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Filters – Transient Mean-Square Analysis
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Tourneret,Member, IEEE

Abstract

This paper studies the statistical behavior of an affine combination of the outputs of two LMS adaptive filters that
simultaneously adapt using the same white Gaussian inputs.The purpose of the combination is to obtain an LMS
adaptive filter with fast convergence and small steady-state mean-square deviation (MSD). The linear combination
studied is a generalization of the convex combination, in which the combination factorλ(n) is restricted to the
interval (0, 1). The viewpoint is taken that each of the two filters produces dependent estimates of the unknown
channel. Thus, there exists a sequence of optimal affine combining coefficients which minimizes the MSE. First, the
optimal unrealizable affine combiner is studied and provides the best possible performance for this class. Then two
new schemes are proposed for practical applications. The mean-square performances are analyzed and validated by
Monte Carlo simulations. With proper design, the two practical schemes yield an overall MSD that is usually less
than the MSD’s of either filter.

Index Terms

Adaptive filters, analysis, affine combination, convex combination, LMS, stochastic algorithms.
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I. I NTRODUCTION

The design of many adaptive filters requires a trade-off between convergence speed and steady-state mean square

error (MSE). A faster (slower) convergence speed yields a larger (smaller) steady-state mean-square deviation

(MSD) and MSE. This property is usually independent of the type ofadaptive algorithm, i.e. Least Mean-Square

(LMS), Normalized Least Mean-Square (NLMS), Recursive Least Squares (RLS) or Affine Projection (AP). This

design trade-off is usually controlled by some design parameter of the weight update, such as the step-size in LMS

or AP, the step-size or the regularization parameter in NLMS or the forgetting factor in RLS. Variable step-size

modifications of the basic adaptive algorithms offer a possible solution to this design problem [1]–[5].

Recently, a novel scheme has been proposed in [6] which uses aconvex combination of two fixed step-size

adaptive filters as shown in Fig. 1, where adaptive filterW 1(n) uses a larger step-size than adaptive filterW 2(n).

The key to this scheme is the selection of the scalar mixing parameterλ(n) for combining the two filter outputs.

The mixing parameter is defined in [7] as a sigmoid function whose free parameter is adaptively optimized using

a stochastic gradient search which minimizes the quadraticerror of the overall filter. The steady-state performance
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of this adaptive scheme has been recently studied in [8]. The convex combination performed as well as the best

of its components in the MSE sense. These results indicate thata combination of adaptive filters can lead to fast

convergence ratesandgood steady-state performance, an attribute that is usually obtained only in variable step-size

algorithms. Thus, there is great interest in learning more about the properties of such adaptive structures.

This paper provides new results for the performance of the combined structure which supplement the work

presently available in the literature. The achievable performance is studied for an affine combination of two LMS

adaptive filters using the structure shown in Fig. 1 with stationary signals. Here, the combination parameterλ(n) is

not restricted to the range(0, 1). Thus, Fig. 1 is interpreted from the viewpoint of a linear combiner. Each adaptive

filter is estimating the unknown channel impulse response using the same input data. Thus,W 1(n) and W 2(n)

are statistically dependent estimates of the unknown channel. There exists a single combining parameter sequence

λ(n) which minimizes the MSD. The parameterλ(n) does not necessarily lie within(0, 1) for all n. Thus, the

output y(n) in Fig. 1 is an affine (see footnote1) combination of the individual outputsy1(n) and y2(n). The

convex combination is a particular case.

The adaptive scheme is first studied from the viewpoint of an optimal affine combiner. The value ofλ(n) that

minimizes the MSE for eachn (conditioned on the filter parameters at iterationn) is determined as a function

of the unknown system response. This leads to an optimal affine sequenceλo(n). The statistical properties of an

optimal affine combiner are then studied. It is shown thatλo(n) can be outside of the interval(0, 1) for several

iterations. Most importantly,λo(n) is usually negative in steady-state. It is of interest to compare the performance

of the adaptive filter using a suboptimal but feasible adjustment algorithm forλ(n) with that of the optimal affine

combiner. Although the latter is unrealizable, its performance provides an upper bound on the performance of any

realizable affine combiner. Suppose a suboptimal (but realizable) algorithm leads to a performance close to that of

the optimal affine combiner. Then, there is sufficient motivation for a more detailed study of the algorithm with

respect to analysis and implementation issues.

Finally, two realizable schemes for updatingλ(n) are proposed. The first scheme is based on a stochastic

gradient approximation toλo(n). The second scheme is based on the relative values of averagedestimates of the

individual error powers. Both schemes are briefly studied, and their performances are compared to that of the optimal

affine combiner. Numerical results support the theoretical findings and show that the analysis closely predicts the

probabilistic behavior of the algorithms as observed in Monte Carlo simulations, especially in the neighborhood of

the intersection of the MSD’s of the individual filters when thehand-off from one filter to the other filter occurs.
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II. T HE OPTIMAL AFFINE COMBINER

A. The Affine Combiner

The system under investigation is shown in Fig. 1. Each filter usesthe LMS adaptation rule but with different

step sizesµi, i = 1, 2:

W i(n + 1) = W i(n) + µiei(n)U(n), i = 1, 2 (1)

where

ei(n) = d(n) − W
T
i (n)U(n), i = 1, 2 (2)

d(n) = eo(n) + W
T
o U(n), (3)

where W i(n), i = 1, 2 are theN -dimensional adaptive coefficient vectors,eo(n) is assumed zero-mean, i.i.d.

and statistically independent of any other signal in the system, and the input processu(n) is assumed wide-sense

stationary.U(n) = [u(n), . . . , u(n − N + 1)]T is the input vector. It will be assumed, without loss, thatµ1 ≥ µ2,

so thatW 1(n) will, in general, converge faster thanW 2(n). Also, W 2(n) will converge to the lowest individual

steady-state weight misadjustment. The weight vectorsW 1(n) andW 2(n) are coupled both deterministically and

statistically throughU(n) and eo(n). The stochastic analysis of each individual adaptive filter behavior in (1) is

well-known [9]–[11].

The outputs of the two filters are combined as in Fig. 1,

y(n) = λ(n)y1(n) + [1 − λ(n)]y2(n), (4)

whereyi(n) = W
T
i U(n), i = 1, 2, λ(n) can be any real number1 and the overall system error is given by

e(n) = d(n) − y(n). (5)

The adaptive filter output combination (4) is an affine combination, asy(n) can assume any value on the real

line. This setup generalizes the combination of adaptive filter outputs, and can be used to study the properties of

the optimal combination.

1This case corresponds to an affine (as opposed to convex) combination. The output in (4) can have any real value on the line containing
y1(n) andy2(n). y(n) is restricted to the points on the line betweeny1(n) andy2(n) in the convex combination case. Two reviewers have
noted that the optimal combiner is of the formy(n) = a(n)y1(n) + b(n)y2(n) wherea(n) + b(n) 6= 1 in general. This paper studies the
affine combiner.
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B. The Optimal Mixing Parameter

Eq. (4) can be written as

y(n) = λ(n)W T
1 (n)U(n) + [1 − λ(n)]W T

2 (n)U(n)

=
{
λ(n)

[
W 1(n) − W 2(n)

]
+ W 2(n)

}T
U(n)

=
{
λ(n)W 12(n) + W 2(n)

}T
U(n),

(6)

whereW 12(n) = W 1(n) − W 2(n).

Eq. (6) shows thaty(n) can be interpreted as a combination ofW 2(n) and a weighted version of the difference

filter W 12(n). It also shows that the combined adaptive filter has an equivalent weight vector given by

W eq(n) = λ(n)W 12(n) + W 2(n). (7)

Subtracting (1) fori = 2 from (1) for i = 1 yields a recursion forW 12(n):

W 12(n + 1) =
[
I − µ1U(n)UT (n)

]
W 12(n) + (µ1 − µ2)e2(n)U(n). (8)

Next, let us consider a rule for choosingλ(n) that minimizes the conditional mean-square error (MSE) at time n

E[e2(n)|W 1(n), W 12(n)]. Writing e(n) in (5) as

e(n) = eo(n) +
[
W o2(n) − λ(n)W 12(n)

]T
U(n) (9)

whereW o2(n) = W o(n) − W 2(n) yields

∂E[e2(n)|W 2(n), W 12(n)]

∂λ(n)
= −2E

[
e(n)W T

12(n)U(n)|W 2(n), W 12(n)
]

= 0. (10)

Using (9), taking the expectation overU(n) and defining the input conditional autocorrelation matrixRu =

E
[
U(n)UT (n)|W 2(n), W 12(n)

]
results in

[
W o2(n) − λ(n)W 12(n)

]T
RuW 12(n) = 0. (11)

Solving (11) forλ(n) = λo(n) yields

λo(n) =
W

T
o2(n)RuW 12(n)

W
T
12(n)RuW 12(n)

, (12)



BERSHAD, BERMUDEZ AND TOURNERET 5

which is the expression for the optimum2 λ(n), as a function of the unknown weight vectorW o. The behavior

of the LMS algorithm in the adaptive structure of Fig. 1 usingλ(n) = λo(n) given by (12) can be used as a

benchmark for evaluation of different schemes devised for online adjustment ofλ(n).

III. STATISTICAL PROPERTIES OF THEOPTIMAL AFFINE COMBINER

This section derives important properties of the optimal adaptive affine combiner. These properties can be used as

design bounds or as benchmarks for evaluation of realizableadaptive filtering combining schemes. In the analysis that

follows, u(n) will be assumed for simplicity to be white, Gaussian, with zero mean and varianceσ2
u. Thus,Ru =

E
[
U(n)UT (n)|W 2(n), W 12(n)

]
= E

[
U(n)UT (n)

]
= σ2

uI since the input at timen is assumed statistically

independent of the weights at timen (independence theory). The step sizesµ1 andµ2 will be given by

µ1 =
1

(N + γ)σ2
u

(13)

µ2 = δµ1, (14)

whereγ > 0 and0 < δ < 1. Parameterγ controls the departure ofµ1 from 1/(Nσ2
u), which is approximately the

LMS step-size for maximum convergence speed [10]. Parameterδ controls the ratioµ1/µ2. Eqs. (13) and (14) allow

µ1 andµ2 to lie in the algorithm’s stability range and yieldµ1 > µ2. Thus, filter1 is the faster adapting filter. The

white Gaussian input signal assumption is not necessarily representative of the signals used in every application.

However, the theoretical approach and results obtained under this assumption are suggestive of fundamental analysis

and design issues [9], [12].

A. Properties ofλo(n)

This section derives approximate results for the initial andsteady-state behaviors ofλo(n). The mathematical

models provide important insights into the ideal behavior of the mixing parameterλ(n). The structure of Fig. 1 is

used in practical situations whereµ1 is large for fast initial convergence andµ2 is small to reduce the steady-state

misadjustment. After a brief initial transient (very difficult to model because of the fast changes occurring in the

two statistics of the weight vectors during this period), filter 1 (W 1(n)) dominates the adaptive behavior of the

combined adaptive filter. InitiallyW 1(n) adapts more quickly towards the optimum weight vector thanW 2(n).

Thus, from (4), the optimumλo(n) is close to unity during this initial phase. On the other hand, W 2(n) dominates

the adaptive filter behavior near steady-state. Thusλo(n) is near zero for large n. The model should also accurately

estimate the number of iterations when filter 1 hands over the control of the adaptation to filter 2. Thusλo(n)

moves away from unity. The optimum behavior ofλ(n) at the start and in steady-state, and an accurate estimate of

2λo(n) is optimum in the sense that it yields the minimum conditional MSE at each time instant.
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whenλ(n) transfers the combined weight from filter 1 to filter 2 are usefulpieces of information. This information

should help in the design of effective practical algorithmsfor adjusting of mixing parameter.

1) Steady-State Behavior:Consider an approximation3 of the steady-state mean of eq. (12) for the white input

case

lim
n→∞

E[λo(n)] ≃ lim
n→∞

E
[
W

T
o2(n)W 12(n)

]

E
[
W

T
12(n)W 12(n)

] . (15)

Sincelimn→∞ E[W 1(n)] = limn→∞ E[W 2(n)] = W o,

lim
n→∞

E
[
W

T
o2(n)W 12(n)

]
= −E[W T

2 (n)W 1(n)] + E[W T
2 (n)W 2(n)]. (16)

Eq. (16) requires the evaluation ofE[W T
2 (n)W 1(n)] and E[W T

2 (n)W 2(n)]. Using (1) and (2) with the

appropriate indexes and (3), neglecting the statistical correlations between the input and the two weight vectors

[9], [11] and using the Gaussian moment factoring theorem [14], the following recursion can be written for

E[W T
2 (n)W 1(n)]:

E[W T
2 (n + 1)W 1(n + 1)] = [1 − (µ1 + µ2)σ

2
u + (N + 2)µ1µ2σ

4
u]E[W T

2 (n)W 1(n)]

+ µ2σ
2
u

[
1 − (N + 2)µ1σ

2
u

]
W

T
o E[W 1(n)]

+ µ1σ
2
u

[
1 − (N + 2)µ2σ

2
u

]
W

T
o E[W 2(n)]

+ µ1µ2σ
4
u

[
N

(
σ2

o

σ2
u

)
+ (N + 2)W T

o W o

]
.

(17)

The steady-state solution of (17) is determined in Appendix Ifor W 1(0) = W 2(0) = 0, yielding:

lim
n→∞

E[W T
2 (n)W 1(n)] = W

T
o W o +

µ1µ2Nσ2
o

(µ1 + µ2) − µ1µ2(N + 2)σ2
u

(18)

and

lim
n→∞

E[W T
2 (n)W 2(n)] = W

T
o W o +

µ2Nσ2
o

2 − µ2(N + 2)σ2
u

. (19)

Thus, (16) can be written as

3There are two main justifications for the approximations such as in proceeding from Eq. (12) to Eq. (15): 1) Evaluating expectations of
quotients of correlated random variables is usually a very difficult undertaking. Approximations are often made in order to make progress
in the analysis. We have chosen the approximation that the expectation of theratio is approximately the ratio of the expectations (see for
instance [13] and reference [13] within), 2) The latter simulation results support this approximation.
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lim
n→∞

E
[
W

T
o2(n)W 12(n)

]
= − µ1µ2Nσ2

o

(µ1 + µ2) − µ1µ2(N + 2)σ2
u

+
µ2Nσ2

o

2 − µ2(N + 2)σ2
u

.4 (20)

Using the same results, the denominator of (15) can be written as

lim
n→∞

E
[
W

T
12(n)W 12(n)

]
= E

[
W

T
1 (n)W 1(n)

]
− 2E

[
W

T
2 (n)W 1(n)

]
+ E

[
W

T
2 (n)W 2(n)

]

=
µ1Nσ2

o

2 − µ1(N + 2)σ2
u

− 2
µ1µ2Nσ2

o

(µ1 + µ2) − µ1µ2(N + 2)σ2
u

+
µ2Nσ2

o

2 − µ2(N + 2)σ2
u

.
(21)

Using (13) and (14), these expressions reduce to

lim
n→∞

E
[
W

T
o2(n)W 12(n)

]
=

δNσ2
o

(N + 2)σ2
u

[
1

2 − δ + 2(γ−2)
N+2

− 1

1 + (1+δ)(γ−2)
N+2

]
(22)

and

lim
n→∞

E
[
W

T
12(n)W 12(n)

]
=

Nσ2
o

(N + 2)σ2
u

[
1

1 + 2 γ−2
N+2

− 2δ

1 + (1+δ)(γ−2)
N+2

+
δ

2 − δ − 2 γ−2
N+2

]
. (23)

For the practical case ofγ ≪ N + 4, (22) and (23) yield5

lim
n→∞

E
[
W

T
o2(n)W 12(n)

]
=

δ(δ − 1)

2 − δ

Nσ2
o

(N + 2)σ2
u

(24)

and

lim
n→∞

E
[
W

T
12(n)W 12(n)

]
=

2(δ − 1)2

2 − δ

Nσ2
o

(N + 2)σ2
u

. (25)

Finally, using (24) and (25) in (15) yields the steady-state value ofE[λo(n)]:

lim
n→∞

E[λo(n)] ≃ δ

2(δ − 1)
. (26)

Expression (26) shows two interesting properties ofE[λo(n)] for typical (large) values ofN . Its steady-state

value is negative (sinceδ < 1) and depends only on the ratioµ2/µ1.

2) Initial Behavior: This section studies the behavior ofE[λo(n)] after W 1(n) has converged butW 2(n) is

still in transient mode. This operating region includes the period during which the steady-state behavior ofW 1(n)

4These simulation results imply that 1) disabling filter1 by settingλ(n) = 0, and 2) transferring convergence control to filter2
is not sufficient to minimize the steady-state MSE. This is because of the effect of the cross-correlation betweenW 1(n) and W 2(n) for
some values ofµ1 andµ2 (see eqs. (16) and (20)). Thus, it is necessary to increase the contribution of y1(n) in Eq. (4) to greater than unity
and subtract a small part ofy1(n). This is done by makingλ(n) < 0 in steady-state.

5Note thatµ1 = 1/(Nσ2

u) ≃ µmax/2 for γ = 0, for µmax equal to the LMS stability limit.
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is still a better estimate ofW o thanW 2(n) and the period during which the convergence control is beinghanded

from W 1(n) over toW 2(n).

In steady-state,W 1(n) can be written as

W 1(n) = W o + Ψ1(n) (27)

where Ψ1(n) is a zero-mean stationary white vector [9]. It is also assumed that the fluctuations inW 1(n) at

convergence are statistically independent ofW 2(n) in this phase (i.e. the independence assumption is used in the

transition phase to provide mathematical tractability).

Using (12), the above assumptions and the approximation in (15) for all n,

E[λo(n)] ≃
E

[
W

T
o2(n)W 12(n)

]

E
[
W

T
12(n)W 12(n)

] , (28)

yields

E[λo(n)] ≃
W

T
o

{
W o − 2E[W 2(n)]

}
+ E[W T

2 (n)W 2(n)]

D(n)
(29)

where

D(n) = W
T
o

{
W o − 2E[W 2(n)]

}
+ E[W T

2 (n)W 2(n)]

+ E[ΨT
1 (n)Ψ1(n)].

From [9],

E[Ψ1(n)ΨT
1 (n)] =

µ1σ
2
o

2 − µ1(N + 2)σ2
u

I, (30)

and thus

E
[
Ψ

T
1 (n)Ψ1(n)

]
=

µ1Nσ2
o

2 − µ1(N + 2)σ2
u

. (31)

Eq. (29) also requires the evaluation ofE[W 2(n)] andE[W T
2 (n)W 2(n)]. For the typical adaptive filter initial-

ization W 1(0) = W 2(0) = 0, these expressions can easily be obtained from Appendix I (Eq. (53) for i = 2 and

(57) with µ1 replaced withµ2). After some algebraic manipulations, this procedure yields

E[λo(n)] ≃ 1

1 + A(n)
, (32)

where
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A(n) =

µ1Nσ2
o

2 − µ1σ2
u(N + 2)[

W
T
o W o −

µ2Nσ2
o

2 − µ2σ2
u(N + 2)

]
ρn +

µ2Nσ2
o

2 − µ2σ2
u(N + 2)

(33)

with ρ = 1 − 2µ2σ
2
u + µ2

2σ
4
u(N + 2).

B. Mean-Square Deviation

The optimum MSD6 of the combined filter at timen is

MSDc(n)

= E
{[

W o − W eq(n)
]T [

W o − W eq(n)
]}∣∣∣

λ(n)=λo(n)

= E
{[

W o2(n) − λo(n)W 12(n)
]T [

W o2(n) − λo(n)W 12(n)
]}

= E
[
W

T
o2(n)W o2(n)

]
− 2E

[
λo(n)W T

o2(n)W 12(n)
]

+ E
[
λ2

o(n)W T
12(n)W 12(n)

]
.

(34)

Inserting (12) in (34) yields

MSDc(n) = E
[
W

T
o2(n)W o2(n)

]
− E





[
W

T
o2(n)W 12(n)

]2

W
T
12(n)W 12(n)





. (35)

The first term of (35) is MSD2(n), the MSD of the second adaptive filter. Since the MSD is a positive quantity,

(35) indicates that MSDc(n) is always less than MSD2(n). Eq. (7) can also be written in terms ofW 1(n) and

W 12(n) as

W eq(n) = W 1(n) − [1 − λ(n)]W 12(n). (36)

Also, it can be easily verified that

1 − λo(n) = −W
T
o1(n)W 12(n)

W
T
12(n)W 12(n)

. (37)

whereW o1(n) = W o −W 1(n). Then, substituting (36) forW eq(n) in the first line of (34) and using (37), it can

be easily shown that

6The optimum MSD is defined here as the MSD obtained forλ(n) = λo(n).
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MSDc(n) = E
[
W

T
o1(n)W o1(n)

]
− E





[
W

T
o1(n)W 12(n)

]2

W
T
12(n)W 12(n)





. (38)

Eqs. (35) and (38) show the important result that the optimum linear combiner leads to a MSDc(n) that is smaller

than both MSD1(n) and MSD2(n) for everyn. Thus, the optimum linear combiner defined byλo(n) in (12) always

performs better than any of the two individual adaptive filters. An approximate evaluation of (35) will be performed

in Section III-C. A similar approximation could be derived using (38).

C. Behavior of the MSDc in the Transition Region

This section studies the behavior of the MSDc(n) afterW 1(n) has converged butW 2(n) has not yet converged.

This operating region corresponds to the range of iterationsduring which the convergence control is being handed

from W 1(n) to W 2(n). This region will be denoted here as the transition region. From (35) and using the same

approximation used in (28),

MSDc(n) = MSD2(n) − E

{
W

T
o2(n)W 12(n)W T

12(n)W o2(n)

W
T
12(n)W 12(n)

}

≃ MSD2(n) − C(n),

(39)

where

C(n) =
E

[
W

T
o2(n)W 12(n)W T

12(n)W o2(n)
]

E
[
W

T
12(n)W 12(n)

] . (40)

Now, assumingW 1(n) in steady-state as in Section III-A.2 and using (27) inW 12(n) = W 1(n)−W 2(n), the

second term of (39) can be written as

C(n) =
E

{
W

T
o2(n)

[
W o2(n) + Ψ1(n)

][
W o2(n) + Ψ1(n)

]T
W o2(n)

}

E
{[

W o2(n) + Ψ1(n)
]T [

W o2(n) + Ψ1(n)
]}

≃
E

{
W

T
o2(n)E

[
Ψ1(n)ΨT

1 (n)
]
W o2(n)

}

B(n)
+

E
{ [

W
T
o2(n)W o2(n)

]2
}

B(n)

(41)

with B(n) = E
[
W

T
o2(n)W o2(n)

]
+ E

[
Ψ

T
1 (n)Ψ1(n)

]
. Eq. (41) assumes that the fluctuations inW 1(n) at

convergence are independent ofW 2(n) (still in the transient mode). Now, using (31) in (41) yields

C(n) ≃

µ1σ
2
o

2 − µ1(N + 2)σ2
u

MSD2(n) + E
{[

W
T
o2(n)W o2(n)

]2
}

MSD2(n) +
µ1Nσ2

o

2 − µ1(N + 2)σ2
u

. (42)
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Assume, in the transition region, that the fluctuations inW
T
o2(n)W o2(n) are still small in comparison to its

mean. Then,

E

{[
W

T
o2(n)W o2(n)

]2
}

≃ E2
[
W

T
o2(n)W o2(n)

]
. (43)

Inserting (43) into (42) and then into (39) yields

MSDc(n) =

MSD2(n)
µ1σ

2
o(N − 1)

2 − µ1(N + 2)

MSD2(n) +
µ1σ

2
oN

2 − µ1(N + 2)

, (44)

where (44) assumesσ2
u = 1. Eq. (44) agrees with physical intuition. The right hand side of (44) is always less than

either MSD1(n) or MSD2(n). When MSD2(n) becomes small in comparison to the steady-state of MSD1(n), then

MSDc(n) ≃ MSD2(n).

D. Simulation Results

This section presents some simulation results to verify the accuracy of the theoretical model developed for the

behavior of the optimum adaptive filter affine combination. The unknown system response (N = 32) is shown in

Fig. 2.

Figure 3 shows two representative simulation examples to verify the accuracy of the model forE[λo(n)] given

by (26) and (32). The horizontal lines show the steady-state mean behavior ofλo(n) as predicted by (26). Figures

3(a) and 3(b) display some properties of the model. There is excellent agreement between the steady-state value

predicted by (26) and the simulation results. The negative steady-state value implies that a small portion of the

estimate ofW o obtained using filter 1 should be subtracted for the estimate of W o using filter 2. This occurs

because the channel estimates from the two adaptive filters are correlated. An excellent match is observed for the

dynamical model (32) at the beginning of operation, disregarding the initial transient behavior. The model accuracy

decreases asW 1(n) becomes more correlated withW 2(n) as the algorithm approaches steady-state. Nevertheless,

the theoretical model provides a good-to-moderately good prediction of E[λo(n)] during the transfer. The MSD

plots in figures 4(a) and 4(b) show that MSDc(n) is always less than either MSD1(n) or MSD2(n). This behavior

is expected from an optimal combiner and verified in (35) and (38). These curves represent the best performance

that could be obtained using two LMS adaptive filters as in Fig. 1.

Fig. 5 shows the evolution of MSDc(n) for two representative examples. The theoretical curves were obtained

from the expression for MSD1(n) [9] for n before the convergence ofW 1(n) and from (44) afterwards7. Apart

7The models were reversed when MSD1(n) ≤ 1.01µ1σ
2

uN/[2− (N + 2)µ1]. However, the value of this reversal threshold is not critical.
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from a slightly slower convergence of the theoretical modelfor smalln (error of the classical LMS model), excellent

agreement can be observed. This figure confirms the accuracy of (44) to model the behavior of the combined filter

in the transition region.

IV. I TERATIVE ALGORITHMS TO ADJUSTλ(n)

The previous derivation of the optimal linear combiner was based upon prior knowledge of the unknown system

responseW o. Clearly, this is not the case in reality. However, the theoretical model and its derived properties can be

used to upper bound the performance of practical algorithmsfor adjustingλ(n) without such knowledge. Algorithms

that yield close-to-optimal performance for typical unknown responses can be considered as good candidates for

practical applications. Performance close to the optimal suggests that further analytical study of a new algorithm

would be worth the effort. This is especially important for the adaptive combiner structure. A detailed performance

analysis of specific adaptation schemes is a nontrivial task as demonstrated in [6], for example. This section studies

two algorithms for the adjustment ofλ(n). The first algorithm is based upon a stochastic gradient searchfor the

optimal λ(n). The second is based on the ratio of the average error powers from each individual adaptive filter.

The performances of these algorithms are then compared to theoptimal performance. The performance of other

algorithms applicable to the system in Fig. 1, such as the algorithm studied in [6]–[8], can also be compared with

the optimum performance.

A. Stochastic Gradient Search forλ(n)

Consider a stochastic gradient search to estimate the optimum instantaneous value ofλ(n). From (10), the

stochastic gradient of the conditional MSE is proportional to e(n)W T
12(n)U(n). Using (9) fore(n), the stochastic

gradient algorithm to estimateλo(n) is

λ1(n + 1) = λ1(n) + µλ[d(n) − W̃
T

12(n)U(n)]W T
12(n)U(n). (45)

with

W̃ 12(n) = λ1(n)W 1(n) + [1 − λ1(n)]W 2(n). (46)

Eq. (45) is a linear first order stochastic time-varying recursion in the scalar parameterλ1(n). The stochastic

behavior of this recursion has been analyzed elsewhere but is not presented here for space reasons. The accuracy

of the theoretical analysis and the performance of the proposed algorithm for adjustingλ1(n) are evaluated here.

Appropriate values ofµλ were chosen so that the algorithm was able to track the adaptation of W 1(n) andW 2(n).
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Some difficulties were encountered regarding the tradeoff between stability of the recursion (45) and the algorithm’s

tracking capabilities in the initial phase of adaptation. Sufficiently small values ofµλ, (µλ < 1), were found so

that (45) was stable. However, these values were not large enough to track the adaptation ofW 1(n) andW 2(n).

Larger values ofµλ (µλ > 1) improved the tracking but led to instability during the early phase of the adaptation in

(45). Considering the optimum desired behavior forE[λo(n)], a satisfactory solution was obtained by constraining

λ1(n) in (45) to be less than or equal to 1 for alln. Larger (smaller) signal-to-noise ratios (SNR= σ2
u/σ2

o) require

larger (smaller)µλ, which in turn requires the application of the constraint toλ1(n) for longer (shorter) periods.

Fig. 6 displays the behaviors of Monte Carlo simulations (50 runs) and the theoretical model forE[λ1(n)] for two

distinct sets of parameters. The large initial fluctuations inthe simulations indicate the application of the stability

limitation imposed onλ1(n) in (45). The theoretical model has also been limited so thatE[λ1(n)] ≤ 1. Note the

close agreement between the theory and simulations, especially at convergence. Note also the wide range ofµλ

needed for effective performance for the two cases. Forσ2
o = 10−6, for example, values ofµλ around 5000 are

required. This is caused by the nonlinear behavior of (45). Theparameterλ(n) must change very rapidly for large

signal-to-noise ratios (such as in Fig. 6(b)) in order to track the rapid changes inW 1(n) andW 2(n).

Fig. 7 compares the behavior ofE[λ1(n)] with the optimum behavior ofE[λo(n)]. It can be easily verified that

the performance of the stochastic gradient algorithm forλ1(n) is very close to that of the optimum combiner. Fig. 8

displays the simulation results for MSDc(n) obtained from Monte Carlo simulations (50 MC’s) using (1)–(4) and

(45), and the theoretical predictions. A good-to-excellent agreement between the theory and the simulations can be

verified, especially convergence time and the steady-state behavior. Again, the fluctuations in the initial transient

phase indicate the action of the stability control. Fig. 9 compares the behaviors of MSDc(n) usingλ1(n) and the

optimumλo(n). Again, it is clear that the updating ofλ(n) using (45) leads to a performance that is very close to

that of the optimum combiner, especially in convergence speed and steady-state MSD.

The stochastic gradient algorithm requires a good estimate of the noise power to reasonably selectµλ and mildly

constrainλ1(n) in recursion (45). The accuracy of this estimate could limit the usefulness of the stochastic gradient

algorithm for some applications. The next section considersa different scheme for choosingλ(n), based on the

average error powers of the two filters. This scheme is insensitive to σ2
o and performs nearly as well as the stochastic

gradient approach.

B. Error Power Based Scheme for Updatingλ(n)

A function of time averaged error powers could be a good candidate for an estimator of the optimumλ(n) for

eachn. The individual adaptive error powers are good indicators ofthe contribution of each adaptive output to the

quality of the present estimation ofd(n). These errors are readily available and do not need an estimate of the

additive noise power.
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Consider a uniform sliding time average of the instantaneous errors

ê2
1(n) =

1

K

n∑

m=n−K+1

e2
1(m) (47)

ê2
2(n) =

1

K

n∑

m=n−K+1

e2
2(m) (48)

whereK is the averaging window. Then, consider the instantaneous value of λ(n) determined as

λ2(n) = 1 − κ erf

(
ê2
1(n)

ê2
2(n)

)
(49)

where

erf(x) =
2√
π

∫ x

0
e−t2/2 dt. (50)

Eq. (49) allowsλ2(n) to vary smoothly over(1 − κ, 1). The value ofκ can be selected so that

lim
n→∞

E[λ2(n)] ≃ lim
n→∞

E[λo(n)]. (51)

Using (26) in (51) and assuminglimn→∞

e2

1
(n)

e2

2
(n) = ∞ yields

κ = 1 − δ

2(δ − 1)
. (52)

Note that (49) and (52) do not require anya priori information about the noise power nor an additional memory

parameter as in the stochastic gradient scheme. Fig. 10 showstwo typical examples of the behavior ofλ2(n), as

compared toE[λo(n)]. It is clear from these figures that the use of (49) and (52) leads to a behavior for the weighting

factor that is reasonably close to the optimum. Fig. 11 shows the behaviors of MSDc(n) usingλ(n) = λ2(n) (red

curves) andλ(n) = λo(n) (black curves). These results clearly show that the proposedalgorithm leads to a very

good practical implementation of the linear combiner. Notethat a stochastic analysis of the transient behavior is

quite complicated for this algorithm because of the erf nonlinearity. Nevertheless, the theoretical analysis of the

optimum case provided useful insights for the design and evaluation of the algorithm.

V. CONCLUSIONS

This paper has studied the statistical behavior of an affine combination of the outputs of two LMS adaptive filters

that simultaneously adapt using the same inputs. The purposeof the affine combination is to obtain an LMS adaptive

filter with fast convergence and small steady-state MSD. The affine combination studied is a generalization of the

convex combination where the combination factorλ(n) is restricted to the interval(0, 1). Here the viewpoint was

taken that the two filters each produce dependent estimates ofthe unknown channel. Thus, there exists a sequence
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of optimal affine combining coefficients which minimizes the MSE.First, the optimal unrealizable affine combiner

was studied and provided the best possible performance. Then, two new schemes were proposed for practical

applications. The first scheme used an unconstrained linear stochastic scalar gradient algorithm for estimating the

optimal affine combiner coefficient. This first new scheme performed nearly as well as the optimal unrealizable

combiner, providing the same convergence time and steady-state behavior. A second new scheme was investigated

that depended upon the time-averaged instantaneous squared error of each adaptive filter. This new scheme was

designed using the design information from the optimal affinecombiner. With proper design, its performance was

also very close to that of the optimum affine combiner for many cases of interest. The theoretical approximations

used in the analytical models were validated by Monte Carlo simulations which were in close agreement with the

predictions of the analytical models.

APPENDIX I

SOLUTION TO EQ. (17)

Let q(n) = E[W T
2 (n)W 1(n)]. Then, using the closed form solutions of (1) forW i(0) = 0

E[W i(n)] =
[
1 − (1 − µiσ

2
u)n

]
W o, i = 1, 2, (53)

it can be easily verified that (17) can be written in the form

q(n + 1) = aq(n) + c1 + c2α
n + c3β

n, n ≥ 0 (54)

where

a = 1 − (µ1 + µ2)σ
2
u + µ1µ2(N + 2)σ4

u

α = 1 − µ2σ
2
u

β = −µ1σ
2
u

c1 = µ1σ
2
u

[
1 − (N + 2)µ2σ

2
u

]
W

T
o W o

+ µ2σ
2
u

[
1 − (N + 2)µ1σ

2
u

]
W

T
o W o

+ µ1µ2σ
4
u

[
N

(
σ2

o

σ2
u

)
+ (N + 2)W T

o W o

]

c2 = −µ1σ
2
u

[
1 − (N + 2)µ2σ

2
u

]
W

T
o W o

c3 = −µ2σ
2
u

[
1 − (N + 2)µ1σ

2
u

]
W

T
o W o.

Eq. (54) is a first order linear constant-coefficient differenceequation with initial conditionq(0) = 0. Taking the
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z-transform of both sides and solving forQ(z) = Z[q(n)] yields

Q(z) =
c1z

−1

(1 − az−1)(1 − z−1)
+

c2z
−1

(1 − az−1)(1 − αz−1)

+
c3z

−1

(1 − az−1)(1 − βz−1)
.

(55)

Making a partial fraction expansion of each term on the rightand combining like terms yields

Q(z) =

(
c1

1 − 1/a
+

ac2

a − α
+

ac3

a − β

)
z−1

1 − az−1

+

(
c1

1 − a

)
z−1

1 − z−1
+

(
c2

1 − aα−1

)
z−1

1 − αz−1

+

(
c3

1 − aβ−1

)
z−1

1 − βz−1
.

(56)

Finally, inverse transforming (56), yields

q(n) =

(
c1

1 − 1/a
+

ac2

a − α
+

ac3

a − β

)
an−1 +

(
c1

1 − a

)

+

(
c2

1 − aα−1

)
αn−1 +

(
c3

1 − aβ−1

)
βn−1, n > 0

(57)

which is the solution to (17).

For |a| < 1, |α| < 1 and |β| < 1, the steady-state value of (57) reduces toc1/(1 − a), or

lim
n→∞

E[W T
2 (n)W 1(n)]

= W
T
o W o +

µ1µ2Nσ2
o

(µ1 + µ2) − µ1µ2(N + 2)σ2
u

.
(58)

Using the same calculation, only forW 1(n) = W 2(n) and µ1 = µ2, leads to the steady-state expression for

E[W T
2 (n)W 2(n)]:

lim
n→∞

E[W T
2 (n)W 2(n)] = W

T
o W o +

µ2Nσ2
o

2 − µ2(N + 2)σ2
u

. (59)
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Fig. 3. E{λo(n)} for σ2

o(n) = 10−6 andγ = 2. Simulations averaging 50 Monte Carlo runs.
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Fig. 4. Mean-square deviations forσ2

o(n) = 10−6 andγ = 2. Simulations averaging 50 Monte Carlo runs. (−−) MSD1(n); (−·) MSD2(n);
(−) MSDc(n)..
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Fig. 5. Mean-square deviations10 log
10

MSDc(n). Theory derived from MSD1(n) before convergence ofW 1(n) and from (44) after that.
Simulations averaged over 50 Monte Carlo runs.
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plots are simulation results (average of 50 Monte Carlo runs).
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as in Fig. 6 (smooth curve). Monte Carlo simulations averaged over 50 runs.
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Fig. 10. Simulation results (average of 50 MC’s) onE{λ2(n)} and E{λo(n)} for K = 100. Curves in black (more ragged) for
λ(n) = λo(n). Curves in red (smoother) forλ(n) = λ2(n).
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Fig. 11. Mean-square deviation10 log
10

MSDc(n) using the error power based scheme. Curves in black (slightly below) for λ(n) = λo(n).
Curves in red (slightly above) forλ(n) = λ2(n).


