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Abstract – Vertical profiles of local pressure, horizontal profiles of net vertical solid mass flux, and residence 

time distributions (RTD) of the solid phase are experimentally assessed in the riser of a small scale cold 

Circulating Fluidized Bed of 9 m high having a square cross section of 11×11 cm. Air (density 1.2 kg/m3
, 

dynamic viscosity 1.8×10
-5
 Pa.s) and typical FCC particles (density 1400 kg/m

3
, mean diameter 70 mm) are used. 

The superficial gas velocity is kept constant at 7  m/s while the solid mass flux ranges from 46 to 133 kg/m
2
/s. The 

axial dispersion of the solid phase is found to decrease when increasing the solid mass flux. Simultaneously, 3D 

transient CFD simulations are performed to conclude on the usability of the eulerian-eulerian approach for the 

prediction of the solid phase mixing in the riser. The numerical investigation of the solid mixing is deferred until 

later since the near-wall region where the solid phase downflow and mixing are predominant is not well predicted 

in spite of well-predicted vertical profiles of pressure.  

 

1. Introduction 

Solid phase residence time distribution in the riser reacting zone is a major issue in the Fluid 

Catalytic Cracking process which converts large quantities of heavy liquid oils to lighter and 

more valuable gas products in refineries. Indeed, the smaller the residence time distribution of 

the solid phase is (when combined with gas plug flow and high gas-particle transfer), the 

higher the selectivity of the cracking catalytic reaction is, leading to low coke and undesirable 

gas production.  
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During the last ten years, the Institut Français du Pétrole has intensively studied the 

hydrodynamics of the reacting riser zone with its academic partners in order to optimize its 

Fluid Catalytic Cracking process (Figure 1 : The R2R resid Fluid Catalytic Cracking process 

(Axens-IFP-Stone & Webster Inc.- TOTAL technology). 

, using both experimental and CFD approaches ([1-6]). In the context of this Research and 

Development program, an experimental database related to the solid phase residence time 

distribution in an hydrodynamic regime similar to the industrial one is required to understand 

and model the phenomena. Then, vertical profiles of local pressure, horizontal profiles of net 

vertical solid mass flux, and residence time distributions (RTD) of the solid phase are 

experimentally assessed in the riser of a small scale cold Circulating Fluidized Bed of 9 m high 

having a square cross section of 11×11 cm. Air (density 1.2 kg/m3
, dynamic viscosity 1.8×10

-

5
 Pa.s) and typical FCC particles (density 1400 kg/m

3
, mean diameter 70 mm) are used.  

 

The objectives of this work are then :  

- to establish a database which includes both local hydrodynamics (local pressure drop 

and local vertical solid mass flux) and solid residence time distribution descriptions.  

- to relate the solid residence time distribution to the solid mixing in the frame of a 

rough approach with a global 1D-equation([7-10]) :  
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where U is the superficial solid phase velocity in the riser, C is the local 

concentration of a tracer carried by the particles at the vertical position z, , and Dax 

is the vertical dispersion coefficient of the tracer. 

- to test the usability of the eulerian-eulerian CFD approach for the prediction of the 

solid phase mixing in the riser.  
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2. Experimental set-up 

The cold pilot-scale CFB is presented in Figure 2. The riser consists of four elements, two 

meters long, and one element, one meter long, all with a square cross-section of 11 × 11 cm. In 

order to visualise the gas-solid flow, all is made of transparent altuglass. Humidified air 

(1.2 kg/m
3
, 1.8 10

-5
 Pa.s) is injected at the bottom of the riser through a perforated plate 

containing sixty-four 8 mm-diameter holes. Previous experimental studies had shown that 

electrostatic phenomena disappear for a relative humidity greater than 80% ([1]). The gas flow 

rate is measured using a rotameter before injection in the riser. FCC powder (1400 kg/m
3
, 

70 µm) is injected horizontally by a 100 mm-diameter L-valve designed-based on [11-12], and 

modified to obtain a very stable solid injection with no solid accumulation when operating the 

CFB : the L-valve is now supplemented with a slide valve, another aeration tap, and is ended 

by a diaphragm with a square cross-section of 25*25 mm through which the injected gas-

particle suspension has a constant horizontal velocity fixed at 2.5 m/s. The horizontal injection 

is made at 100 mm above the distributor. Both phases are conveyed vertically upward and are 

separated at the top of the riser with two classic Swift-cyclones. Then particles move 

downwards into a first dense fluidized bed for storage or are diverted into a previously empty 

fluidized tank for global solid mass flux measurement. Gas escapes from the cyclone through 

ducts equipped with Pitot tubes, confirming gas flow rate measurements. Experiments were 

carried out at a superficial velocity of 7 m/s and solid circulation mass fluxes from 46 to 133 

kg/m2s, equivalent to solid/gas mass loading ratios of 5.5 to 15.8.  

 

3. Experimental techniques 

3.1. Hydrodynamics characterization 

Pressure probes spread along the riser provide axial pressure profiles with an acquisition 

frequency of 20 Hz during a time period of 5 minutes. The distance between two consecutive 
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pressure taps is : 100 mm along the first meter, 200 mm along the second meter, and 500 mm 

along the rest of the riser.  

An iso-kinetic sampling probe designed based on [10;13] provides the time-averaged local 

upwards and downwards solid mass flux. Horizontal profiles are established at 8.50 m above 

the bottom distributor, and the horizontal distance between two sampling points is 5 mm.  

3.2. RTD measurements and analysis 

Solid tracing NaCl crystals injected in the connecting point between the L-valve and the 

riser and sampled at the top of the riser provide the Residence Time Distribution of the solid 

phase. The tracer is assumed to be homogeneously distributed at the sampling point elevation 

since the restricting top riser section induces a high local solid mixing which is visually 

observed. The NaCl crystals have been crushed and sieved (diameter=55-60 µm) to obtain a 

final free fall velocity equal to the one of the transported particles. NaCl crystals are protected 

against humidity during the mock-up operation being stored at 100°C and cooled before the 

impulse injection thanks to a holder pressurised at 3 bars (Figure 3). Each measurement 

requires the injection of 50 grams of NaCl. The particles are continuously sampled at the centre 

top of the riser during a time period of 20 to 30 times the geometrical residence time of the 

solid phase. The particles are continuously sampled using a 10 mm ID probe (Figure 4), 

separated from the sampled gas in a cyclone and then collected in the 15 mm cyclone dipleg. 

15 initially open valves are spread along the cyclone dipleg and are closed successively when 

sampling. The resulting 15 samples are then treated to obtain the amount of sampled tracer 

along the time as follows:  

- The sampled powder containing FCC particles and NaCl crystals is put in distilled 

water at fixed temperature. The NaCl is then dissolute.  

- The FCC particles are removed from the solution by filtration. 
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- The electrical conductivity of the filtered solution is measured and converted into a 

salt concentration using a calibrating curve previously determined (the presence of 

the FCC particles has been verified not to modify the conductivity measurement).  

Each measurement is repeated three times at different days. The presented results are the 

average values of the three measurements. 

Only a fraction of the total solid flux is sampled at the riser outlet. Thus, only a part of the 

injected salt is recovered. Using the previously mentioned assumption of homogenously 

distributed tracer on the sampling cross section, the total mass of tracer, 
capt

saltm , traveling 

through the riser section during the sampling period is given by: 

∑
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               (2) 

where Ci is the tracer mass concentration in the sample i, with i=[1-15], ∆ti, the sampling 

period of the sample i, Gs the average solid mass flux on the sampling cross section, SR, n the 

number of samples during the sampling period. 

The accuracy rate of the tracer recovery, δ , is defined as follows :  
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where 
inj

saltm  is the mass of the injected tracer. Then, a perfect sampling corresponds to 0=δ . 

An intrinsic error of 5 % on the sampling method is acceptable. Since the solid mass flux 

measurement technique error is of 5 %, the considered acceptable value for δ  is consequently 

10 %. Note that a low δ  value will confirm the previously mentioned assumption of 

homogenously distributed tracer on the sampling cross section.  

The Residence Time Distribution of the solid phase, E(ti), is related to the tracer concentration, 

Ci, in each sample i along the sampling period : 
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The average residence time of the solid phase, t , is defined as: 
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The median residence time, 5.0t , is introduced. It is defined as the required time to recover 

50 % of the injected tracer and is calculated as follows:  
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salt dttEm                 (6) 

Practically, 5.0t  is visually determined on the cumulative residence time distribution curve 

since the rigorous calculation should require a more accurate RTD discretization than the one 

provided by our experimental technique.  

In a similar way, 1.0t  and 9.0t  are introduced and defined as the required time to recover 10 % 

and 90 % of the injected tracer, respectively. The spread of the residence time distribution, S, is 

then defined as : 

5,0

1,09,0

t

tt
S

−
=                  (7) 

 

4. Modeling of the gas-solid two-phase flow 

4.1. Principle 

The model has been previously tested and validated in the dense and circulating regimes with 

Geldart-A, B, and D particles ([14-23]). It is referenced as the k-ε/q22-q12 two-fluid model.  

Governing equations for the fluid phase can be derived directly from the local instantaneous 

conservation equations in single-phase flow, by density-weighted averaging with, in addition, 

average balances of mass, momentum and energy at the surfaces of the inclusions. 
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Within the framework of the kinetic theory on diluted gases, one can obtain a general 

transport equation for any property of the dispersed phase derived from Boltzmann’s equation 

([24]). Supplemented by the theory of granular medium with inelastic spheres ([25])  and inter-

phase coupling in mean and turbulent fields ([26]), one can obtain a set of particulate phase 

governing equations. 

Then, similar mass (Eq. 1) and momentum (Eq. 2) transport equations are obtained for both 

phases: 
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where subscript k refers to fluid phase (k=1) or solid phase (k=2). 2,ijτ  is the stress for phase k, 

expressed as , , ,k ij k k k ij k ijRτ α ρ= + Θ . ,k ijR  and ,k ijΘ  are, respectively, turbulent and viscous 

stresses for the fluid phase, or kinetic and collision stresses for the solid phase. ,k iΙ  corresponds 

to the mean momentum inter-phase exchange after subtracting the mean gas pressure 

contribution. 

,k iΙ  is obtained by averaging of the drag force exerted by the fluid on any discrete particle and 

written in terms of the local instantaneous turbulent relative velocity irv ,  between the two 

phases, so that, irFii VII ,

12
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 is the mean particle 

relaxation time. The drag coefficient s

dC  for a single isolated spherical particle is modified to 

account for the effect of surrounding particles ([27-28]).  

 idiiirir VUUvV ,,1,22,, −−=>=<  is the average of the local relative velocity between the two 

phases, written in terms of the separate mean phase velocities, ikU , , and the fluid-particle 
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turbulent drift velocity, idV , , which represents the turbulent correlation between the 

instantaneous particle distribution and the turbulent fluid velocity field ([29]). idV ,  is 

accounting for the transport of the dispersed phase by the large scale fluid turbulent motion and 

is modeled, in first approximation, using the following gradient approximation, 

2 1
, 12

2 1

1 1t

d i

i i

V D
x x

α α
α α
 ∂ ∂= − − ∂ ∂ 

             (10) 

with the dispersion coefficient tD12  proportional to the fluid-particle velocity covariance 

2,2,112 "" >=< ii uuq  and an eddy-particle interaction time t

12τ , characterizing the fluid 

turbulence experienced (“viewed”) by the particles. This fluid-particle turbulent drift velocity 

allows to ensure the consistency of the model for the limit case of very small particles which 

behaves as tracers in the gas and becomes negligible for very coarse particles when the mean 

particle relaxation time is much larger than the fluid turbulence time macroscale.  

The stress tensor of the gas phase is modeled in the framework of the k-ε model with inter-

phase coupling terms in the turbulent kinetic energy and viscous dissipation transport equations 

([30-31]). The eddy – viscosity expression is modified to account for the presence of particles 

([32]).  

The stress of the particulate phase is modeled with kinetic and collision viscosity given by the 

Boussinesq approximation. They are determined as a function of the granular temperature, 

obtained solving the fluctuating energy equation of the solid phase.  

The inter-phases coupling on a small scale is taken from [33] with a transport equation for the 

covariance between the velocity fluctuations of the two phases. Closure modeling of the fluid – 

particle covariance stresses is eddy-viscosity based.  

One should refer to the different cited papers if details are required. 

4.2. Unsteady three-dimensional numerical conditions 
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The simulations are completed using Saturne_Polyphasique@Tlse, a multi-phase flow 

numerical code property of “Electricité de France” (EDF) and developed with its academic 

partners the IMFT and LGC for the dense and circulating fluidized beds applications, with the 

two-fluid modeling approach described in the previous part. All the simulations are realized 

with a 3-D mesh (31000 cells).  

The used mesh represents in a faithful way the real riser. It is represented by 10 cells for the 

width (Ox) of 11 cm (cells are smaller near the walls than in the centre of the riser), 312 cells 

for the height (Oy) of 9 m and 10 cells for the depth (Oz) of 11 cm. The reactor was simulated 

during about 50 s and the presented results are time averaged on last 20 physical seconds 

corresponding to predictions in established regime. We consider the permanent regime 

achieved when the predicted total mass of catalyst in the riser becomes nearly time 

independent. For our calculations, it is obtained after about ten physical seconds. 

More over, one physical second is simulated in 40 hours CPU on Silicon Graphics computer. 

The time step is of 2.10
-4
 s. The initial conditions used are a volumetric air flow of 305 m

3
/h, 

i.e. a velocity of 7 m/s, and a solid mass flux of 133 kg/m²/s. The calculation is initialized 

without solid in the riser. The boundary conditions used are elastic bouncing for the particles 

and turbulent wall-function for the gas. 

 

5. Results 

5.1. Hydrodynamic characterization of the riser 

5.1.1. Vertical characterization 

The total riser pressure drop is multiplied by 6 when the solid mass flux increases from 46 

up to 133 kg/m²/s (Figure 6).The numerical prediction of the total pressure drop is in good 

agreement with the experimental data, and the CFD code then gives good predictions of the 

solid retention in the riser. 
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Based on the vertical pressure gradients profiles (Figure 7a), the riser is always divided into 

two regions :  

- The acceleration zone, characterized by a strong variation of the pressure gradient, 

which height increases with the solid mass flux. This behavior is well-accepted and 

has been extensively studied in the literature.  

- The established zone, characterized by a pressure gradient almost independent from 

the height. 

The simulation (solid mass flux of 133 kg/m
2
/s) describes well the short entry zone, having a 

high mean pressure drop as a result of the solid feeding (Figure 7b). The decreasing pressure 

drop along the riser is in good agreement with the experimental data.  

 

5.1.2. Radial characterization 

Based on the horizontal profiles of the vertical net solid mass flux (Figure 8a), the riser is 

divided into two regions :  

- The core region where the solid mass flux is nearly constant at lower solid mass 

fluxes. At higher solid mass flux, the horizontal profile is parabolic in shape. 

- The near-wall region where the local solid mass flux greatly decreases. 

Intermittent solid downwards flow at the wall is visually observed but is never detected by our 

4 mm ID probe (even when placed at 5 mm from the wall). The thickness estimation of the 

down flow region is then lower than 3 mm.  

The shape of the predicted solid mass flux profile in the core region is somewhat flat (Figure 

8b). The near-wall region is not well-predicted as no solid down flow is predicted. 

Consequently, the center value is far higher than the measured one. Then, one can intuitively 

conclude that residence time distribution CFD predictions will tend toward plug flow.  

The most relevant explanation for the numerical prediction discrepancies is the insufficient 

discretization of the solid down flow near-wall region which should be described by at least 
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three or four cells mesh. However, the resulting size mesh will be of the order of 500 µm 

which leads to very small time step and then prohibitive CPU time computation. Then, the 

numerical investigation of the solid mixing is deferred until later since the near-wall region 

where the solid phase downflow and mixing are predominant is not well predicted in spite of 

well-predicted vertical profiles of pressure. 

 

5.2. Mixing characterization of the riser 

5.2.1. Measurement validation 

Tracer recovery is very accurate since the maximum  of the accuracy rate, δ , is of the order of 

10 % (Table 2). The experiments are well-reproducible (Figure 9). The previously mentioned 

assumption of homogenously distributed tracer on the sampling cross section is confirms by 

the RTD measurements obtained in two different points of the sampling riser section (Figure 

10). 

 

5.2.2. Results and discussion 

Tightness of the RTD curves decreases when increasing the solid mass flux (Figure 11a-e), 

particularly at low solid mass flux, as shown by the spread coefficient, S (Figure 12b) : S 

decreases from 3 to 2 when the solid flux increased from 46 to 76 kg/m²/s and is nearly 

constant beyond. The averaged and the median residence times, t  and t0.5 respectively, 

decreases from 14 s to 6 s and from 8.6 s to 5.5 s when increasing the solid mass flux from 

46 kg/m
2
/s to 133 kg/m

2
/s (Figure 12a).  

The consequent non intuitive conclusion of these trends is that an increase in the solid mass 

flux at constant gas velocity makes the solid phase tend toward plug flow in the studied 

fluidizing regime. Such peculiar trend has already been observed by Rhodes [1] with Geldart-A 

particles.  
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However, it has been commonly believed that the solids backmixing in CFB risers are mainly 

associated with : 

- the solids downflow in the annulus region.  

- the dense bottom zone treated as a perfectly mixed dense bed.  

Then, solids residence time distribution and mean value should increase with increasing solids 

flux since the downflowing annulus region and the dense bottom zone height increase with the 

increase of solids circulation rate. Consequently, some other mechanism should be introduced 

to explain the observed trends, probably related to the cohesion effects since it has never been 

reported with Geldart-B particles. Some other experimental techniques should be used to do so. 

In such a way, a further paper will present an intensive experimental study of the CFB, based 

on pressure drop frequency analysis and local solid mass flux assessments at different riser 

elevations, completed with both gas and solid phases RTD measurements.  

 

6. Modelling the solid phase RTD 

In a first approach, the solid phase residence time distribution is related to the solid mixing in 

the frame of the classic chemical engineering approach with a global 1D-equation assuming 

perfect horizontal mixing (i.e. Plug flow with Axial Dispersion, PAD) :  
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where U is the superficial solid phase velocity in the riser, C is the local concentration of a 

tracer carried by the particles at the vertical position z, , and Dax is the global vertical dispersion 

coefficient of the tracer.  

The global Peclet number, Pe, is introduced and defined as :  

ax
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Pe =                 (12) 

where Lr is the total vertical distance between the tracer injection and sample points.  
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The experimental solid phase RTD is well-reproduced by the PAD model (Figure 13) when the 

solid mass flux is higher than 60 kg/m²/s confirming the assumption of perfect horizontal 

mixing. At the opposite, the horizontal mixing is not perfect for the lower solid mass flux of 

46 kg/m²/s since the PAD model is not accurate at this operating condition, and a horizontal 

dispersion coefficient should then be counted in the modeling. Consequently, the effects of the 

horizontal bottom injection on the whole riser hydrodynamics is higher at low solid mass 

fluxes. It raises certain questions to our RDT analysis and confirms that more experimental 

techniques are required.  

The resulting calculated global vertical Peclet number, Pe, increases from 14.6 to 20.0 when 

the solid mass flux is increased from 46 kg/m²/s to 133 kg/m²/s (Figure 14, Table 3).  

 

6. Conclusion 

Vertical profiles of local pressure, horizontal profiles of net vertical solid mass flux, and 

Residence Times Distributions of the solid phase are experimentally assessed in the riser of a 

small scale cold Circulating Fluidized Bed of 9 m high having a square cross section of 

11×11 cm. Air (density 1.2 kg/m3
, dynamic viscosity 1.8×10

-5
 Pa.s) and typical FCC particles 

(density 1400 kg/m
3
, mean diameter 70 mm) are used. The superficial gas velocity is kept 

constant at 7  m/s while the solid mass flux ranges from 46 to 133 kg/m
2
/s.  

The riser total pressure drop, i.e. the solid retention, increases when increasing the solid mass 

flux. The riser is vertically divided into two regions : the acceleration zone, characterized by a 

strong variation of the pressure gradient, which height increases with the solid mass flux, and 

the established zone, characterized by a constant vertical pressure gradient. The riser is 

horizontally divided into two regions : the core region where the local vertical net solid mass 

flux profile is nearly flat at low solid mass flux and gets parabolic in shape when increasing the 

solid mass flux, and the annulus region where the local solid mass flux greatly decreases with a 

negative net solid mass flux region which thickness is of the order of 3 mm. 
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The axial dispersion of the solid phase decreases when increasing the solid mass flux. Such 

trends has never been reported with Geldart-B particles while it has once with Geldart-A 

particles. More experiments involving other experimental techniques are required to explain 

this surprising trend.  

A first rough modeling using a global 1D-equation suggests that the horizontal mixing may be 

perfect at high solid mass flux while it should be counted for at low solid mass flux.  

Simultaneously, 3D transient CFD simulations are performed to conclude on the usability of 

the eulerian-eulerian approach for the prediction of the solid phase mixing in the riser. The 

numerical investigation of the solid mixing is deferred until later since the near-wall region 

where the solid phase downflow and mixing are predominant is not well predicted in spite of 

well-predicted vertical profiles of pressure. The most relevant explanation for the numerical 

prediction discrepancies is the insufficient discretization of the solid down flow near-wall 

region which should be described by at least three or four cells mesh. However, the resulting 

size mesh will be of the order of 500 µm which leads to very small time step and then 

prohibitive CPU time computation.  

 

Nomenclature 

Cd : drag coefficient, dimensionless 

C(t) : salt concentration, g/g 

Dax : axial dispersion coefficient, m²/s 

d : diameter, m 

dp : particle mean diameter, m 

E(t) : residence time distribution, s
-1
 

Gs : solid mass flux, kg/m²/s 

capt

saltm  : captured mass of salt, g 
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inj

saltm  : injected mass of salt, g 

mi : mass of the sample "i", g 

Pe : Peclet number based on U(=UL/Dax), dimensionless 

Pes : solid phase Peclet number based on Vs0.5 (Vs0.5L/Dax), dimensionless 

q12 : covariance of the fluid/particle velocity turbulent fluctuations, m²/s² 

q2² : fluctuating kinetic energy of the particles, m²/s² 

S : span, dimensionless 

SR : cross section riser, m² 

t : average residence time, s 

t0.5 : median residence time, s 

U : superficial gas velocity, m/s 

uk,i : i-component of instantaneous velocity of phase k, m/s 

Uk,i : i-component of mean velocity of phase k, m/s 

u"k,i : i-component of velocity fluctuation of phase k, m/s 

Vd,i : fluid-particle turbulent drift velocity, m/s 

Vr,i : mean relative velocity between the two phases, m/s 

Vs0.5 : velocity of particle with residence time t0.5, m/s 

Z : height from distributor, m 

∆∆∆∆Pt : total pressure drop in the riser, Pa 

 

Greek letters 

ααααk : fraction rate of the phase k, dimensionless  

ρρρρk : density of phase k, kg/m3
 

ijk ,Θ : collisional stress tensor, dimensionless 

θ  :  :  :  : dimensional time (=t/t0.5), s 
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ττττr : recovery rate, dimensionless 

ττττ12F : characteristic time scale of particle entrainment by the fluid motion or particle relaxation 

time, s 

ττττ12t : time macroscale of the gas turbulence viewed by the particles or eddy-particle interaction 

time, s  

ττττ2c : characteristic time scale of particle-particle collisions or interparticle collision time, s 

 

Subscripts 

1 : continuous phase (air) 

2 : dispersed phase (solid) 

eq : equivalent particles 

tr : transport 

t : final free fall 

i, j : spatial coordinates 
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Tableau 1. Physical properties of the FCC particles 
 

 

 

 

 

 

 

 
 

   *: estimated with the Lee&Kim’s relation (1990) 

 

Tableau 2. Solid mass flux influence (Z = 8.50 m, Ug = 7 m/s) 

n° Gs (kg/m²/s) 
Radial position of 

the probe 
δδδδ (%) S ± 0.5 (-) t0.5 ± 0.5 (s) 

1 4.0 2.9 8.8 

1
b
 

46 Center (d= 0.055 m) 
-9.4 3.1 8.3 

2 2.0 2.8 6.0 

2
b
 

60 Center (d= 0.055 m) 
-9.9 2.9 6.2 

3 -11.0 2.1 5.5 

3
b
 

76 Center (d= 0.055 m) 
-6.6 2.1 5.5 

4 -10.5 2.3 4.4 

4
b
 

76 Quarter (d= 0.0275 m) 
-2.9 2.1 4.6 

5 -3.3 2.1 5.4 

5
b
 

100 Center (d= 0.055 m) 
-2.3 1.8 5.3 

6 4.1 1.8 5.1 

6
b
 

133 Center (d= 0.055 m) 
7.2 1.8 4.7 

 

Tableau 3. Peclet number values for different solid mass fluxes 

Gs (kg/m²/s) 46 60 76 100 133 

Pes 2,2 3,4 4,5 4,9 5,3 

SSttaannddaarrdd  ccoonnddiittiioonnss  
 

Pressure [Pa] 

Temperature [°C]  

 
 

10
5 

20 

GGaass  ((aaiirr))  
 

Density [kg/m
3
] 

Dynamic viscosity [Pa.s] 

 
 

1,2 

1,8.10
-5 

SSoolliidd  ((ppaarrttiicclleess  ooff  FFCCCC))  
 

Diameter [µm] 

Density [kg/m
3
] 

Final free fall velocity [m/s] 

Transport velocity* [m/s] 

 
 

70 

1400 

0,18 

1,7 



 

 22 

Pe 14,6 16,1 19,2 20,3 20,0 
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Figures 

 

Figure 1 : The R2R resid Fluid Catalytic Cracking process (Axens-IFP-Stone & Webster Inc.- 

TOTAL technology). 
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Figure 2 : Schematic diagram of the experimental apparatus 
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Figure 3 : Injection system for the salt tracer 

 

 
Sampling probe 

Mass cyclone 

Storage leg 
Samples 

Filter 

Flow meter 

Vacuum pump 

Control valve 

Valve n° Spacement 

1 à 6 

7 à 12 

13 à 15 

2 cm 

5 cm 

7 cm 

 

 

Figure 4 : Sampling system for the determination of the solids RTD. 
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Probe : (di) = 4 mm 

55 mm 
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wall ; probe axis spaced of 2 

mm of the wall riser 
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Figure 5 : Various radial positions used for the determination of solid mass fluxes radial 

profiles . 
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Figure 6 : Evolution of the total pressure drop in the riser with the solid mass flux. 
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Figure 7 : Vertical pressure gradients profiles. Experiments (a, left) and numerical data 

(b,right). 
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Figure 8 : Horizontal solid mass flux profiles. Experiments (a, left) and numerical data (b,right). 
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Figure 9 : Reproducibility of the RTD measurement (Gs = 76 kg/m²/s ; Z = 8.50 m). 
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Figure 10 : Confrontation of RTD curves obtained at two radial positions: d= 0.055 m (center) 

and d = 0.0275 m (quarter) (Gs = 76 kg/m²/s ; Z = 8.50 m). 
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                 (e) 

Figure 11 : RTD curves obtained for five solid mass fluxes (in kg/m²/s):  

(a) : 46 ; (b) : 60 ; (c) : 76 ; (d) : 100 ; (e) : 133 
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Figure 12. Residence time (a) and spread coefficient (b) evolutions with the solid flux 
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Figure 13. RTD modelling with Plug flow model with Axial Dispersion (PAD) for various solid 

mass fluxes 
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Figure 14. Peclet number evolution with the solid mass flux 

 


