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A new quantization optimization algorithm for the
MPEG Advanced Audio Coder using a statistical
sub-band model of the quantization noise

Olivier Derrien*, Pierre Duhamel, Fellow member, IEEFE,
Maurice Charbit and Gaél Richard, Member, IEEE
EDICS: 2-ACOD

Abstract—

In this paper, an improvement of the quantization opti-
mization algorithm for the MPEG Advanced Audio Coder
(AACQC) is presented. This algorithm, given a bit-rate con-
straint, minimizes the perceived distortion generated by the
signal compression. The distortion can be related to the
quantization error level over frequency sub-bands through
an auditory model. Thus, optimizing the quantification re-
quires knowledge of the rate-distortion function for each
sub-band. When this function can be modeled in a simple
way, the algorithm can take a one-loop recursive structure.
However, in the MPEG AAC, the rate-distortion function
is hard to characterize, since AAC makes use of non-linear
quantizers and variable length entropy coders. As a result,
the standard algorithm makes use of two nested loops with
a local decoder, in order to measure the error level rather
than predicting its value.

We first describe a partial sub-band modeling of the rate-
distortion function of interest in the MPEG AAC. Then,
using a statistical approach, we find a relationship between
the error level and the so-called quantization “scale-factor”
and propose a new algorithm that is basically similar to
a classical one loop “bit allocation” process. Finally, we
describe the complete algorithm and show that it is more
efficient than the standard one.

Keywords— Perceptual audio coding, sub-band quantiza-
tion, scale-factor, bit-rate constraint, distortion constraint,
optimization algorithm, statistical model.

I. INTRODUCTION

A perceptual audio coder is a frequency domain coder
which aims, under a bit-rate constraint, to minimize a mea-
sure of distortion significantly related to auditory percep-
tion [1]. The quantization error (or quantization noise)
introduced by the coding process is properly shaped along
frequency sub-bands in such a way that the error is to-
tally or partially masked by the signal itself. Thus, coding
the audio signal on each time-window requires: (i) an es-
timation of the error shaping that is compatible with the

O. Derrien is with the Signal, Information and System Labora-
tory - ISITV /SIS, Université du Sud Toulon-Var, BP 132 - 83957 LA
GARDE Cedex, France - Email: olivier.derrien@univ-tln.fr - Phone:
33 (0)4 94 14 25 03 - Fax: 33 (0)4 94 14 24 48; P. Duhamel is with
the Signals and Systems Laboratory - CNRS/LSS, Ecole Supélec,
Plateau du Moulon, 91192 GIF-SUR-YVETTE Cedex, France -
Email: pierre.duhamel@Iss.supelec.fr - Phone: 33 (0)1 69 85 17 16
- Fax: 33 (0)1 69 85 17 65; G. Richard and M. Charbit are with the
Signal and Image Processing Department - ENST /TSI, 46 rue Bar-
rault 75634 PARIS Cedex 13, France - Email: gael.richard@tsi.enst.fr
and maurice.charbit@tsi.enst.fr - Phone: 33 (0)1 45 81 73 65 and 33
(0)1 45 81 71 78 - Fax: 33 (0)1 45 88 79 35. This article was written
when O.Derrien was with the Signal and Image Processing Depart-
ment - ENST/TSI.

required bit rate, (ii) a tuning of the quantization stage in
such a way that this error shaping is met as precisely as
possible.

A. The error shaping

According to advanced hearing models for audio coding
[2], [3], the perceived distortion is directly related to the
spectrum of the coding error. More precisely, one usually
considers the error level over specific frequency sub-bands,
called perceptual sub-bands. The definition of these sub-
bands is based on psychoacoustic measurements. Further-
more, no audible distortion is detected provided that, in
each sub-band, the error level remains below a so-called
masking threshold, which is strongly signal-dependent. For
these reasons, the ratio between the noise level and the
masking threshold, or Noise-to-Mask Ratio (NMR), is gen-
erally considered a relevant sub-band distortion measure in
the context of audio coding. To evaluate the quality of a
wide-band signal, a combination of NMR per sub-band can
be used [4], although it is not totally significant.

A noise-shaping which would generate an error level
lower than the masking threshold would result in a trans-
parent coding and would require a minimum number of cod-
ing bits. This critical number of bits is generally referred
to as the perceptual entropy (expressed in bits per sample)
[5], noted here as E,. The corresponding bit rate r, = ?—:,
where Fj is the sample rate, can be considered the optimal
working point for a perceptual audio coder. Its mean value
for a 16 kHz bandwidth monophonic signal seems to be
about 96 kbits/s [6] which is often too much for many au-
dio applications. However, the transparency is not always
the ultimate goal of audio coding: the ITU-R [7] specifies
that, for diffusion, degradations may be “perceptible, but
not annoying”. Then, a satisfying rate-distortion trade-off
can be reached with an optimization algorithm. Now, the
MPEG-2/4 Advanced Audio Coder (AAC), considered as
the most efficient state-of-the-art audio coder [8], meets the
ITU-R quality specifications at 64 kbits/s per channel [9],
[10].

B. Tuning the encoder

Audio coders of the previous generation (MPEG-1 Layer
I and II [11]) make use of uniform scalar quantizers. In
this case, a simple approximation of the sub-band rate-
distortion function, that relates the signal to noise ratio



(SNR) to the required number of coding bits, is available.
In the optimization process, setting a noise level in one sub-
band is then equivalent to a bit allocation. In what follows,
choosing a quantizer in a pre-defined set for a particular
sub-band is denoted as a bit-allocation procedure. Coders
of the new generation (MPEG-1 Layer III [11], MPEG-
2/4 AAC [12], [13]) use non-uniform scalar quantizers as-
sociated with a noiseless coding module (Huffman). Thus,
characterizing the sub-band rate-distortion function is a
much more difficult task. Even though global variations
are obvious (a large amount of coding bits generates a low
SNR), small variations seem unpredictable. In practice,
the problem is bypassed with the use of full iterative algo-
rithms, including a local decoder.

Some studies have shown that the computational com-
plexity of the optimization algorithm is critical for an
MPEG encoder: in an MPEG-1 Layer III, which has the
same quantization stage and optimization algorithm as the
MPEG AAC, the predicted complexity for the quantization
optimization is 70 MIPS, while the predicted complexity for
the total coding process is 190 MIPS [14]. In other words,
the optimization algorithm takes approximately half of the
total encoder complexity. Then, in the context of real-time
systems, a full-iterative optimization algorithm is a serious
drawback. Recent solutions to this problem propose ad-
vanced techniques in order to accelerate the optimization
process [14], [15], [16], but this generally require complex
recursive structures.

In this paper, we propose a novel way to improve the
efficiency of the optimization algorithm, both in terms of
signal quality and complexity: we characterize the quanti-
zation process in a simple and reliable way, using a statis-
tical model. We show that one can take advantage of these
results to build a new optimization algorithm based on clas-
sical bit-allocation techniques. Compared to the standard
algorithm proposed by MPEG [12], a noticeable perfor-
mance improvement is observed.

II. FORMULATION OF THE CODING PROBLEM
A. Notations

We assume an audio transform coder and note the block
of spectral coefficients over the current time-window as
X (k), where k € {0--- N — 1} is a frequency index and N is
the transform length. We also assume that each coefficient-
block is split into variable-width frequency sub-bands. We
note the limits of sub-band s as kmin(s) and kmax(s). The
level of the audio signal (i.e., the estimation of the signal
power) over sub-band s is

kmax(8)

> X(k). (1)

k=kmin(s)

Spectral coefficients X (k), k € {kmin(8) - kmax(s)} are
coded with a quantizer Q, using b(s) bits. We note the

decoded coefficients as X (k). The quantization noise is
defined by

Px(S) =

eq(k) = X (k) — X(k) (2)

and the noise level by

kmaX(s)

Y eqlk). 3)

k=kmin(s)

Fo(s) =

B. Optimal coding with a fized bit rate
With a fixed output bit rate, the bit-rate constraint is

> " b(s) < Bax- (4)

Recalling the definition of perceptual entropy, if Bmax iS
greater than NE,, transparent coding can be performed
theoretically and the coding error can be maintained below
the masking threshold in each sub-band:

Vs, Pg(s) < Tu(s) ()

where T (s) is the masking threshold, computed by the
psychoacoustic model on the current time-window. How-
ever, as noted in section I, the typical working point of
perceptual coders in practical situations corresponds to bit
rates smaller than the perceptual entropy, which means
Brax < NE,. Thus, there is a need for an optimization
algorithm which would distribute the available binary re-
sources among sub-bands in a way that would disturb the
listener the least. Classically, the NMR is used as a sub-
band distortion measure:

Pq(s)
NMR(s) = . 6
)= 7205 (6)
Thus, the perceived distortion is directly related to Pg(s).
In the case of simple quantizers, Pg(s) and b(s) are re-
lated by some simple relationship. For example, with a
uniform scalar quantizer working in high resolution, we get

(7)

where ¢ is a constant (overload factor). In this case, a
simple bit-allocation procedure can easily control the noise
level by setting the number of coding bits b(s). N.S. Jayant
et al. [17] have shown that, when quantizers work in high
resolution mode (i.e., Pg(s) << Px(s)), the optimal solu-
tion is obtained when the spectrum of the coding error is
parallel to the masking threshold. This principle has been
implemented in real coding systems, with satisfying results
at a medium bit rate [5], [18]. However this approach does
not apply to low bit rates. In this case, popular strategies
for efficient iterative bit allocation can be summarized as
follows:

o Give bits first to the sub-band with the highest NMR
[19], [20]. This solution tends to give the same value of
NMR to all sub-bands.

o Retrieve bits first to the sub-band with the lowest signal
level (called “water-filling technique”) [8]. This solution
reduces the distortion on high-energy sub-bands.

o Give bits first to the sub-band where the potential gain
in NMR is the most important [16]. This solution gives the
lowest, global NMR over all sub-bands.

Po(s) = ¢ Px(s) 2720



r———————————————————
tizat
Psychoacoustic | Sub-band I Optimization Quantization and coding I
Maski i
) model Thf: sligigd I algor‘lthm Scalefactors | I
Tlme.- | v ] Huffman | | Bit-
domain » MDCT MDCT || Sub-band | Quantized | coding [| | stream
signal spectra :' Quantization| spectra I
___________________ ——— audio signal
DECODER ~» control
Scalefactors
Bit- _ | Huffman Time- Normalized
stream ”| decoding |Quantized Sub-band MDCT . domain block
> . » iIMDCT -
spectra Decodmg spectra 51gnal
Fig. 1. Synopsis of an MPEG AAC codec.

C. Quantization and coding in the MPEG-AAC

A simplified synopsis of an MPEG AAC codec is pre-
sented in figure 1. The audio signal is transformed to a fre-
quency domain by a 50% overlap modified discrete cosine
transform (MDCT) [21]. The effective signal compression
is realized in the quantization module. The quantization
parameter, called scale-factor, can be set independently for
each sub-band. The final bit-stream is obtained through
a lossless coding module (Huffman coding). The decoder
has a dual structure. The decoder modules are defined in
the MPEG standard to provide full-compatibility between
coders and decoders. The coder also requires control mod-
ules that are not defined in the MPEG standard in order to
allow for future advances in technology that will improve
the coding efficiency while remaining compatible. These
control modules are the psychoacoustic model and the op-
timization algorithm. Based on the psychoacoustic module,
the optimization algorithm tunes the quantization parame-
ters by setting scale-factors, the value of which determines
the quantization error and the bit rate.

In the coder, the quantization module generates the
quantization indexes i(k), corresponding to the spectral co-
efficients X (k). The MPEG standard defines the decoding
function as

VEk € {kmin(8s) - - kmax(s)}, X(k) = A(s) z%(k) (8)
To simplify notations, we note 2P = Sign(z) |z|” when p is
not an integer. A(s) is a scaling parameter, depending on
the integer scale-factor ¢(s):

A(s) = 2590). (9)

The decoding function (8) can be split into a sub-band
dependent compression function:

(10)

and a very simple sub-band independent decoding function
whose reconstruction values are signed integers. The corre-
sponding quantizer R is called the rounding function. The

quantization process can thus be written as

3

. X(k)\*
“’”‘R((A(s)) )
where R is not explicitly defined in the standard. The
choice of this function is discussed below in section III-A.
Scale-factors ¢(s) are coded through a single differen-
tial Huffman codebook, while quantization indexes i(k) are
coded with a set of 12 Huffman codebooks. For a given
dynamic range of quantization indexes, either one or two
codebooks are possible. The choice is not normalized, and
can be made independently for each sub-band. by is the
number of bits used for coding the set of scale-factors. The
total number of bits required for coding the current MDCT

spectra is

(11)

B=bs+ Y b(s). (12)
S

We can see that this expression is not separable along sub-

bands. However, by does not vary much with the scale-

factor values ¢(s). From now on, to simplify the coding

problem, we consider that by is a constant in the optimiza-

tion.

D. Standard optimization algorithm for the MPEG-AAC

In an MPEG-AAC coder, no direct form is available a
priori for the relation between the error level Pg(s) and
the number of coding bits b(s) in each sub-band. Only a
parametric expression is available:

o The distortion function relates the scale-factor ¢(s) to
the error level Pgy(s), through the quantization stage.

o The rate function relates the scaling parameter ¢(s) to
the number of coding bits b(s), through the lossless coding
module.

Then, all the classical bit-allocation strategies previously
described do not strictly apply in this case. The standard
algorithm seeks a sub-optimal solution with a two-nested-
loop iterative procedure and a local decoder. The inner-
loop changes the scale-factor value, independently over fre-
quency sub-bands, in order to meet the masking constraint



(5). The outer-loop performs a global translation of the
scale-factor values to meet the total bit-rate constraint.
To guarantee the convergence, the scale-factor step is de-
creased at each iteration.

E. Basics for a new algorithm

We propose a new way to solve the coding problem in the
MPEG AAC coder, the motivation for which is as follows:
if it were possible to invert the distortion function, this
would result in a direct relationship between Pg(s) and b(s)
(as with a uniform scalar quantizer). Thus, an optimization
technique, similar to a single-loop iterative bit-allocation
process, could be used.

Inverting the distortion function does not seem to be
feasible. Therefore, we use the following procedure: given
an error threshold T'(s), we search for the scale-factor value
¢(s) that minimizes b(s) under the distortion constraint:

Vs, Pg(s) <T(s). (13)
This so-called secondary optimization problem can be
quickly solved thanks to an accurate quantization noise
model applied in each sub-band.

Thus, a solution to the main coding problem can be
reached with the following algorithm: 7T'(s) is initialized
at the masking threshold Ths(s). The secondary problem
is solved independently over each sub-band s. If the result-
ing bit rate B (see equation (12)) is greater than By, the
thresholds T'(s) are increased and so on until B < Bjax-

The global optimization is now separated into two dis-
tinct steps: (i) a perceptual model provides the set of iso-
quality error thresholds among sub-bands, (ii) given these
thresholds, a quantization error model provides the scale-
factors resulting in the smallest bit rate.

This procedure relies more on the auditory model than
the standard one: given an arbitrary noise level (similar to
a “masking” constraint), the quantization error model pro-
vides the scale-factors which meet the masking constraint
with the lowest bit rate. Thus, the task of finding the
adequate thresholds so that the perceptual quality is max-
imized is left to a perceptual model.

III. SUB-BAND MODEL OF THE QUANTIZATION NOISE

In this section, we look for simple solutions to the sec-
ondary coding problem: can we find scale-factor values
@(s), (or equivalently scaling parameter values A(s)), that
minimize B under the distortion constraint (13)? Assum-
ing that by is a constant in equation (12), this problem can
be solved sub-band by sub-band by minimizing b(s). We
omit the sub-band index s in the remainder of this section.

A. Setting the rounding function

A rounding function R has to be defined to achieve the
exact expression of Pg(s). The MPEG standard [12] pro-
poses

R(z) = Sign(x) Int (|z| + 0.4054) . (14)

Inside each sub-band, the optimal quantizer should min-
imize the NMR, i.e., minimize Pg(s). This criterion is

equivalent to the Minimum Mean Square Error (MMSE)
criterion, and the problem can be solved by a Lloyd-Max
procedure [22].

We note [rj_1,7;[ and [g;j_1, g;[ respectively as the j-th
quantization intervals of quantizers R and (). The corre-
sponding reconstruction points are respectively 7 and X e
According to equation (8), we have

X;=Ajs. (15)
The limits of quantization intervals are related through the
compression function defined by equation (10):

i = f ' (4))-

If the reconstruction values are set, the MMSE of quan-
tizer () is obtained when the nearest neighbour condition
is verified [23]:

(16)

1/ A A/ oa . 4
qui(Xj—}—Xj_H):E(]§+(]+1)§)- (17)
The optimum quantization intervals for R are then
! :
=[5 (0 + G+ )] (18)

We can note that
e rg &~ 1 —0.4054 and r_; =~ 0.4054 — 1. The optimal
quantizer and the one proposed in the MPEG document
have the same central interval.
e r; = j+ 0.5 when j — +o0o. In high resolution, the
optimal quantizer behaves like the “Round” function.

We now assume that the basic quantizer R is the one
defined by equation (18).

B. Deterministic approach

A first approach consists of choosing the quantization pa-
rameters in such a way that the error level never exceeds the
given threshold, for any sub-band and any time-window,
on any audio signal. When the error threshold equals the
masking threshold, if the masking threshold were an ab-
solute measure, this constraint would be the transparency
limit.

The exact expression of the quantization error is ob-
tained by combining equations (8), (11) and (2):

3
4 X 4
eq(k)=X(k)— AR3 ((#) ) (19)
and the distortion is obtained with equation (3). Solving

inequality (13) in a formal way given only equation (19)
is almost impossible. However, under a high resolution
hypothesis, a simplification can be found. We note g (k)
as the error introduced by quantizer R. We have

4
3

(20)

cqlk) = X() [1- [1 ~en® (555)



When R works in high resolution mode, it can be reason-
ably assumed that

3
4

enth) << |20

With a first-order development around zero, we obtain
the asymptotic expression of g (k):

4
eq(k) ~ 5 er(k) AT X (k) (21)
and the asymptotic expression of the distortion:
16 5 o 9 1
P~ A} ) IXBF. (22)
k=kmin

In high resolution, the optimal quantizer is equivalent to
the “Round” function, which means |eg(k)| < 1/2. This
leads to an over-estimation of the distortion:

kmax
> IX(k)IQ] :

k=Fkmin

Py < A®

O =

(23)

Then, a sufficient condition for the distortion constraint to
be true is

kmax

Y X (k)

k=kmin

A3 <T.

(24)

O b~

Figure 2 represents the exact value of Py and the over-
estimation function for different values of A, with a real
signal over an 8-coefficient sub-band. Figure 3 represents
the corresponding values of b. Py is a globally increasing
function of A, and b a decreasing function. Thus, a sub-
optimal solution to the problem is the highest value of A
which verifies condition (24), i.e.

T
A- (g :
K 1

[V
Wb

(k)]

P,/ P, (dB)
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S
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Fig. 2. Example of the distortion function.
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Fig. 3. Example of the rate function, corresponding to the distortion
function shown in figure 2.

We compare this solution to the optimum (reached with
an exhaustive search) in terms of bit rate. We take 300
long windows of audio signal “d” (see table I), for K = 8
and K = 32, and for different values of the error threshold
T, set by the Signal to Noise Ratio defined by

Px

SNR = —.

. (26)

This solution meets the distortion constraint but, as we can
see in figure 7, it requires a much higher number of coding
bits than the optimum.

This is due to the fact that we set the scale-factors in such
a way that the upper bound on the quantization noise, for
any signal, is smaller than the masking threshold. Even
if this upper bound is attainable, such requirements seem
unrealistic in practical situations.

C. Statistical approach

In what follows, we propose another solution, which
solves a more realistic problem by relaxing the distortion
constraint: we now allow the quantization noise level to
exceed the threshold for a given percentage of the time.

C.1 Statistical distortion constraint

In this new situation, Py is a random variable. A confi-
dence interval criteria has previously been introduced by L.
Karray et al. for image coding [24]. We adapt this criteria
to our problem and replace constraint (13) by

Prob{Py <T} >« (27)
where o € [0,1] is a confidence parameter. It means that
we allow the distortion to exceed the threshold, but we
control the probability of such occurrences.

C.2 The Gaussian model

X (k), er(k), eq(k) are now random variables. The prob-
ability density function (PDF) of Py must be known to
solve inequality (27). Its exact expression would be far too



complex, so we chose a simple model. Equation (3) shows
that, if eg(k) are independent and equally distributed and
if K = kmax — kmin + 1 is large enough, according to the
Central-Limit theorem [25], Py will follow a Gaussian law:

VK (%PQ -E [%]) K280 N (0, o) (28)
with )
o> =E[eg] —E[eg] - (29)

We note U%;Q as the variance of Pg. The distortion con-
straint (27) is equivalent to
E[Pg] +Bop, <T (30)
with
B =+V2Erf ' (2a —1). (31)
Erf ! is the inverse standard error function (see [26] section
26.2. for details). Equation (28) leads to

E[Pg] = KE[g)]
32
2 K—oo 2 ( )
TP, ~ Ko=.

We have also considered a non-asymptotic model using a
Gamma-law. This finer model is equivalent to the Gaussian
one on large sub-bands. We expected similar performances
on large sub-bands and an improvement on narrow sub-
bands. However, we observed no significant improvement,
and we finally chose to present only the Gaussian model.

C.3 High-resolution solution

Under the Gaussian assumption, we only need to esti-
mate the first and second moments of quantization error
€. Under a high resolution hypothesis, we assume that
er and X are independent variables [27]. The asymptotic
expression (21) leads to

E[sg} ~ (g)pAgT” E[eh)] E[|X|%] .

When the quantizer R works in high resolution mode, g

(33)

can be modeled by a uniform random variable on [—3, 1|
[27]. Then, we have
Eleh) = —— (34)
B (p+1)2r
and o
E [sg} =a, A% s (35)
with
op
YT 0w o0
pp = E[IX]7]. (37)
Equation (32) can now be written as
E[Py] ~ Kasuy A*
(38)

~ K(agp — a3p3) A%,

2
O'PQ

)

Figure 4 shows histograms of Py (for K = 8 and K = 32)
over 300 long windows of signal “d”. Px was normalized to
90 dB, and the scale-factor value is 52, which corresponds
to a 18 dB SNR. Our model seems to fit the data accurately,
even on the narrow sub-band (K = 8).

Finally, we obtain an explicit expression of the distor-
tion constraint (30) for large values of K in high resolution
mode:

(Kal,u% +B\/K (agul —a%ué)) A% <T. (39)

As the rate function is globally decreasing (see section ITI-
B), a sub-optimal solution of the secondary coding problem
is

Wb

T

A=
Ka + 8, /2K (a4 — a2y’
2/1% ( M1 2/15)

(40)

To evaluate this solution, we quantize each audio sig-
nals from the material provided in table I, with a scal-
ing parameter determined according to equation (40) (for
details of implementation, see section IV-B) and estimate
Prob {Pg < T} for different values of K. This is called the
threshold verification level (TVL). Figure 5 represents the
TVL for K = 8 and K = 32. The error threshold for each
sub-band is still set by the specification of the SNR. First,
we can observe that the distortion constraint (27) is always
met, which confirms that our solution is valid. Second, the
TVL increases as the SNR decreases, which means that
this solution resembles the deterministic over-estimation
in low resolution conditions. Unfortunately, this procedure
would also result in a bit-rate waste for low SNR, values
(the percentage of time when the error level exceeds the
given threshold is overestimated). This is attributed to the
use of a high resolution model.

C.4 Improved solution

The previous solution was based on high resolution
approximations to obtain analytic expressions of E [sg].
Now, we reject this hypothesis, but still keep the Gaussian
model. The exact expression of g is given by equation
(19). A priori, E [sg] depends on A and on the PDF of
MDCT coefficients X. We assume that X follows a cen-
tered law (not necessarily Gaussian) of variance o%. The

corresponding normalized variable X (of variance 1) veri-
fies X = ox X. Thus, if we note

A=ox A (41)
we have
eQ =0x €Q (42)
with .
to=X-ARS <§> (43)
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This expression is similar to equation (19). It means that
only the quantization error g, obtained with a normalized
signal X, has to be studied. According to equations (29),
(32) and (42), the moments of Py are

E[Pg] = Ko%xE[&)]
) (44)
03, "R Kok (E[2b] -E[3]").

Then, the distortion constraint (30) is equivalent to

E[23) +3\/% (IE [54Q] —E[éZ‘Qr) < %

(45)
X

A sub-optimal solution is the highest value of A which
verifies inequality (45). Finding this solution requires that
E [£3] and E [£})] can be evaluated as functions of A. Since
a general analytic expression is difficult to find, we measure
these moments on a corpus made with real audio signals.
We split the audio material described in table I in two

[1952

parts: the first one, composed of audio signals from “a
to “d”, is used for measures (see figure 6). An iterative
process, describing the measurement curves, is used to seek
the sub-optimal solution (see section IV-B).

The second part, composed of audio signals from “e” to
“h”, is used for verifications. The protocol is similar to the
one used for the high-resolution solution. We can see in fig-
ure 5 that the TVL is significantly more precise at low SNR
on the large sub-band. This result is consistent with our
hypothesis: we rejected the high-resolution approximation,
but we kept the Gaussian asymptotic model (K — o).

D. Bit-rate evaluation

In previous sections, we have proposed three simple sub-
optimal solutions to the second coding problem. Now, we
evaluate how far these solutions are from the optimal one,
in terms of bit rate.

We still consider a single sub-band s, and measure the
required number of coding bits b(s). The optimal solution
is obtained with an exhaustive search. This technique gives
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optimal bit rate, i.e., the minimum bit rate under a strict distortion constraint.
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Fig. 6. E [5%] and E [5212] as a function of A, measured over 1200
long windows (300 windows for each signal from “a” to “d”).

a bit-rate reference, but cannot be used for coding as it is
extremely slow. Figure 7 shows the results for K = 8 and
K =32,and a =0.9.

We can conclude that:

1. The deterministic solution generates a greater bit rate
than the others, especially at low SNR.

2. The high-resolution statistical model reduces the bit
rate significantly. This effect is greater on large sub-bands.
3. The improved statistical model reduces the bit rate at
low SNR.

It appears that both statistical models are better than the
deterministic solution.

Setting the parameter « is a trade-off between the TVL
and the bit rate. It also denotes the confidence we have
in the auditory model. The better trade-off for solving the
second coding problem, as defined in section II-E, seems to
be reached with a high confidence parameter, typically a =

0.9. This value will be used in section IV. If the algorithmic
complexity is critical, the high-resolution approximation is
better. If not, the improved solution can be used.

IV. DESCRIPTION OF THE ALLOCATION ALGORITHM

We have described a sub-band model for the quantiza-
tion noise. Given an error threshold T'(s), we can find
the sub-band parameter A(s), hence the scale-factor value
#(s), that minimizes the number of coding bits b(s) under
a distortion constraint (13).

This section now considers the main coding problem, and
aims at minimizing the perceived distortion under a bit-
rate constraint. OQur model performs a spectral noise shap-
ing by setting the error threshold T'(s) for each sub-band.
Then, the optimum solution to the main coding problem
can be reached with a single-loop iterative process as de-
scribed in section II-E. The progressive degradation of the
perceived distortion level (i.e., the calculation of the error
thresholds T'(s)) will be discussed in the next section.

A. Progressive degradation of the perceived distortion

For a given wide-band MDCT spectrum X (k) and a
set of masking thresholds T(s), computed by the psy-
choacoustic model, we look for a set of iso-quality distor-
tion thresholds T;(s) for which the perceived distortion in-
creases with index 4. This problem is similar to the one
treated in many bit-allocation algorithms and the same
techniques should apply here. The solution we propose
is based on a combination of several popular techniques:
constant NMR for high SNR (1st phase), water-filling for
medium to low SNR (2nd phase), with a protection factor
to avoid large distortion levels at low frequencies. And fi-
nally a constant SNR degradation for very low SNR (3rd
phase).

On masked sub-bands, the signal is irrelevant because it
is imperceptible to the listener and therefore does not have



| Number | Author | Identification | Style | Duration |
a J.J. Cale “Cocaine” Rock (instrumental) 81s
b A. Soler “Fandango” Classical (harpsichord) 7.8 s
c J. Copeland “Hold On” Blues (instrumental) 8.6 s
d J. F. Haendel “Messiah” Classical (choir) 7.8 s
e T. Chapman “Talkin’ About Revolution” Folk (singing voice) 8.7s
f St Germain “Rose Rouge” Electronic (instrumental) 84s
g S. Rollins “In a Sentimental Mood” Jazz (traditional) 89s
h L. v. Beethoven 6th Symphony Classical (orchestra) 9.0s

TABLE 1
AUDIO MATERIAL FOR THE VALIDATION OF THE MODEL.

to be coded (X (k) = 0). We set

Vi, Ti(s) = Px(s) (46)

where Px(s) is defined in equation (1). Over unmasked
sub-bands (i.e., when T (s) < Px(s)), T;(s) should satisfy

Thi(s) < Ti(s) < Px (). (47)

From now on, we assume that all variables are in dB.
For unmasked sub-bands, we first determine a protection
threshold: G(s) = Px(s) — 7(s). 7(s) depends on the win-
dow size and on the sampling frequency (see table II). The
initialization is made with: To(s) = Tar(s).

Each threshold T;(s) is obtained from T;_1(s), with three
different rules, depending on i:
« 1st phase, until T;(s) — T (s) < 6dB

TZ(S) = Ti_1(S) + 7
E@):mm(ﬂ@LG@D
« 2nd phase, until 7;(s) < G(s) for at least one sub-band

Tl(s) = max (Ti_l(s),mi_l + 7“1)

E@):mm(ﬂ@LG@D
e 3rd phase
TZ(S) = Ti_1(S) + 72

with m; = min, (Tl(s)) r1 and ro are step constants, set
respectively to 1 dB and 0.25 dB.

B. Implementation of the sub-band model

The moments of MDCT coeflicients 1, are measured
with the following classical estimator

kmax

Y XN

k=Fkmin

1
Pr = F= (48)

and the nearest integer scale-factor value is obtained from
the scaling parameter value with

¢ = Round (4 log, (A)). (49)

Long window Short window
s | 7(s) (dB) S | 7(s)(dB)
1-3 10 1 8
4-5 9 2 5
6 8 3-11 2
7-8 7 12- 14 0
9-10 6
11 - 12 5
13 4
14 3
15 - 40 2
41 - 49 0
TABLE 11

PROTECTION FACTOR FOR A 48 KHZ SAMPLE RATE.

To implement the improved statistical solution, E [éé] and

E [£4] have to be measured as a function of A on test sig-
nals of unity variance, and stored. As we can see in fig-
ure 6, these functions are regular so only a small number
of points have to be measured (we took 40 points). The
intermediate values are obtained with a log-linear interpo-
lation. We can also notice that the exact values of E [£3)]

and E [§4Q] are always lower than their high-resolution ap-
proximations. This means that the sub-optimal value of
the scaling parameter A is greater than the one obtained
with the high-resolution model, and quite close to it.
As a result, our iterative algorithm is summarized as
follows:
1. Initialize A at the high-resolution value defined by equa-
tion (40) and obtain the normalized scaling parameter:
i= 4
M2
2. Interpolate E [éé] (A) and E [é‘ég] (A).
3. Estimate the left part of the distortion constraint (45).
Increase A and iterate steps 2 and 3 until

E[2)] +ﬂ\/% (E[é‘éﬂ —E[%D > KLuz
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If the step size for A is small enough (we chose 0.5 dB),
the previous value is close to the sub-optimal solution. We
finally get the nearest scale-factor value with

¢ = Round (2 log, (112) + 41og, (A)) . (50)
As the initialization value is close to the optimal, this
search requires very few iterations.

V. PERFORMANCE EVALUATION

The four main performance criteria for an audio coder,
according to N. Jayant [1], are: signal quality, efficiency
(bit rate), complexity (computation time) and delay. The
delay is fixed by the MPEG standard and the bit rate de-
pends on the application. For a monophonic signal, we
consider a 64 kbits/s bit rate, which should generate near
perfect quality or perceptible, but not annoying, degrada-
tions for some signals, and a 48 kbits/s bit rate for subjec-
tive evaluations, which should generate slightly annoying
degradations for some signals.

To simplify the evaluation procedures, we evaluated sig-
nal quality and complexity for the standard algorithm and
only one of our two model-based algorithms. We chose to
implement the one based on the high-resolution statisti-
cal model, as it seems to provide a good trade-off between
complexity and signal quality.

Both optimization algorithms (standard and model-
based) are used in the same AAC main profile codec. The
sample rate is 48 kHz. The psychoacoustic model is the
one proposed in the MPEG standard. The MDCT window
is derived from the Kaiser-Bessel function. The switch be-
tween long and short windows is enabled.

A. Signal Quality

The signal quality can be assessed using objective quality
measures (see [28] for a selection of 6 different methods).
However, as mentioned in [29], the ultimate test of any
audio product is the human listener. A number of sub-
jective test methods have been proposed, amongst which
a few have led to ITU recommendations [30], [31], [32].
In this work, we refer largely to the ITU recommendation
BS.1116 [31], which is especially designed for subjective
assessment of small impairments in audio systems. The
subjective evaluation was carried out at a bit rate of 48
kbits/s since near transparent quality is obtained for both
codecs at 64 kbits/s or higher bit rates.

A.1 Test procedure

The test followed the common “triple stimulus / hidden
reference / double blind” approach. This method consists
of presenting three versions of an audio signal: “Reference”,
“A” and “B”, where “Reference” is the reference signal
(unprocessed), and where one of the other two versions is a
hidden reference (unprocessed) - for example “A” - and the
other is the coded version - for example “B”. For each trial,
the hidden reference ( “A” or “B”) is randomly chosen. The
subject is free to listen to each signal as many times as nec-
essary. Then, the quality of the signals “A” and “B” are

assessed using a nearly continuous grading scale (steps of
0.1) between 1.0 (very annoying impairment) and 5.0 (im-
perceptible impairment), see table III. Since the listener
knows in advance that either “A” or “B” is a hidden refer-
ence, at least one grade of 5.0 must be given. Each subject
carried out the test individually over a single session. The
average duration of a session was 25 minutes. As advised
in [29], listeners are strongly encouraged to guess which
signal is the hidden reference even if the impairment is im-
perceptible (a typical grade of 4.8 or 4.9 is then given in
this case). The tests were conducted in a quiet environment
using high quality headphones (Sennheiser eh2270).

| Impairment | Grade |
Imperceptible 5.0
Perceptible but not annoying 4.0
Slightly annoying 3.0
Annoying 2.0
Very annoying 1.0

TABLE II1
THE ITU-R FIVE POINT IMPAIRMENT SCALE

A.2 Test material

It is widely acknowledged that critical audio test items
should be chosen in order to reveal differences among sys-
tems. Critical audio material refers to audio excerpts that
stress the systems under test. In our case, the selection was
done by choosing a subset of excerpts where audio impair-
ments of both coding schemes were the most audible and
by favoring the widest variety of musical content and style.
All excerpts are monophonic and were played at a sample
rate of 48 kHz. Table IV gives the list of the selected test
material.

A .3 Listeners

A total of 16 subjects participated to the listening test.
All subjects were familiar with audio systems and two of
them were familiar with audio coding evaluation. It is im-
portant to note that the authors directly involved in the
coder optimization were not included in the test. All sub-
jects underwent a training phase which allowed them to
become more experienced listeners in identifying coding
artefacts. This training phase was always guided by a test
supervisor. A post-screening of all listeners was carried out
to only keep “reliable” listeners. More precisely, this post-
screening meant excluding all listeners who failed to rec-
ognize the hidden reference in a significant way, i.e., those
listeners who gave a grade below 4.5 to at least one hidden
reference. After the post-screening stage, 10 listeners were
judged reliable.

A.4 Results

The results of the subjective test for the 10 reliable sub-
jects are given in figure 8. Similarly to [33], the results are
given as “diffgrades”, which means the grades awarded to
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| Number | Author | Identification | Style | Duration |
1 J.J. Cale “Cocaine” Rock (instrumental) 81s
2 YOU band “Crescent, Serenade” Modern jazz (octet) 12.1s
3 Suzanne Vega “Tom’s Dinner” Singing voice 9.5s
4 J.F. Haendel “Messiah” Classical (choir) 7.8s
5 J. P. Sousa “The Stars And Stripes Forever” Brass band 12.1s
6 Paul Simon “Late In The Evening” Pop (instrumental) 79 s
7 M. Ravel “Alborada Del Gracioso” Classical (orchestra) 84s
8 HH Band “Kitchen” Jazz (traditional) 8.5s
9 J. Haydn String Quartet “Kaiser” Classical (quartet) 15.7 s
10 22 Project Band “Tea Break” Blues (instrumental) 9.1s
TABLE IV

AUDIO MATERIAL FOR SUBJECTIVE EVALUATION. ITEMS 2,5 AND 7 TO 10 ARE EXTRACTED FROM RWC DATABASE [35]

the coded version minus the grades awarded to the hid-
den reference. For example, an impairment grade of 3.0
awarded to the coded version results in a diffgrade of -2.0.
Figure 8 displays the results as mean scores with 95% con-
fidence interval which are determined as follows [34]: first,
for each codec ¢, the mean score for each item j, is given

by
1 N
m;; = N Z Sijk
k=1

where N is the number of subjects and s;;;, is the diffgrade
scores given by subject k. The overall mean scores are then
the mean of the m;; values. The 95% confidence intervals
are computed as

(51)

mH—L%Ei,mH+L%UU} (52)

VN VN
where o;; is the standard deviation of the scores s;ji over
all subjects.

From these results, it can be clearly seen that our pro-
posed algorithm provides a significantly better quality for
all but two test items, for which the diffgrade scores of
both codecs are within the 95% confidence intervals. On
average (right of figure 8), the proposed codec significantly
surpasses the standard codec.

B. Complezity

To evaluate the complexity, we measured the mean com-
putation time necessary for coding one time-window, for
the material provided in table IV and for bit rates of 64
and 48 kbits/s.

We characterized both the computation time of the op-
timization algorithm and the total computation time. We
precise that the implementation was made on a MATLAB
6 platform, and that we did not use a fast scheme (FFT
based) for the implementation of the filter-bank (MDCT).
Thus, the results might slightly differ with a compiled coder
(for example from a source code in C), and the total compu-
tation time would be lower with a fast MDCT scheme. The
results are presented in figure 9: bar lengths give the ex-
ecution time of the entire coding process. The white part

represents the execution time of the standard algorithm
and the grey part the execution time of the high-resolution
model-based algorithm. The black part represents the re-
maining computation time (window-switching, MDCT and
psycho-acoustic model), which is common to both imple-
mentations.

From these results, we can conclude that:
1. With the standard algorithm, the optimization and
quantization module takes 48% of the computation time
at 48 kbits/s and 44% at 64 kbits/s, which fits the pre-
dicted results (see section I).
2. For the optimization and quantization module alone, the
computation time is reduced by 38% at 48 kbits/s and 56%
at 64 kbits/s with our algorithm.
3. For the whole coding process, the computation time is
reduced by 20% at 48 kbits/s and 31% at 64 kbits/s.

VI. CONCLUSION

This article proposes a slight change in perspective to-
wards high-quality audio coding: classically, the masking
threshold is assumed to define transparency, and lower
quality encoded signals are obtained by reference to this
transparency threshold. As a result, the control of the
actual quantization error level in all sub-bands is usually
quite loose for these lower quality signals. In our approach,
we first begin by defining as precisely as possible an error
threshold providing the required quality. Then, the quanti-
zation stage is tuned in such a way that the corresponding
distortion constraint is met with a specific criterion: the
error threshold should not be exceeded by more than a
percentage of time a. This percentage is introduced be-
cause, as expected, the threshold is not an absolute value,
but is rather loosely defined. Parameter a thus represents
the confidence we have in the perceptual model. Clearly,
the perceptual model used in this paper for obtaining iso-
quality masking profiles is very simple, and can be im-
proved.

It appears that our new algorithm is more efficient than
the standard one proposed in the MPEG standard: accord-
ing to a normalized subjective listening test, our coding al-
gorithm increases the signal quality, while the computation
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Fig. 8.
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Fig. 9. Mean execution time necessary for coding one time-window, for the audio material provided in table IV and for bit rates of 64 and
48 kbits/s. The modified bit-allocation procedure uses the high-resolution model-based algorithm.

time is significantly reduced.

In the long term, the main advantage of our optimiza-

tion scheme is its flexibility towards psychoacoustics: our
models for the quantization noise can be used with many
models of perceived quality degradation. Then, improved
perceptual models should directly result in improved cod-
ing efficiency.
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