the multiplying factors is:

P

(lp = (p+ 1)3p

As E. is modelled with a Gaussian law, the distortion
constraint (8) is equivalent to:

p+po <T (14)
where (3 is a secondary parameter depending on «:
B =+2Erf (20 — 1) (15)

Erf is the standard error function [17]. We assume that
the bitrate is a decreasing function of A. Then, the near-
optimal value of the scaling parameter A,,; is obtained
when (14) is an equality. We combine equations (9) and
(10) with equations (11) and (12). We get:

wlo

T
Kaom; + 3 \/QK(a4m1 — a%mé)

Aopt ~ (16)

2) Dead zone: When the scaling parameter is large
enough for the quantization indexes i(k) to be all zero,
the quantizer is in the dead zone. The bitrate is zero for
this subband, the output of the quantizer is also zero. The
quantization error is the input signal itself, and the error
energy is given by:

E.=Ex =) X(k)? (17)
k

3) Transition mode: Between the high-resolution mode
and the dead-zone, we do not propose a specific model,
we simply extend the other two models. We consider that
when A < Ay, the high-resolution expression (16) is valid,

and when A > Ay, the dead zone expression (17) is valid.
Ay is chosen at the junction of both modes:

Ex
Kaomy + 3 \/QK(a4m1 —a3m?)
2

Ay = (18)

Finally, the solution of the variable-bitrate problem is:

a) If T < Ex, the nearly-optimal scaling parameter
value A,y is given by equation (16).

b) If T > Ex, we can choose any scaling parameter value
greater than Ay, given by equation (18).
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Fig. 2. Example of the distortion function and quantization model.

This model is illustrated on Figure 2, where the exact
values of the error energy for a 16-coefficients subband and
the model estimation as functions of the scaling parameter
are drawn. We chose a = 0.9. The model curve corre-
sponds to g+ fo when A < Ay and to Ex when A > Ay.

The typical SNR for a fixed-bitrate coder is 10 dB. We
can see on figure 2 that this corresponds to the transi-
tion mode. But one can also see that extending the high-
resolution and dead-zone models is accurate.

B. Eztending the error model to MS stereo

In this section, we present the new MS-stereo model for
the quantization noise. When MS-stereo is enabled for a
particular subband, channels M and S are quantized in-
stead of L and R. The variable-bitrate coding problem con-
sists of minimizing the total bitrate for both channels M
and S, under a distortion constraint. The distortion con-
straint is evaluated after the reverse MS-transformation:

EEL S TL

(19)

E < Tg

eR

The quantization error samples in the transform domain
are e)r(k) and eg(k). After the reverse MS-transformation,
the quantization error samples are:

er(k) = em(k)+es(k)
(20)

er(k) = em(k) —es(k)



and the error energy in each channel is:
E., = Zk 82L (k)

er Zk E%i(k)

We now have to consider four different situations:

1) Full high-resolution: When the quantizers on channels
M and S are in high-resolution mode, E., and E., are con-
sidered as random variables, and the statistical distortion
constraints are:

(21)
E

Prob{E., <Tp} >«
(22)
Prob{E., < Tg} >«

Using the same hypothesis as with the single channel
model, we assume that E., (resp. E.,) follows a Gaus-
sian law. Thus, (22) can be written as :

pp+por <Tp
(23)
p+pBor<Tg

The parameters p; and o% (resp. pp and 0%), given by
equations (9) and (10), depend on the moments E [¢7 | and
E [e7] (resp. E[¢}] and E [e%]). But the moments of the
quantization error as functions of the scaling parameter,
given by equations (11) and (12), involve channels M and S.
Thus, py, g, 02 and 0'% must be re-written as functions
of the error moments on M and S. Here, we need a new
hypothesis on the correlation between the error samples
em (k) and eg(k). When a quantizer is in high-resolution
mode, the quantization error is approximated to be sta-
tistically independent from the input signal [18]. Then,
assuming that e,7(k) and eg(k) are independent variables
is reasonable. From equation (20), we get:

E[e}] ~E [e}] ~E [e3/] + E [e3] (24)

E[e1] ~E [ek] ~E[e},] +E [e5] + 6E [¢3,] E [¢%] (25)
Combining these equations with (9) and (10) applied to

channels L-R and with (11) and (12) applied to channels
M-S, we get:

3 3
~ ~ 2 2
B~ pp~ Kas (m%MAM—i—m gAZ (26)

3
2 2 3 3 3 AS
o ~o% o K [5MAM 4 ogAd + 45MSAA24A§] (27)

the parameters 657, 05 and 9y are :

2.2
oy = asmyy —azmi,,
2
5 _ 2.2
s = asmig—azmig (28)
2
oms = a2m1Mm1
2545 58

As one can see, E., and E., have approximately the same
mean and variance. Thus, the distortion constraints (23)
are equivalent to a single equation :

pr+Bor~pr+For <min(Tr,Tg) (29)

Combining this equation with equations (26) and (27) leads
to a new equation which cannot be easily simplified. To
circumvent this difficulty, we propose an approximation of
o, and op with Taylor series. We denote:

Ag\?
e-(2) (30)
From equation (27), we get:
1
3 205 + 46 1) 2
O'LZO'RZ\/KAAJ;; [1—}—751 MS §+KS€2
(31)
where:
A =0y +0d0s+40ums (32)

When the audio signal has a strong stereo effect, A, and
A should have close values, which would lead to £ ~ 0.
It appears that this is true even with a weak stereo effect.
Using first order Taylor series, we get:

285 + 40 0s 2 ds +20ums
1+ A £+ A § ~ 1+ A £ (33)
and: . .
oL~ on~ vy AL +vsAL (34)
where parameters v,, and g are:
Yv = \/%(5M+25MS)
(35)
_ K
Ys = /& (0s+20ums)

On audio excerpt #8, which has the weakest stereo ef-
fect in our selection, coded at 48 kbits/s, we measured
& = —0.074 £ 0.002 (95 % confidence interval), and the
maximum error measured for the linear approximation of
o and op is 0.5%.

Finally, the distortion constraint (29) is equivalent to:

3 3

(Kagm%M + 5’71\4) Az + (K(ZQIH%S + ﬂ‘ys) AZ<T

(36)
with T = min (T, Tg).

Solving the variable-bitrate problem in full high-
resolution mode requires a model for the bitrate function,
i.e. the amount of coding bits for a single channel, in one
particular subband, as a function of the scaling parameter.

As the coding module uses 11 Huffman codebooks, code-
words from codebook #11 being interleaved with escape se-
quences, building an analytical model for the bitrate func-
tion seems very difficult. So, we chose an empirical ap-
proach: We measured the bitrate function for each value of
the subband width K, on a database of 8 audio excerpts,
actually excerpts #1, 2, 3, 5, 6 in table I, and 3 other ones
that were not retained for the listening tests. The con-
clusion is that the number of coding bits per subband can
be reasonably modelled by a decreasing linear function of
log (A). On Figure 3, we plot the mean bitrate function
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and the extreme values for K = 16, for audio excerpt #S8.
One can see that the linear model is a reasonable approx-
imation. However, the high variability justifies the use of
an iterative process where the model is only used for opti-
mizing the inter-channel bit-allocation.

Assuming a log-linear model for the bitrate as a func-
tion of the scaling parameter, it appears that minimizing
the total bitrate is equivalent to maximizing log (A Ag)
under the distortion constraint (36). The solution can be
easily obtained with a Lagrange-multiplier maximization
technique:

T
AMopt = (37)
2 (Kagm%M + ﬂ’yM)
2
T 3
ASopt = (38)

2 (Kagmés + ﬂ’ys>

2) Channel M high-resolution: When the quantizer on
channel M is in high-resolution mode, and the quantizer
on channel S is in the dead-zone, E,, is considered as a

random variable and E.4 is a constant, equal to Ex,. The
distortion constraints are:

EEL = EEM -‘rEXS <Ty
(39)
EER = EEM —+ EXS <Tg

This coding problem is similar to a single-channel optimiza-
tion on channel M, with the following distortion constraint:

EEM §min(TL,TR)7EXS (40)
According to the single-channel model, the nearly-optimal
solution is:

T -Ex,
Kagm%M + 0 \/2K(a4m1M - a%mQ%M)

AMopt =

(41)

3) Channel S high-resolution: When the quantizer on

channel S is in high-resolution mode, and the quantizer

on channel M is in the dead-zone, the coding problem is

exactly similar to the previous one, and the nearly-optimal
solution is:

T - Ey,,
Kagm%S +0 \/2K(a4m1s - a%mis)
2

ASopt =

(42)

4) Full dead-zone: When both quantizers are in the dead-
zone, any scaling parameters Ay > A, and Ags > Ag,
are optimal.

This model is illustrated on Figure 4. On a 16-coefficients
subband, for output channel L and for one long analysis
window from audio excerpt #8, we draw the exact values
of the error energy and the model estimation as functions
of scaling parameters on channels M and S. One can see
that the model is an accurate approximation of the actual
distortion function.

C. Stereophonic optimization process for fized bitrates

In the previous section, we have described an error model
for the MS-stereo mode. Given distortion levels on chan-



nels L and R, it allows us to compute the values of the scal-
ing parameters Ay (s) and Ag(s) which solve the variable-
bitrate problem, i.e. minimize the number of coding bits
under a distortion constraint. In this section, we revisit the
fixed-bitrate problem: i.e. minimizing the perceived distor-
tion under a bitrate constraint. As for the single-channel
algorithm, this method is merely a single-loop process. The
block-diagram of the optimization algorithm is presented
on Figure 5. The notations are :

e Tne(s): Masking threshold for channel C € {L, R} and
subband s, computed by the psychoacoustic model.

« Tt (s): Distortion level for channel C' € {L, R} and sub-
band s at iteration .

o A% (s): Scaling parameter (related to the scalefactor) for
channel C € {L, R, M, S} and subband s at iteration .

« b5 (s): Required number of coding bits for channel C €
{L,R,M,S} and subband s at iteration i, after quantiza-
tion and Huffman coding.

e Biax: Maximum number of coding bits per frame, de-
pending on the output bitrate.

The computation of the distortion levels T/ (s), for
channels C' € {L, R}, from previous values T}(s), uses
a process similar to that of the single-channel algorithm:
For high SNR (1st phase), it is a water-filling technique
[19] with a protection factor. For low SNR (2nd phase),
a constant SNR degradation is performed. During the 1st
phase, the water-filling technique retrieves bits from the
sub-bands with the lowest signal energy in order to min-
imize the distortion on high-energy sub-bands. The pro-
tection factor is used to avoid large distortion levels at low
frequencies. During the second phase, a uniform bit re-
trieval along subbands is performed in the case of very low
bitrate constraint, but some noticeable distortions will then
be clearly perceived.

The complete description of this process, applied both
to channels L and R, is as follows, where 7(s) is the protec-
tion factor for each subband (see [12] for numerical values
and implementation details). The protection threshold is
defined by:

_ Ex(s)

(s

The protection threshold can be interpreted as the maxi-
mum error energy required in each subband to preserve a
perceptually-acceptable level of distortion.

« 1st phase, until T%(s) < G(s) for at least one sub-band

G(s)

i
Tm in

= msin (T'(s))

T (s) = min (max (Ti(s), 1 Tfnin) ,G(s))

e 2nd phase 4 .
T (s) =1y T(s)

step-constants 1 and r2 have been set respectively to 1 dB
and 0.25 dB.
IV. PERFORMANCE EVALUATION

In this section, our coding algorithm is compared to the
algorithm described in the informative annex of the MPEG

Initialization

T,(s) = T,u(s)
() = T,u(s)

T/(s), Ty(s) [

v v

L/R M/S
error model error model

4,(5), 4,(s) Ay/(s) . A5(s)

Y Y
L/R M/S
quantization & quantization &
Huffman coding Huffman coding

b/(s) . bi(s)

b,/(s) , bs(s)

subband
L/R -M/S
switch

o—

b(s) = b,/(s) + be(s) b(s) = by (s) + bs(s)

y

T (s) > T, (s)
T(s) > T, "'(s)
i—>i+l

I

Fig. 5. Block-diagram of the optimization algorithm.

STOP

standard [1], referred to as the standard coder in this paper.
We used the Low Complexity profile. The standard coder
was chosen preferably to an embedded AAC coder, because
it is a public implementation which allows a fair compari-
son: The only difference between both coders under test is
the optimization algorithm. All other components are the
same.

A. Subjective evaluation

The signal quality can be assessed using objective qual-
ity tests, but as mentioned in [22], the ultimate quality test
of any audio compression technique is the human listener.
In this work, we refer, to a large extent, to the ITU rec-
ommendation BS.1534-1 [21] (often referred as MUSHRA
test) which is especially designed for the subjective assess-
ment of intermediate quality audio coding systems. The
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Fig. 6. MUSHRA test results with 95% confidence intervals for each
audio excerpt.

subjective evaluation was carried out at a bit rate of 96
kbit/s since near transparent quality is obtained for both
codecs at 128 kbit/s or higher bitrates.

Table I gives the list of the selected test material. The se-
lection of audio test items was done by choosing a subset of
excerpts where audio impairments of both coding schemes
were the most audible and by favouring the widest variety
of musical content. All excerpts are stereophonic and were
played at a sampling rate of 48 kHz.

Our coder is subjectively evaluated and compared to the
standard AAC coder and two anchor signals. The first one,
required by the MUSHRA protocol, is a 3.5 kHz low-pass
version of the reference signal. We chose to add a second
anchor signal: a monophonic version of the reference signal,

i.e. the average of Left and Right channels. The score given
to this mono anchor is informative on the level of stereo of
the test signal.

A total of 17 selected subjects participated to the lis-
tening test and scored the different signals according to
their quality from score 0 (extremely poor quality) to 100
(transparent). Even if some of them were familiar with
audio coding evaluation, all subjects underwent a training
phase which allowed them to better identify the typical
coding artefacts of the tested coders!. The participants
were post-screened according to the score they have at-
tributed to the reference: the data for listeners who gave
a score under 80 (which correspond to the lowest mark for
the category excellent quality) were discarded. As a con-
sequence, 14 listeners were judged reliable and therefore
kept for the results. Note that none of the authors have
participated to the test.

The results of the subjective test are summarized in Fig-
ure 6. The results are given as mean absolute scores for
each signal with 95% confidence intervals.

The main result is that the proposed coder provides a
significantly better quality than the standard one for all
test items. It is also interesting to notice that both codecs
were judged better than the low-pass anchor, except for the
standard codec on items #3 and 8. To our opinion, this
illustrates the main weaknesses of the standard algorithm:
On the one hand, when the input signal has a wide spec-
tral content, for example the harpsichord accompaniment
on item #3, the power spectral density (PSD) of the error
can strongly vary from one frame to another, which creates
birdies-like degradations. Since our method is temporally
more stable, this inherent weakness is greatly reduced. On
the other hand, when the input signal possesses a globally
contrasted PSD (for example Suzanne Vega’s voice on item
#8), the standard algorithm produces an error with a glob-
ally smooth PSD, which creates gaps in the spectrogram
of the coded signal. By contrast, our methods adapts the
PSD of the error to the PSD of the input signal, and avoids
such degradations.

The comparison with the mono anchor is more difficult
to interpret as many listeners mentioned the difficulty to
assess the reduction of stereophonic effect compared to
artefact-like degradations. However, it seems that the score
given to the mono anchor is actually related to the level of
stereo: For item #8, which is nearly a monophonic sig-
nal, the mono anchor obtains almost 100%, and for items
#1, 3 and 6, which provide a strong stereo effect, the score
given to the mono anchor is the lowest. Furthermore, one
can notice that the proposed coder is always judged bet-
ter than the mono anchor, except for item #8 which is a
very special case. This proves that our codec does not sig-
nificantly degrade the stereophonic rendering in order to
reduce traditional coding artefacts.

n practice, the training phase is done in two phases. First, the
listeners learn typical quality degradations due to bitrate reduction
on typical signals (Low pass filtering, birdies and pre-echoes). Note
that no specific artefacts associated with stereophonic degradations
were included. Second, the subjects listen to all items included in the
test, in which case stereophonic degradations are presented.



| Id | Author | Identification | Style | Duration |

1 The Beatles Drive My Car Pop-Rock 8.5s

2 J.J. Cale Cocaine Pop-Rock 9.8s

3 A. Vivaldi Gloria Choir 11.0 s

4 M. Marais Le Labyrinthe Viola da gamba 8.6s

5 Anonymous Saltarello Medieval 7.6s

6 | Simon & Garfunkel | Sound of Silence Singing voice 9.3s

7 Supertramp Goodbye Stranger Pop-Rock 8.3s

8 S. Vega Toms dinner Singing voice 9.5s

9 H. Texier Tzigane Jazz 10.0 s

10 R. Galliano Viaggio Jazz 10.5 s

TABLE I
AUDIO MATERIAL FOR SUBJECTIVE EVALUATION.
Finally, it can be observed that relatively small confi- 25—————————

dence intervals are obtained and that they are in general . Iit:;lvd:;gecc(’dec 3
smaller for the proposed coder than for the standard AAC
coder. This may be explained by the fact that when an
artefact is clearly audible (which is more often the case with ol i |
the standard ACC coder than with our coder), the listeners > % &
often have a different perception on its acceptability and 2 %
therefore use significantly different scores, leading to an S f B
increase of the confidence intervals for the standard AAC & . ﬁ o 3 3 ;
coder. The relatively small confidence intervals obtained L5p @ % T l
is to our opinion the consequence of the specific training % =
phase conducted beforehand by all listeners which in fact i
leads to a better agreement of the listeners during the test
phase. e ‘

B. Complezity

In a previous paper [12], we showed that the optimiza-
tion algorithm takes about 50% of the whole computation
time and that our model-based algorithm for monophonic
signals requires about 40% less computation time than the
standard algorithm at 48 kbits/s.

In MS stereo, we possibly expect different results, be-
cause the quantization process is more complex than twice
the monophonic case: The standard algorithm relies on
three nested-loops (distortion loop for channel M, distor-
tion loop for channel S, bitrate loop for both channels),
with simple calculations inside each loop. Our model-based
algorithm has only one bitrate loop, but the calculations
inside the loop are more complex.

To evaluate the complexity, we measured the mean
CPU time required for coding one analysis window, for
the excerpts listed in Table I, and for a bitrate of 96
kbits/s.2 On Figure 7, we plot the mean execution time
and 95% confidence interval for each audio excerpt, and for
all excerpts. The remaining computation time (window-
switching, MDCT and psycho-acoustic model), which is

2Note that the implementation was made on a MATLAB 6 plat-
form, and that we did not use a fast scheme (FFT based) for the
implementation of the time-frequency transform (MDCT). Thus, the
results might slightly differ with a compiled coder, and the total com-
putation time would be lower with a fast MDCT scheme.

112345678910

Audio excerpt index

Mean

Fig. 7. Mean execution time and 95% confidence intervals for each
audio excerpt.

common to both implementations, is approximately 0.5s.

One can see that the optimization algorithm takes about
70% of the whole computation time, which is more than in
the monophonic case. For the optimization part, our al-
gorithm performs better on excerpts #2, 4, 6, 8, 9, the
standard algorithm on excerpts #1, 3, 5, 7, 10. In average,
our algorithm is 10% faster. One can also notice that con-
fidence intervals are larger with our algorithm. This point
can be explained by the small value for the step constant
r9: In the second phase of the optimization, reached when
psychoacoustics require a much larger amount of coding
bits than available, we choose to slowly raise the distortion
level in order to get a very progressive quality degradation,
which increases the execution time. In contrast, in the
standard algorithm, the variation applied to the scalefac-
tors is raised at each iteration. This ensures a fast conver-
gence, but results in a poor subjective quality when psy-
choacoustics require a larger amount of coding bits.
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V. CONCLUSION

In this paper, we have described a new coding algorithm
for the MPEG Advanced Audio Coding in MS-stereo mode,
based on a subband model for the quantization noise. Our
approach is radically different from the MPEG standard
algorithm: we propose a global approach for coding both
channels in the same process. First, a quantization er-
ror model allows us to tune the quantizers on channels M
and S with respect to a distortion constraint on the recon-
structed channels L and R as they will appear in the de-
coder. This approach leads to a more efficient perceptual
noise-shaping and to avoid the use of complex psychoa-
coustic models built on the MS channels. Furthermore, it
provides a straightforward scheme to choose between LR
and MS modes in each subband for each frame.

Subjective listening tests performed with trained sub-
jects prove that the coding efficiency at a medium bitrate
(96 kbits/s for both channels) is significantly better with
our algorithm, with no increase of complexity.

Our method is compatible with almost any psychoacous-
tic model. For our experimentations, we used the binaural
extension of the model proposed in the MPEG standard,
but further studies should focus on improving the psychoa-
coustic modelling of binaural effects, because this aspect is
strongly related to the coding efficiency.
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