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An Affine Combination of Two LMS Adaptive
Filters — Transient Mean-Sqguare Analysis

Neil J. Bershadellow, IEEE Jo% Carlos M. BermudeZenior Member, IEEEand Jean-Yves
Tourneret Member, IEEE

Abstract

This paper studies the statistical behavior of an affine d¢oation of the outputs of two LMS adaptive filters that
simultaneously adapt using the same white Gaussian inphes purpose of the combination is to obtain an LMS
adaptive filter with fast convergence and small steadyestatan-square deviation (MSD). The linear combination
studied is a generalization of the convex combination, inctvtthe combination factoi(n) is restricted to the
interval (0,1). The viewpoint is taken that each of the two filters producepesident estimates of the unknown
channel. Thus, there exists a sequence of optimal affine ioémglcoefficients which minimizes the MSE. First, the
optimal unrealizable affine combiner is studied and pravithe best possible performance for this class. Then two
new schemes are proposed for practical applications. Ttamssguare performances are analyzed and validated by
Monte Carlo simulations. With proper design, the two pradtschemes yield an overall MSD that is usually less
than the MSD's of either filter.

Index Terms
Adaptive filters, analysis, affine combination, convex camation, LMS, stochastic algorithms.

EDICS Category: ASP-ANAL

. INTRODUCTION

The design of many adaptive filters requires a trade-off betveeavergence speed and steady-state mean square
error (MSE). A faster (slower) convergence speed yields aefafgmaller) steady-state mean-square deviation
(MSD) and MSE. This property is usually independent of the typadsptive algorithm, i.e. Least Mean-Square
(LMS), Normalized Least Mean-Square (NLMS), Recursive Least SqQU&ES) or Affine Projection (AP). This
design trade-off is usually controlled by some design patanof the weight update, such as the step-size in LMS
or AP, the step-size or the regularization parameter in NLM$he forgetting factor in RLS. Variable step-size
modifications of the basic adaptive algorithms offer a pdessiolution to this design problem [1]-[5].

Recently, a novel scheme has been proposed in [6] which usesnex combination of two fixed step-size
adaptive filters as shown in Fig. 1, where adaptive fi¥#5 (n) uses a larger step-size than adaptive filiés(n).

The key to this scheme is the selection of the scalar mixingrpaterA(n) for combining the two filter outputs.
The mixing parameter is defined in [7] as a sigmoid function whizee parameter is adaptively optimized using
a stochastic gradient search which minimizes the quadeatar of the overall filter. The steady-state performance
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of this adaptive scheme has been recently studied in [8]. Bimgex combination performed as well as the best
of its components in the MSE sense. These results indicateathambination of adaptive filters can lead to fast
convergence rateand good steady-state performance, an attribute that is ysobthined only in variable step-size
algorithms. Thus, there is great interest in learning mo@utthe properties of such adaptive structures.

This paper provides new results for the performance of thebaoed structure which supplement the work
presently available in the literature. The achievable perémce is studied for an affine combination of two LMS
adaptive filters using the structure shown in Fig. 1 with stetig signals. Here, the combination parameder) is
not restricted to the rang®, 1). Thus, Fig. 1 is interpreted from the viewpoint of a linear cameb Each adaptive
filter is estimating the unknown channel impulse responsegutie same input data. ThuB/;(n) and Wy(n)
are statistically dependent estimates of the unknown aaithere exists a single combining parameter sequence
A(n) which minimizes the MSD. The paramet&(n) does not necessarily lie withif0,1) for all n. Thus, the
outputy(n) in Fig. 1 is an affine (see footnote combination of the individual outputg;(n) and y2(n). The
convex combination is a particular case.

The adaptive scheme is first studied from the viewpoint of aim@taffine combiner. The value of(n) that
minimizes the MSE for each (conditioned on the filter parameters at iterationis determined as a function
of the unknown system response. This leads to an optimal affigeesice)\,(n). The statistical properties of an
optimal affine combiner are then studied. It is shown thgtn) can be outside of the intervg, 1) for several
iterations. Most importantly),(n) is usually negative in steady-state. It is of interest to para the performance
of the adaptive filter using a suboptimal but feasible adjestnalgorithm forA(n) with that of the optimal affine
combiner. Although the latter is unrealizable, its perfance provides an upper bound on the performance of any
realizable affine combiner. Suppose a suboptimal (but rdddiyalgorithm leads to a performance close to that of
the optimal affine combiner. Then, there is sufficient motivatior a more detailed study of the algorithm with
respect to analysis and implementation issues.

Finally, two realizable schemes for updatingn) are proposed. The first scheme is based on a stochastic
gradient approximation td,(n). The second scheme is based on the relative values of aveeagiethtes of the
individual error powers. Both schemes are briefly studied,thrir performances are compared to that of the optimal
affine combiner. Numerical results support the theoreticdirigs and show that the analysis closely predicts the
probabilistic behavior of the algorithms as observed in MadDarlo simulations, especially in the neighborhood of

the intersection of the MSD’s of the individual filters when thend-off from one filter to the other filter occurs.
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II. THE OPTIMAL AFFINE COMBINER

A. The Affine Combiner

The system under investigation is shown in Fig. 1. Each filter tised.MS adaptation rule but with different

step sizesu;, i = 1,2:

Wi(n+1) = Win) + pies(n)U(n), i=1,2 )
where
ei(n) =d(n) —WInUn), i=1,2 2
d(n) = eo(n) + WU (n), ®)

where W;(n), i = 1,2 are the N-dimensional adaptive coefficient vectoes,(n) is assumed zero-mean, i.i.d.
and statistically independent of any other signal in theesys and the input procesgn) is assumed wide-sense
stationary.U (n) = [u(n),...,u(n — N + 1)]T is the input vector. It will be assumed, without loss, that> s,
so thatW;(n) will, in general, converge faster tha¥ y(n). Also, W (n) will converge to the lowest individual
steady-state weight misadjustment. The weight vecl®rgn) and Wy(n) are coupled both deterministically and
statistically throughlU (n) ande,(n). The stochastic analysis of each individual adaptive filtdraveor in (1) is
well-known [9]-[11].

The outputs of the two filters are combined as in Fig. 1,

y(n) = An)yi(n) + [1 = A(n)]y2(n), (4)

wherey;(n) = WIU(n), i = 1,2, A\(n) can be any real numbeand the overall system error is given by

e(n) = d(n) — y(n). (®)

The adaptive filter output combination (4) is an affine combergtiasy(n) can assume any value on the real
line. This setup generalizes the combination of adaptiver fitéputs, and can be used to study the properties of

the optimal combination.

This case corresponds to an affine (as opposed to convex) comhiriBitie output in (4) can have any real value on the line containing
y1(n) andyz(n). y(n) is restricted to the points on the line betwegrin) andy2(n) in the convex combination case. Two reviewers have
noted that the optimal combiner is of the fomiin) = a(n)yi(n) + b(n)y2(n) wherea(n) + b(n) # 1 in general. This paper studies the
affine combiner.
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B. The Optimal Mixing Parameter

Eg. (4) can be written as

= (A [W1(n) = Wa(n)] + Wa(n)} U(n) (6)
— (M)W 1a(n) + Wo(n) Y U (n),
Whererg(n) = Wl(n) — WQ(TL)

Eqg. (6) shows thay(n) can be interpreted as a combinationWf,(n) and a weighted version of the difference

filter W5(n). It also shows that the combined adaptive filter has an earvaleight vector given by

Weg(n) = A(n)Wia(n) + Wa(n). (7

Subtracting (1) fori = 2 from (1) fori = 1 yields a recursion foW 12(n):

Wis(n+1) = [I — U (n)U" (n)]Wiz(n) + (1 — p2)ea(n)U (n). (8)

Next, let us consider a rule for choosingn) that minimizes the conditional mean-square error (MSE) a tim

E[e?(n)|W1(n), W1a(n)]. Writing e(n) in (5) as

e(n) = eo(n) + [Woa(n) — A(n)Wia(n)] " U(n) (9)
where W ,2(n) = W, (n) — Wy(n) yields

OE[e*(n)[Wa(n), Wis(n)]
OA(n)

= —-2F [e(n)W{Q(n)U(n)]WQ(n), Wis(n)] =0. (10)
Using (9), taking the expectation ové&f(n) and defining the input conditional autocorrelation matky, =

E[U(n)UT (n)|Wa(n), Wia(n)] results in
[Woa(n) — A(n)Wia(n)] " R,Wia(n) = 0. (11)

Solving (11) forA(n) = A\,(n) yields

Ao (n) = (12)



BERSHAD, BERMUDEZ AND TOURNERET 5

which is the expression for the optimém(n), as a function of the unknown weight vecté . The behavior
of the LMS algorithm in the adaptive structure of Fig. 1 usik@) = A\,(n) given by (12) can be used as a

benchmark for evaluation of different schemes devised fdine adjustment of\(n).

1. STATISTICAL PROPERTIES OF THEOPTIMAL AFFINE COMBINER

This section derives important properties of the optimapéide affine combiner. These properties can be used as
design bounds or as benchmarks for evaluation of realizatdetive filtering combining schemes. In the analysis that
follows, u(n) will be assumed for simplicity to be white, Gaussian, withazenean and varianoeﬁ. Thus,R,, =
E [Un)UT (n)|Wa(n), Wia(n)] = E [U(n)U”(n)] = o2I since the input at time: is assumed statistically

independent of the weights at time(independence theory). The step sizgsand uo will be given by

"= )

p2 = 61, (14)

wherey > 0 and0 < 6§ < 1. Parametery controls the departure ¢f; from 1/(No2), which is approximately the
LMS step-size for maximum convergence speed [10]. Pararetentrols the ratiqu; /2. Eqgs. (13) and (14) allow
11 and s to lie in the algorithm’s stability range and yield > us. Thus, filterl is the faster adapting filter. The
white Gaussian input signal assumption is not necessafyesentative of the signals used in every application.
However, the theoretical approach and results obtainedruhts assumption are suggestive of fundamental analysis

and design issues [9], [12].

A. Properties of\,(n)

This section derives approximate results for the initial atehdy-state behaviors of,(n). The mathematical
models provide important insights into the ideal behavibthe mixing parametei(n). The structure of Fig. 1 is
used in practical situations wheyeg is large for fast initial convergence anpd is small to reduce the steady-state
misadjustment. After a brief initial transient (very difflctio model because of the fast changes occurring in the
two statistics of the weight vectors during this period)efilt (W(n)) dominates the adaptive behavior of the
combined adaptive filter. Initially# | (n) adapts more quickly towards the optimum weight vector thea(n).
Thus, from (4), the optimum,(n) is close to unity during this initial phase. On the other haid:(n) dominates
the adaptive filter behavior near steady-state. Tkyis) is near zero for large n. The model should also accurately
estimate the number of iterations when filter 1 hands over trgral of the adaptation to filter 2. Thus,(n)

moves away from unity. The optimum behavior)ifn) at the start and in steady-state, and an accurate estimate of

2)X,(n) is optimum in the sense that it yields the minimum conditional MSE at each timeninsta
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when\(n) transfers the combined weight from filter 1 to filter 2 are usefates of information. This information

should help in the design of effective practical algorithfmsadjusting of mixing parameter.

1) Steady-State BehavioConsider an approximatiérof the steady-state mean of eq. (12) for the white input

case

B[Wh(n)Wis(n)]

lim E[A,(n)] ~ lim . 15
n_mE[ (n)] oo E[Wng(n)ng(n)] (15)

Sincelim,, . E[Wi(n)| = lim,_.oc E[Wa(n)] = W,,
lim E[WhmW ()| = —EIWE(m)Wi(n)] + EIWE (n)Ws(n)) (16)

Eqg. (16) requires the evaluation df[W1 (n)W(n)] and E[WZ(n)W,(n)]. Using (1) and (2) with the
appropriate indexes and (3), neglecting the statisticaletations between the input and the two weight vectors

[9], [11] and using the Gaussian moment factoring theore#, [the following recursion can be written for
EWT ()W (n))]:

EW5(n+1)Wi(n+1)] =1 = (1 + p2)oy, + (N + 2) i pooy, | E[W3 (n) Wi (n)]

+ p2op [1— (N + 2) o] W E[W 1 (n))]

(17)
+ 1102 [1 — (N + 2) 20| WEE[W(n))]
2
+ pupiaoy [N (Zg) + (N +2WIiw,|.
The steady-state solution of (17) is determined in Appendix [W(0) = W,(0) = 0, yielding:
lim EWT(n)W(n)] = WIW, + pu2Nog ~ (18)
n—00 (1 + p2) — pape(N +2)og
and
No?
lim E[W7 =wiw, H21% 19
Jim EWE () Wa(n)) = WiW, + 52 (19)

Thus, (16) can be written as

3There are two main justifications for the approximations such as in priogeéom Eq. (12) to Eq. (15): 1) Evaluating expectations of
quotients of correlated random variables is usually a very difficult dakigig. Approximations are often made in order to make progress
in the analysis. We have chosen the approximation that the expectation cftitnés approximately the ratio of the expectations (see for
instance [13] and reference [13] within), 2) The latter simulation resulpart this approximation.
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. pipeNo? paNo?
lim E[WZL(n)W =— o - 0 A 20
dm, BW oI Waan)] = = (N 72102 T 2 (v + 22 @0)

Using the same results, the denominator of (15) can be wréte

lim E[W1,(n)Wia(n)] = E[W{ (n)Wi(n)] — 2BE[W1(n)W1(n)] + E[WI(n)Wa(n)]

n—oo

B MlNO-Z _q Iu,lluzNo'g n /lQNO'g (21)
2= (N +2)02 (1 + p2) — pape(N +2)02 2 — pa(N +2)02°
Using (13) and (14), these expressions reduce to
SNo? 1 1
lim E|WZL(n)Wi(n)| = - [ s — - ] (22)
n—00 °© - +9)(y—2
} (N+2)of |25+ 22 14 0802
and
No? 1 20 )
lim E[W{Q(n)Wm(n)] = 9 — - — + 2] (23)
n—o (N+2)of |1+235 1+ 0002 T o523
For the practical case of < N + 4, (22) and (23) yiel@
) §(6—1) No?
T _ o
Jim B[W LW ] = 505 5 (24)
and
lim B[W () Wia(n)] = 20= 17 Nos (25)
5o 122 ] = T T (N + 2)02
Finally, using (24) and (25) in (15) yields the steady-statki® of E[\,(n)]:
lim E[\,(n)] ~ 0 (26)
n—00 o\ T 2(6-1)

Expression (26) shows two interesting propertiestdf,(n)| for typical (large) values ofV. Its steady-state
value is negative (sincé < 1) and depends only on the ratig /.
2) Initial Behavior: This section studies the behavior 8f),(n)] after W(n) has converged butVs(n) is

still in transient mode. This operating region includes teeigrl during which the steady-state behavioVf, (n)

“These simulation results imply that 1) disabling filleby setting\(n) = 0, and 2) transferring convergence control to filter
is not sufficient to minimize the steady-state MSE. This is because of thet &ff the cross-correlation betwed¥ ;(n) and W (n) for
some values ofi; andu2 (see egs. (16) and (20)). Thus, it is necessary to increase thébatintr of y1 (n) in Eq. (4) to greater than unity
and subtract a small part @fi (n). This is done by makind\(n) < 0 in steady-state.

Note thatp, = 1/(No62) ~ fimax/2 for v = 0, fOr ftmax €qual to the LMS stability limit.
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is still a better estimate oV, than Wy(n) and the period during which the convergence control is baemgded
from W(n) over to W(n).

In steady-stateW ;(n) can be written as

Wi(n) =W, + ¥i(n) (27)

where ¥ (n) is a zero-mean stationary white vector [9]. It is also assitmat the fluctuations i (n) at
convergence are statistically independen®f(n) in this phase (i.e. the independence assumption is useain th
transition phase to provide mathematical tractability).

Using (12), the above assumptions and the approximatiot5h for all n,

B|WhmWia(n)|
E[Xo(n)] ~ p. , (28)
B[WhHmWa(n)|
yields
WI{W, —2BWa(n)]} + EIW (0)Wa(n)]
E[o(n)] = 500 (29)
where
D(n) = WI{W, = 2B[Ws(n)]} + EIW] () Wa(n)
+ B[] ()% (n)).
From [9],
T _ lefg
B ()] (0)] = 5 — Ao T (30)
and thus
2
E[®T (n) % (n)] o, (31)

" 2— (N +2)02

Eq. (29) also requires the evaluation BfW »(n)] and E[WZ (n)W(n)]. For the typical adaptive filter initial-
ization W (0) = W(0) = 0, these expressions can easily be obtained from Appendix.l (@3] fori = 2 and

(57) with p; replaced withus). After some algebraic manipulations, this proceduredgel

(32)

where
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pNo,
2 — uo2(N +2)
paNaj n p2No
2 2N+ 2) | T e (N4 2)

A(n) = (33)

wliw, -

with p =1 — 2p902 + p3on (N + 2).

B. Mean-Square Deviation

The optimum MSD of the combined filter at time: is

MSD,(n)

= E{ [Wo - Weq(n)]T [WO B Weq(n)]}

A(n)=Ao(n)
::E{UVﬂUw—AxnﬂVumﬂTﬂVﬂOU—AdnﬂVuUM} (34)
= B[WLOW ()| = 2B Ao(n) W () Wis(n)]

+Epamwgmwmﬂ@]

Inserting (12) in (34) yields

(WhnW ()]

W)W ia(n) (39)

MSD.(n) = E|Why(n)Woa(n)| —

The first term of (35) is MSB(n), the MSD of the second adaptive filter. Since the MSD is a positiantity,
(35) indicates that MS[in) is always less than MS[Dn). Eqg. (7) can also be written in terms &/4(n) and
ng(n) as

Wey(n) = Wi(n) — [1 — X(n)]Wia(n). (36)
Also, it can be easily verified that

_ n) — _ng(n)wl2(n)
1—Xo(n) = W{Q(n)ng(n)' (37)

whereW,;(n) = W, — W(n). Then, substituting (36) foW ,(n) in the first line of (34) and using (37), it can

be easily shown that

®The optimum MSD is defined here as the MSD obtainedXor) = X\, (n).
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[Wfl (n)Wiz(n) i

38
W)W ia(n) (39)

MSD.(n) = E|[W T, (n)Woi (n)] - E

Egs. (35) and (38) show the important result that the optimiaeal combiner leads to a MSD:) that is smaller
than both MSDQ(n) and MSDy(n) for everyn. Thus, the optimum linear combiner defined ky(n) in (12) always
performs better than any of the two individual adaptive fitekn approximate evaluation of (35) will be performed

in Section IlI-C. A similar approximation could be deriveding (38).

C. Behavior of the MSDin the Transition Region

This section studies the behavior of the M$D) after W (n) has converged bd# ;(n) has not yet converged.
This operating region corresponds to the range of iteratitumgng which the convergence control is being handed
from W(n) to Wy(n). This region will be denoted here as the transition regionmF(85) and using the same

approximation used in (28),

(39)

where
E[WhHm)Wia(n) Wh(n)W oz (n)]

C(n) = (40)

BWhHmWa(n)|

Now, assumind¥(n) in steady-state as in Section IlI-A.2 and using (27Wy2(n) = Wi(n) — Wy(n), the
second term of (39) can be written as
E{WL(n)[Woa(n) + ©1(0)] [Woa(n) + ©1(n)] W oa(n)}
E{[Waor(n) + 1(m)]" [Woa(n) + ¥1(n)] }

E{wg(nm[\yl(n)\p{(m]Wog(m} E{ [W%&(n)WoQ(n)]?}

= B(n) * Bn)

C(n) =
(41)

with B(n) = E[WZQ(n)WOQ(n)} + E[®{ (n)¥(n)]. Eq. (41) assumes that the fluctuationsWi, (n) at

convergence are independent¥f,(n) (still in the transient mode). Now, using (31) in (41) yields

o, )
Cn)~ 2= m(}v 202 MSDy(n) + E { (W ()W ga(n)] }

42
e (42)

2 — (N +2)o2

MSD;y(n) +
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Assume, in the transition region, that the fluctuationsW,(n)W ,»(n) are still small in comparison to its

mean. Then,

E { [WOTz(n)WOQ(n)r} ~ B2 [WhH(n)W sa(n)]. (43)
Inserting (43) into (42) and then into (39) yields

pog(N — 1)

2 — (N +2)
ulagN

2— (N +2)

MSD2 (n)
MSD.(n) =

(44)
where (44) assumes. = 1. Eq. (44) agrees with physical intuition. The right hand sifi¢4d) is always less than
either MSD (n) or MSDy(n). When MSDy(n) becomes small in comparison to the steady-state of MB]) then
MSD.(n) ~ MSDy(n).

D. Simulation Results

This section presents some simulation results to verify twiracy of the theoretical model developed for the
behavior of the optimum adaptive filter affine combination. Tih&nown system responsé&/(= 32) is shown in
Fig. 2.

Figure 3 shows two representative simulation examples tifyvitre accuracy of the model foE[A,(n)] given
by (26) and (32). The horizontal lines show the steady-statambehavior of\,(n) as predicted by (26). Figures
3(a) and 3(b) display some properties of the model. There ¢eli@nt agreement between the steady-state value
predicted by (26) and the simulation results. The negatigadst-state value implies that a small portion of the
estimate of W, obtained using filter 1 should be subtracted for the estimat®g using filter 2. This occurs
because the channel estimates from the two adaptive filtersarelated. An excellent match is observed for the
dynamical model (32) at the beginning of operation, disrdigg the initial transient behavior. The model accuracy
decreases a¥/(n) becomes more correlated witl 3(n) as the algorithm approaches steady-state. Nevertheless,
the theoretical model provides a good-to-moderately gamdiiption of E[A\,(n)] during the transfer. The MSD
plots in figures 4(a) and 4(b) show that M3D) is always less than either MS[) or MSD;(n). This behavior
is expected from an optimal combiner and verified in (35) arg).(3hese curves represent the best performance
that could be obtained using two LMS adaptive filters as in Fig. 1.

Fig. 5 shows the evolution of MSDn) for two representative examples. The theoretical curve® weétained
from the expression for MS[¥n) [9] for n before the convergence ¥ 1(n) and from (44) afterwards Apart

"The models were reversed when MSB) < 1.01x,02N/[2 — (N +2)ua]. However, the value of this reversal threshold is not critical.
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from a slightly slower convergence of the theoretical mddesmallr (error of the classical LMS model), excellent
agreement can be observed. This figure confirms the accuracy)ofa4nodel the behavior of the combined filter

in the transition region.

IV. | TERATIVE ALGORITHMS TOADJUSTA(n)

The previous derivation of the optimal linear combiner wasdobupon prior knowledge of the unknown system
responsd¥ . Clearly, this is not the case in reality. However, the tetioal model and its derived properties can be
used to upper bound the performance of practical algorifiemadjustingA(n) without such knowledge. Algorithms
that yield close-to-optimal performance for typical uniumoresponses can be considered as good candidates for
practical applications. Performance close to the optimgbests that further analytical study of a new algorithm
would be worth the effort. This is especially important foe thdaptive combiner structure. A detailed performance
analysis of specific adaptation schemes is a nontrivial taskeanonstrated in [6], for example. This section studies
two algorithms for the adjustment of(n). The first algorithm is based upon a stochastic gradient sdarcine
optimal A(n). The second is based on the ratio of the average error powsrs dach individual adaptive filter.
The performances of these algorithms are then compared toptimaal performance. The performance of other
algorithms applicable to the system in Fig. 1, such as therigthgo studied in [6]—[8], can also be compared with

the optimum performance.

A. Stochastic Gradient Search fa(n)

Consider a stochastic gradient search to estimate the wptiinstantaneous value of(n). From (10), the
stochastic gradient of the conditional MSE is proportiomat ) W1, (n)U (n). Using (9) fore(n), the stochastic

gradient algorithm to estimatg,(n) is

Ai(n+1) = Ai(n) + pald(n) = Wip(n)U (n)]lWip(n)U (n). (45)

with

Wis(n) = M(n)W1(n) + [1 = Ay (n)]Wa(n). (46)

Eqg. (45) is a linear first order stochastic time-varying reiamrsn the scalar parametex;(n). The stochastic
behavior of this recursion has been analyzed elsewhereshuitipresented here for space reasons. The accuracy
of the theoretical analysis and the performance of the mepalgorithm for adjusting;(n) are evaluated here.

Appropriate values ofi, were chosen so that the algorithm was able to track the attaptaf W, (n) and Wa(n).
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Some difficulties were encountered regarding the tradeoffdr stability of the recursion (45) and the algorithm’s
tracking capabilities in the initial phase of adaptationffi§iently small values ofuy, (1) < 1), were found so
that (45) was stable. However, these values were not largegénto track the adaptation &/, (n) and Wa(n).
Larger values ofuy () > 1) improved the tracking but led to instability during the lggyhase of the adaptation in
(45). Considering the optimum desired behavior £ji,(n)], a satisfactory solution was obtained by constraining
A1(n) in (45) to be less than or equal to 1 for all Larger (smaller) signal-to-noise ratios (SNRo2 /o2) require
larger (smaller).y, which in turn requires the application of the constraint\i¢n) for longer (shorter) periods.

Fig. 6 displays the behaviors of Monte Carlo simulations (&5} and the theoretical model f&i{A; (n)] for two
distinct sets of parameters. The large initial fluctuationghim simulations indicate the application of the stability
limitation imposed om\;(n) in (45). The theoretical model has also been limited so #ijat (n)] < 1. Note the
close agreement between the theory and simulations, edlpeai convergence. Note also the wide rangeuQf
needed for effective performance for the two cases.aFZo& 1076, for example, values of:, around 5000 are
required. This is caused by the nonlinear behavior of (45). @drameter\(n) must change very rapidly for large
signal-to-noise ratios (such as in Fig. 6(b)) in order tokrde rapid changes i {(n) and Wy(n).

Fig. 7 compares the behavior &f{\;(n)] with the optimum behavior oE'[\,(n)]. It can be easily verified that
the performance of the stochastic gradient algorithmXidr.) is very close to that of the optimum combiner. Fig. 8
displays the simulation results for MS[) obtained from Monte Carlo simulations (50 MC's) using (#)-&nd
(45), and the theoretical predictions. A good-to-excellgreement between the theory and the simulations can be
verified, especially convergence time and the steady-settevior. Again, the fluctuations in the initial transient
phase indicate the action of the stability control. Fig. 9 panes the behaviors of MSD:) using A;(n) and the
optimum A, (n). Again, it is clear that the updating ofin) using (45) leads to a performance that is very close to
that of the optimum combiner, especially in convergenceedmnd steady-state MSD.

The stochastic gradient algorithm requires a good estinfategemoise power to reasonably selggtand mildly
constrain\; (n) in recursion (45). The accuracy of this estimate could litmi tisefulness of the stochastic gradient
algorithm for some applications. The next section considedsfferent scheme for choosingn), based on the
average error powers of the two filters. This scheme is inse@sid o2 and performs nearly as well as the stochastic

gradient approach.

B. Error Power Based Scheme for Updatingn)

A function of time averaged error powers could be a good aatdifor an estimator of the optimui{n) for
eachn. The individual adaptive error powers are good indicatorthefcontribution of each adaptive output to the
quality of the present estimation @f{n). These errors are readily available and do not need an estiofiche

additive noise power.
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Consider a uniform sliding time average of the instantasesiors

n

é%(n):% S em) (47)
m=n—K+1

A= > dm) (49)
m=n—K+1

where K is the averaging window. Then, consider the instantaneolus & A\(n) determined as

é2(n
do(n) = 1 — & erf <%En§> (49)
where
erf(z) = ;7? /0 "2 gt (50)

Eq. (49) allows\2(n) to vary smoothly ovef1 — k,1). The value ofx can be selected so that

lim E[A2(n)] = lim E[X,(n)]. (51)

n—oo n—oo

= v

€
€

Using (26) in (51) and assumingm,,_.c EZ) = oo yields

N

N

5
ﬂzl—m. (52)

Note that (49) and (52) do not require aaypriori information about the noise power nor an additional memory
parameter as in the stochastic gradient scheme. Fig. 10 simawty/pical examples of the behavior af(n), as
compared taE[\,(n)]. It is clear from these figures that the use of (49) and (52)d¢éad behavior for the weighting
factor that is reasonably close to the optimum. Fig. 11 shéwsbehaviors of MSQ(n) using A\(n) = A\a(n) (red
curves) and\(n) = A\,(n) (black curves). These results clearly show that the propafgatithm leads to a very
good practical implementation of the linear combiner. Nibigt a stochastic analysis of the transient behavior is
quite complicated for this algorithm because of the erf mmdrity. Nevertheless, the theoretical analysis of the

optimum case provided useful insights for the design andlatian of the algorithm.

V. CONCLUSIONS

This paper has studied the statistical behavior of an affinebamation of the outputs of two LMS adaptive filters
that simultaneously adapt using the same inputs. The pugidke affine combination is to obtain an LMS adaptive
filter with fast convergence and small steady-state MSD. Theeaffombination studied is a generalization of the
convex combination where the combination fackdr.) is restricted to the interval0, 1). Here the viewpoint was

taken that the two filters each produce dependent estimatie afnknown channel. Thus, there exists a sequence
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of optimal affine combining coefficients which minimizes the M$Hst, the optimal unrealizable affine combiner
was studied and provided the best possible performance., Tivennew schemes were proposed for practical
applications. The first scheme used an unconstrained lineahnastic scalar gradient algorithm for estimating the
optimal affine combiner coefficient. This first new scheme perémmearly as well as the optimal unrealizable
combiner, providing the same convergence time and steatly-sehavior. A second new scheme was investigated
that depended upon the time-averaged instantaneous doewoe of each adaptive filter. This new scheme was
designed using the design information from the optimal afambiner. With proper design, its performance was
also very close to that of the optimum affine combiner for maages of interest. The theoretical approximations
used in the analytical models were validated by Monte Carnfkations which were in close agreement with the

predictions of the analytical models.

APPENDIXI

SOLUTION TO EQ. (17)

Let ¢(n) = E[W1(n)W(n)]. Then, using the closed form solutions of (1) #;(0) = 0
E[Wl(n)] = [1 - (1 - MZO-Z)”] WO7 1= 17 2, (53)

it can be easily verified that (17) can be written in the form

qn+1) =aq(n) + c1 + c2a™ + 36", n>0 (54)
where

a=1—(m + p2)oy, + mpa(N +2)oy,

2
u

a=1—pugo
f=—mo,
c1 = moa[l — (N +2)p0a| WEW,

+ 1202 [1 — (N + 2)uro2| WIW,
2
+ puy oot [N (Z?) + (N +2)Wwiw,

u

co = —p10° [1— (N + 2),u203] wliw,

¢ = 1202 [1 — (N + o] WIW,

Eq. (54) is a first order linear constant-coefficient differeageation with initial conditiory(0) = 0. Taking the
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z-transform of both sides and solving f@X(z) = Z[q(n)] yields

1 1

Q)= e
(1—az 1)6(312—12 Do (T—=az )1 —azt) (55)

_|_

(1—az"H)(1 - p271)

Making a partial fraction expansion of each term on the rigglhil combining like terms yields

-1
_ C1 aco acs Z
Q) = (1—1/&+ a—a+a—ﬁ> 1—az™t

—1 -1
C1 z (&) z
56
+(1—a>1—zl+<1—aa1>1—azl (56)

c3 271
* (1 —aﬂ_1> 1—3z71

Finally, inverse transforming (56), yields

B c1 aco acs n—1 C1
q(n)_<1—1/a+a—a+a—ﬁ>a +<1—a>

e » o » (57)
+<W>an +(1—aﬁ—1>ﬁn , n>0
which is the solution to (17).
For |a| < 1, || < 1 and|f| < 1, the steady-state value of (57) reduces:tp(1 — a), or
lim EWT ()W 1(n)
(58)

pappNos
(1 4 p2) — papa(N +2)02

Using the same calculation, only fa#% 1(n) = Wy(n) and u1 = pe, leads to the steady-state expression for
EW3 (n)Wa(n)):

No?
i 5 - _ T ) M2 o .
nl—{go (W3 (n)Wa(n)] =W, W, + 2 — pua(N 4+ 2)o2

(59)
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Fig. 1. Adaptive combining of two transversal adaptive filters.
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Fig. 2. Impulse respons® , of the unknown system.



BERSHAD, BERMUDEZ AND TOURNERET 19

500 1000 1500 |t28)?at|28)ﬁs 3000 3500 4000 500 1000 1500 ItZ&)FatIZSJﬁS 3000 3500 4000

@6 =0.1. (b) § = 0.3.

-0.2
0

Fig. 3. E{)\.(n)} for c2(n) = 107° and~ = 2. Simulations averaging 50 Monte Carlo runs.
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Fig. 4. Mean-square deviations fef (n) = 10~°% andy = 2. Simulations averaging 50 Monte Carlo runs.{) MSD; (n); (—-) MSDa(n);
(=) MSD,(n)..
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(@) 101og{MSD.(n)} for y =2, 6§ = 0.1, 62 = 107°. (b) 1010g{MSD.(n)} for y =4, 5§ = 0.2, 02 = 1075,

Fig. 5. Mean-square deviation log,, MSD.(n). Theory derived from MSE(n) before convergence ¥, (n) and from (44) after that.
Simulations averaged over 50 Monte Carlo runs.
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@ E{M(n)}fory=2,8=01,62 = 1072, pur = 1. () E[{M\i(n)} for y =4,6 =03, 02 = 107%, py =
300.

Fig. 6. E[\i(n)] for different parameter values. Simulations (average of 50 MontéoQans) in red (ragged curve). Theory (derived
elsewhere) in black.
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1072 andpy = 1. 10~* and px = 300.

Fig. 7. Behavior of E[\:(n)] (in red, ragged curve) as compared to the optimum behavidr[af,(n)] (in black, smoother curve). All
plots are simulation results (average of 50 Monte Carlo runs).
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(@) 10log,, MSD,. for v = 2, § = 0.1, 02 = 1072, (b) 10log,, MSD,, v =4, =0.3, 02 = 107%, u» =
px = 1. 300.

Fig. 8. 10log;, MSD,. Simulations (average of 50 runs, in red, ragged curve) uaing = Ai(n) from (45) for the same parameter
values as in Fig. 6. Theory derived elsewhere in black (smooth curve)
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(@) 10log,, MSD, for v = 2,6 = 0.1, 02 = 1072, (b) 10log;, MSD,, v = 4, 6 = 0.3, 62 = 107%, py =
px = 1. 300.

Fig. 9. Comparison betweer® log,, MSD. usingA(n) = A1 (n) from (45) (ragged curve) and using(n) for the same parameter values
as in Fig. 6 (smooth curve). Monte Carlo simulations averaged over i ru
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(@) E{d2(n)} and E{\,(n)} for y =1,6 = 0.1, 02 = (b) E{x2(n)} and E{\,(n)} for y =2, 6 = 0.4, 02 =
1075, 02 = 1. 1078, 02 = 1.

Fig. 10. Simulation results (average of 50 MC’s) @¥\>(n)} and E{\,(n)} for K = 100. Curves in black (more ragged) for
A(n) = Ao(n). Curves in red (smoother) fox(n) = A2(n).
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Fig. 11. Mean-square deviatid) log,, MSD.(n) using the error power based scheme. Curves in black (slightly below)(fo = X, (n).
Curves in red (slightly above) fok(n) = Az2(n).



