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Abstract We demonstrate a frequency-stabilized, all-
solid laser source at 589 nm with up to 800 mW out-
put power. The laser relies on sum-frequency generation
from two laser sources at 1064 nm and 1319 nm through
a PPKTP crystal in a doubly-resonant cavity. We ob-
tain conversion efficiency as high as 2 W/W2 after care-
ful optimization of the cavity parameters. The output
wavelength is tunable over 60 GHz, which is sufficient
to lock on the Sodium D2 line. The robustness, beam
quality, spectral narrowness and tunability of our source
make it an alternative to dye lasers for atomic physics
experiments with Sodium atoms.

Key words 37.10.De – 42.65.Ky

1 Introduction

Among the many atomic species that can be brought to
quantum degeneracy, Sodium benefits from low inelastic
losses and a relatively large elastic cross-section, allowing
the production of large (> 108 atoms) Bose-Einstein con-
densates [1,2,3,4,5,6,7], or degenerate Fermi clouds by
thermalization with the Sodium gas [8]. A current draw-
back of using Sodium is the necessity of using dye lasers
to reach the resonant wavelength of 589.158 nm (Sodium
D2 transition). Although technically well-mastered, dye
laser systems are expensive, hardly transportable and
comparatively difficult to maintain and operate, justify-
ing the need for alternatives as solid-state lasers.

In addition, new laser sources in the yellow spectral
region find applications outside the domain of laser cool-
ing. In fact, the generation of Sodium resonant radia-
tion has been mainly driven by the astronomy commu-
nity, with the development of high-power 589 nm lasers
to create artificial “beacon” stars by exciting the meso-
spheric sodium layer [9,10,11,12,13,14,15,16,17]. Other

possible applications for lasers in the yellow spectral re-
gion include Laser-induced detection in the atmospheric
range (LIDAR) [18], eye surgery or dermatology [13].

In the literature, several methods for generating continuous-
wave (cw) laser light around 589 nm have been reported,
including sum-frequency mixing of two infrared lasers
around 1319 nm and 1064 nm [9,10,11,12,13,19], frequency-
doubling of a Raman fiber laser [14,15,16], or sum-frequency
mixing of two fiber lasers around 938 nm and 1535 nm [17].
Applications to laser cooling typically require powers of
several hundred mW to 1 W, the possibility to tune the
laser to the Sodium resonance, and a linewidth much
smaller than the Γ = 2π× 9.8 MHz natural linewidth of
the cooling line.

In a recent paper, we have reported on the realization
of a laser source suitable for laser cooling of Sodium [20].
In the present article, we present an exhaustive account
of our experimental approach. Our laser source is based
on sum frequency generation (SFG) from 1064 nm and
1319 nm lasers. SFG is a second order non-linear optical
process, in which two pump beams with frequencies ω1

(λ1 = 1064 nm) and ω2 (λ2 = 1319 nm) produce a sig-
nal beam with frequency ω3 = ω1 + ω2. We implement
this sum frequency technique using commercial, solid-
state infrared lasers. The 1064 nm and 1319 nm sources
are monolithic solid-state lasers built upon an Yttrium
Aluminium Garnet (YAG) Non-Planar Ring Oscillator
(NPRO) crystal. We also tested another configuration in
which the 1064 nm laser is replaced by an external cavity
laser diode boosted by a single-mode fiber amplifier. This
led to poorer performances attributed to misbehaviour
of the amplifier, and this configuration was not pursued
further in our work. The non-linear medium used is a
periodically poled potassium titanyl phosphate crystal
(pp-KTiOPO4 or PPKTP), with a poling period chosen
to achieve first-order quasi-phase matching (QPM) near
room temperature [21,22]. In single-pass configuration,
the conversion efficiency is still too small to reach the
output power required for laser cooling. To circumvent
this problem, the crystal is enclosed in a doubly-resonant
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build-up cavity to enhance the conversion efficiency. Do-
ing so, we reach an overall power conversion efficiency
αcav ≈ 2 W/W2, where the conversion efficiency is de-
fined through P3 = αP1P2, with P1,2,3 the power at
each wavelength. This is to be compared to the value for
single-pass conversion efficiency, αsp ≈ 0.022 W/W2. In
terms of photon fluxes, about 92% of the photons of the
weakest source which enter the cavity are converted [20].

The article is organized as follows. Section 2 gives
an overview of our experimental setup. Section 3 recalls
the main features of the process of sum frequency gen-
eration, and presents our results in a simple single-pass
configuration. Section 4 discusses the experimental real-
ization of a doubly resonant cavity and its optimization
to achieve near-unit conversion efficiency. Section 5 char-
acterizes the main properties of the laser source obtained
at 589 nm.

2 Experimental setup

Our experimental setup is represented in Fig. 1. The
pump laser sources at 1064 nm and 1319 nm are non-
planar ring oscillator YAG lasers (Innolight GmbH, Ger-
many) with an instantaneous spectral linewidth narrower
than 10 kHz and output power of 1.1 W and 500 mW,
respectively. Both lasers are collimated to a 1/e2 radius
around 1 mm and combined on a dichroic mirror. Af-
ter passing through an electro-optical phase modulator
(EOM) operating near fmod ≈ 1 MHz, the beams are
focused to match their spatial profiles with the funda-
mental spatial mode of the resonant cavity.

The cavity is built in a bow-tie planar configuration,
with highly reflecting mirrors M2,M3,M4 and an input
couplerM1 with lower reflectivities chosen such as to op-
timize the intracavity conversion (see section 4 below).
Mirrors M1,M2 are plane, while M3,M4 are concave
with radius of curvature Rc = 100 mm. At the crys-
tal location, the 1064 nm (1319 nm) beam is focused
to a waist w1 = 45 µm (w2 = 47 µm). This corre-
sponds to almost equal Rayleigh lengths in the crystal
zR,i = π ni w

2
i /λi ≃ 10 mm, with the refractive indices

n1 ≃ 1.83 and n2 ≃ 1.82 for PPKTP. For our config-
uration, this choice offers a good trade-off between in-
creasing the nonlinear conversion efficiency and avoiding
detrimental effects such as thermal lensing. The cavity
geometry is chosen to avoid transverse mode degenera-
cies, allowing to excite the fundamental Gaussian mode
only and suppress higher order modes.

The PPKTP crystal used for SF mixing was manu-
factured at the Royal Institute of Technology of Stock-
holm (KTH). Its length is L = 20 mm, with a poling
period Λ = 12.36 µm. The use of a periodically poled
crystal allows to reach QPM conditions only with tem-
perature tuning (see section 3.1). The crystal is mounted
in a copper case with a Peltier thermo-electric cooler el-
ement. The case temperature is controlled by a standard

Proportional-Integral-Derivative regulator with better than
10 mK stability. Using the phase-matching curve calcu-
lated in section 3.1, we estimate that this corresponds
to output power drifts less than 1%.

3 Single-pass measurements

In this section, we discuss first our measurements in a
single-pass configuration, i.e. without enhancement cav-
ity. As shown later, this measurement is critical to op-
timize the resonant cavity parameters to reach maximal
conversion efficiency. We first recall for completeness the
theoretical results relevant to such measurements, first
in the simple case where the pumps are plane waves and
then in the more realistic situation where they are Gaus-
sian beams. We then discuss our measurements - from
which we derive a nonlinear coefficient d33 ≃ 16pm/V
for PPKTP.

3.1 Plane wave model

In this section, we recall the basic features of SFG us-
ing a simplified theoretical framework [22]. The starting
point to describe the propagation in the nonlinear crys-
tal are Helmholtz equations, including nonlinear polar-
ization terms. We introduce the complex amplitudes ai,
related to the electric field strengths by

Ei =

√

2Z0~ωi

ni
fi(ρ)ai(z)e

i(kiz−ωit)

and to the powers by Pi = ~ωi|ai|
2. Here ki is the mo-

mentum of a photon with frequency ωi in a medium
with index of refraction ni, z is the direction of propa-
gation of light, ρ is the transverse coordinate, fi denotes
the area-normalized transverse mode for each beam, and
Z0 =

√

µ0/ǫ0 is the impedance of vacuum.
As a first approximation, we neglect the spatial pro-

file of the laser beams and set fi(ρ) = S−1/2, with a
cross-section S identical for all beams. The Helmholtz
equation for the harmonic wave a3 then reads [22]

da3
dz

= −iγa1a2e
−i ∆k z, (1)

where the non-linear coupling coefficient γ can be writ-
ten as

γ =

(

2~ω1ω2ω3Z
3
0ǫ

2
0d

2

Sn1n2n3

)1/2

. (2)

Here d denotes the nonlinear coefficient which character-
izes the efficiency of the nonlinear process 1, and ∆k =
k3 − k1− k2 is the phase mismatch parameter. In a bulk

1 We assume here that the laser polarizations are parallel
and aligned with the principal axis of the non-linear medium
characterized by the largest non-linear coefficient d33.
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Figure 1 Overview of the laser system. Mirrors M1 (with reflectance Ri at wavelength λi) and M2 are flat, while mirrors M3
and M4 are concave with a radius of curvature of 10 cm to allow focusing in the crystal, in which a fraction Ci of the power at
wavelength λi is converted. The incoming power at wavelength λi is noted P inc

i , and the intra-cavity power P cav
i . Ph. stands

for Photodiode and EOM for Electro-Optic phase Modulator.

crystal, d can be treated as constant over the crystal
length (neglecting possible defects and impurities). In
contrast, a periodically poled crystal is characterized by
an alternating permanent ferromagnetization [21]. As a
result, d is a periodic function of the position z in the
poling direction, with spatial period Λ. As such, it can
be expanded as a Fourier series, d(z) = d33

∑

n cne
iqnz,

where qn = 2πn/Λ. Significant conversion only takes
place when the QPM condition qn = ∆k occurs for some
integer n. Here we only consider the first term of the
series, n = 1 (first order QPM). For a 50% poling duty-
cycle, the Fourier coefficient c1 is 2/π and the nonlinear
coefficient d in Eq.(2) becomes an effective coefficient
dpp = 2/π d33. Hence, the maximum efficiency is lower
than for a bulk crystal with perfect phase matching by
a factor 4/π2 ≈ 0.4.

Assuming low conversion, we solve for a3 in the unde-
pleted pumps approximation, ai(z) ≈ ai(0), for i = 1, 2.
For a crystal of length L, this gives the generated power
at 589 nm as

P3 = αspP1P2sinc
2

(

(

∆k − 2π
Λ

)

L

2

)

, (3)

where sinc(x) = sin(x)/x and where the maximal single-
pass conversion efficiency αsp is

αsp =
γ2L2

~

ω3

ω1ω2
. (4)

As we will see, the single-pass efficiency αsp is the critical
parameter to allow optimization of the resonant cavity.
The argument of the sinc function in Eq.(3) depends
on temperature through the various refractive indices
(the case of KTP has been studied experimentally in [23,
24]). Therefore, by adjusting the temperature one can
reach the quasi-phase matching condition ∆k = 2π/Λ
which maximizes the conversion efficiency. In practice,
the period Λ is chosen so that this condition is fulfilled
near room temperature.

3.2 Boyd-Kleinmann theory

Instead of collimated beams, experiments use focused
Gaussian beams in order to reach high intensities, and
hence efficient conversion. Non-linear processes with Gaus-
sian waves were studied in a seminal paper by Boyd and
Kleinmann [25], where explicit expressions were given
for the conversion efficiency in the undepleted pumps
approximation (see also [26]). The general expressions
are rather complex, but they can be drastically simpli-
fied by assuming identical Rayleigh lengths zR for the
three beams. Indeed, both infrared beams are resonant
in the cavity, which implies that their confocal parame-
ter is the same, essentially determined by the geometry
of the cavity. Although the output beam generated by
SFG is not resonant, it is generated only in the regions
where both pump beams overlap significantly so that ap-
proximating its spatial mode by a Gaussian beam with
the same confocal parameter as the infrared ones is a
reasonable assumption [22].

With Gaussian beams, the coefficient γ defined in
Eq.(2) becomes a function of z proportional to the over-
lap integral I(z) =

∫

d(2)ρf1f2f
∗

3 between the different
modes fi. For Gaussian waves with waists wi at the
crystal center, and Rayleigh length zR = π ni w2

i /λi,
this can be calculated explicitly. After some rearrange-
ment, the expression for the output power can be writt-
ten as P3 = αspP1P2, where the single-pass conversion
efficiency αsp reads

αsp = Z1

d2ppL

λ3
3

h (a, b, c) . (5)

Here

Z1 =
32πZ0

λ1λ2

(

n1

λ1
+ n2

λ2
+ n3

λ3

)2 ≈ 2.15 kΩ (6)



4 Emmanuel Mimoun et al.

has the dimension of an impedance and the dimension-
less function h

h (a, b, c) =
1

4a

∣

∣

∣

∣

∫ a

−a

eibτ

(1 + iτ)(1 + icτ)
dτ

∣

∣

∣

∣

2

(7)

is the so-called Boyd-Kleinman factor. The latter de-
pends on the reduced variables a = L

2zR
, b =

(

∆k − 2π
Λ

)

zR,

and c = ∆kw2
eff/zR, with w−2

eff = (π/zR)
∑

i ni/λi. We

can further write c =
∆k w2

eff

zR
=
(

b+ 1
a
πL
Λ

)

×
w2

eff

zRL × a,
showing that the function h depends only on the vari-
ables a and b once the wavelengths, crystal length and

crystal period are fixed 2. Since
w2

eff

zRL ∼ λ3

2πn3L
≪ 1, c = 0

can be assumed, and the integral h (a, b, c) is well ap-
proximated by

h (a, b, 0) =
1

4a

∣

∣

∣

∣

∫ a

−a

eibτ

1 + iτ
dτ

∣

∣

∣

∣

2

. (8)

There are two limiting cases of interest :

1. Collimated beams, zR ≫ L or a ≪ 1: in this case
we find the sinc function familiar from the plane wave
case (see Eq.(3)),

h (a, b, 0) ≈ a sinc2
(

(b + 1)a
)

. (9)

2. Focused beams, zR ≪ L or a ≫ 1: for tightly
focused beams, the length L of the crystal naturally
drops out of the problem. One finds that h tends to
a limit function

h (a ≫ 1, b, 0) ≈

{

π2

a e−2b, b > 0,
0, b < 0.

The experimental procedure of changing the tempera-
ture (which changes ∆k) corresponds to searching for
the maximum h∗(a) of h(a, b, 0) as a function of b for
a fixed a [25]. The optimum phase mismatch is offset
from the plane wave result (∆k = 2π/Λ) by a quantity
on the order of z−1

R , a consequence of the Gouy phase
accumulated as the beams pass through a focus in the
crystal. The optimal focusing corresponds to the max-
imum of h∗, which is found for a∗ = L/2zR ≈ 2.84 (
h∗(2.84) ≈ 1.06). This optimum is quite loose, as h∗ > 1
for 1.5 . a . 5.

3.3 Results for single pass operation

Our experimental configuration corresponds to a con-
figuration where zR ≈ 10 mm, or a ≈ 2 for a 20 mm
long crystal. For this parameter, the shape of the func-
tion h is very close to the sinc function predicted by

2 In principle, Z0 and c depend weakly on temperature as
∆k through the dependance of the indices. One finds that
over a temperature range of 20◦−100◦ the relative variations
do not exceed a few 10−4. Thus, we can safely consider Z0

and c as constants for the rest of the calculations.
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Figure 2 Power produced at 589 nm in a single-pass con-
figuration when the temperature of the PPKTP crystal is
varied. The plot is fitted for a value of the poling period
Λ = 12.32 µm, for the Plane Wave Approximation (solid
line, PWA) and the Boyd Kleinmann theory (dashed line,
BK). The peak value measured for the power produced at
the output of the cavity is 7 mW. Considering the losses due
the optics used to separate yellow light from infrared, we infer
a total produced power of 8.5 mW.

the plane wave model (see Fig. 2). To perform single-
pass measurements, we use the same setup as in Fig. 1
but remove the mirror M4 from the cavity. We find

that the optimum temperature T
(mes)
QPM ≈ 50◦C for our

crystal samples. For this temperature, the refractive in-
dices are n1 ≈ 1.83, n2 ≈ 1.82, and n3 ≈ 1.87. Us-
ing BK theory to fit the data, we measure an efficiency
αmes
sp ≈ 0.022 W−1 (P3 = 9 mW), obtained for nor-

mal incidence on the crystal using P2 = 440 mW and
P1 = 940 mW 3. The variation of the output power with
the power of both infrared lasers are found to be linear,
confirming the validity of the undepleted pumps approx-
imation for a single pass operation. Boyd-Kleinmann
theory predicts a value αBK

sp ≈ 0.021 W/W2 for d33 ≈
16 pm/V, which is in a good agreement with values for
the non-linear coefficient found in the literature [27,28,
29]. Note also that this is quite close to the optimal
value α∗ ≈ 0.023 W/W2 which would be obtained for
slightly tighter focusing. Applying the equations (3-4)
obtained in the plane wave approximation, one would ex-
pect α ≈ 0.022, taking for the cross section S the average
of the waist of a gaussian beam over the length L of the

crystal : S = 1
L

∫ L/2

−L/2 πw
2(z)/2 dz, with w(0) = 45 µm.

This highlights the usefulness of these theories for quan-
titative predictions.

The PPKTP crystals used in our experiments was or-
dered with a poling period Λ = 12.36 µm. Using the val-

3 This is the highest value obtained so far and differs from
the measurements presented in Fig. 2, which we have taken
with another laser source at 1064 nm of poorer quality, and
another crystal.



Solid-state laser system for laser cooling of Sodium 5

ues given in Refs. [23,24] for the temperature and wave-
length dependence of the refractive indices, we calcu-

late a QPM temperature T
(calc)
QPM ≈ 28◦C, apparently far

from the measured T
(mes)
QPM ≈ 50◦C (see Fig. 2). We note

however that the quasi-phase-matching temperature is
rather sensitive to the exact value of the period. Using
the same wavelength and temperature dependence for

the refraction indices, we find that the measured T
(mes)
QPM

corresponds to a spatial period Λ = 12.32 µm.

4 Intra-cavity conversion

4.1 Definition of the optimization problem

After having characterized the single-pass sum-frequency
process, we turn to the cavity setup. The presence of
the cavity enhances the infrared lasers intensities at the
crystal location. For the geometry shown in Fig. 1, the
intracavity power at resonance can be written for each
infrared laser as [30]

P cav
i =

Ti
(

1−
√

Ri · (1− δi) · Ci

)2P
inc
i , i = 1, 2. (10)

In Eq.(10), P cav
i denotes the circulating intracavity power,

P inc
i the incident power coupled into the fundamental

mode of the cavity, Ri, Ti denote the input coupler (mir-
ror M1) reflectance and transmittance (Ri+Ti+Li = 1,
with Li a loss coefficient), δi denote the passive losses
after one round trip, excluding the input coupler (i.e.
finite reflectances of the other mirrors, and losses in the
crystal), and Ci accounts for the nonlinear conversion.
To evaluate Ci, we use conservation laws for the pho-
ton fluxes which state that |a1|

2 + |a3|
2 and |a2|

2 + |a3|
2

are constant along the crystal length (in the absence of
absorption). This corresponds to non-linear conversion
factors given by

Ci = 1−
λ3P3

λjP cav
j

, (j 6= i; i, j = 1, 2). (11)

Assuming total transmission of the yellow light by
the output mirror M4, the 589 nm power P3 coupled out
of the cavity is given by P3 ≈ αP cav

1 P cav
2 , under the un-

depleted pump approximation. When both pumps have
imbalanced powers, the output power at ω3 is ultimately
limited by the weakest one, since one photon from both
pumps is required to create one at ω3. As it is the case
in our experiment, we assume that the weakest source
is the one at wavelength λ2. This translates into a max-
imum power Pmax

3 = (λ2/λ3)P
inc
2 . Therefore, a figure

of merit to characterize the conversion efficiency is the
ratio

η =
P3

Pmax
3

=
λ2

λ3

P3

P inc
2

(12)

between the actual power and the absolute maximum
power that can be obtained from the available pump
power coupled into the cavity P inc

2 .
The problem at hand is thus to maximize η for given

cavity parameters δi, Li, α. This amounts to balancing
the input coupler reflectances R1, R2 with the total loss
per round trip, including the non-linear conversion. This
is usually termed impedance matching [31]. In our case,
finding the impedance matching point is a coupled prob-
lem, since one should maximize simultaneously both in-
tensities in the cavity using (10) and (11). This last equa-
tion is critically dependent on the single-pass conversion
coefficient α.

4.2 Total conversion in an idealized lossless cavity

Let us first study the case, where passive losses in the
cavity and on the input coupler can be neglected (δi, Li =
0 in the above equations). The question to be answered
is whether it is possible to convert all photons at λ2 into
photons at the harmonic at λ3 (cavity conversion effi-
ciency η = 1). In [20], we showed that this is indeed
the case for any value of the input coupler reflectance
R2. We recall here the argument for completeness. We
look for a solution where the output flux at λ3 and the
incident flux at λ2 are equal, P3/(~ω3) = P inc

2 /(~ω2).

According to Eq.(11), this corresponds to C2 = 1−
P inc

2

P cav

2

.

The cavity equation (10) becomes

P cav
2 =

(1 −R2)P
inc
2

(

1−

√

R2

(

1−
P inc

2

P cav

2

)

)2 . (13)

This solves into the simple result

P cav
2 =

P inc
2

1−R2
, (14)

valid for any R2. Thus we conclude that there is always
a possibility to reach complete conversion in the ideal,
lossless case, corresponding to the intracavity flux for
the weak pump 2 as given above. The flux for the strong
pump 1 is found from the relation P3 = αP cav

1 P cav
2 ,

P cav
1 =

(1−R2)λ2

αspλ3
. (15)

The parameters of the cavity (R1, R2) are linked via
Eq.(10). For any R2, one can find a value of R1 leading to
the power P cav

1 given above, corresponding to complete
conversion of the λ2 photons.

4.3 Optimization of conversion for a realistic lossy

cavity

In any practical situation, passive losses will be present.
This modifies the conclusions of the last subsection, as
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these losses limit the enhancement factor that can be
reached in the cavity. Unlike the lossless case, instead
of a locus of optimal points in the (R1,R2) plane, one
finds a unique value of (R1,R2) that maximizes P3, at
a value smaller than Pmax

3 . However, this optimum is
quite loose when non-linear conversion dominates over
the passive losses (Ci ≫ δi). This highlights the impor-
tance of a large single-pass efficiency, justifying the use
of a highly nonlinear material such as PPKTP : the re-
quired power P1 is reduced (see Eq.(15)), making the
cavity more tolerant to passive losses.

We rewrite C2 = 1 − η
P inc

2

P cav

2

. The cavity equation for

wave 2 then leads to two solutions for the intracavity
power

P cav
2 =

(1 + r)T2 − (1− r)rη

(1− r)2
± 2

√

T2r(T2 − (1− r)η)

(1− r)2
,

with r = R2(1 − δ2) the total passive loss coefficient
for the circulating waves. The existence of two solutions
indicates a possible bistability. Such solutions are real
provided

T2 ≥ (1− r)η. (16)

When this condition is not fulfilled, the cavity is unstable
due to excessive passive or nonlinear losses. This condi-
tion sets a limit on the efficiency achievable for given
cavity parameters T2, R2, δ2, η < ηmax = T2/(1 − r).
Assuming one chooses the input coupler to reach this
maximum value, one finds for small losses (δ2, L2 ≪ R2)
an intracavity power

P cav
2 ≈

P inc
2

1−R2

(

1−
L2 + 2R2δ2

1−R2

)

, (17)

close to the idealized case studied before.

Table 1 Reflectances and transmittances of the optical ele-
ments inside the cavity, at both wavelengths. Reflectances are
measured within 0.5% and transmittances within 0.2%. The
values for the crystal are specifications by the manufacturer.
R is the optimum given by the numerical simulation.

1064 nm 1319 nm
R R T R R T

M1 0.930 0.96 0.060 0.740 0.79 0.250
M2,M3,M4 0.995 0.005 0.995 0.005

Crystal 0.980 0.980

The solution of the coupled equations giving P cav
1 , P cav

2

[Eq.(10)] is performed numerically 4, using as input the

4 A numerical algorithm maximizing the two dimensional
function P cav

1 P cav
2 = f(R1, R2) was implemented. In prac-

tice, P cav
1 is first evaluated using an Euler secant method by

substituting P cav
2 in C1 [Eq.(11)] by its expression given by

Eq.(10). Once P cav
1 solved, its value is used to derive P cav

2

available power in our infrared sources and the measured
characteristics of the cavity.We carried out the optimiza-
tion with respect to the input coupler transmittances at
both infrared wavelengths [20].

Experimentally, we characterized carefully the trans-
mition and reflection coefficients of the mirrors used for
the cavity (see Table 1). The measured reflectances cor-
respond to a passive (i.e. without non-linear conver-
sion) amplification of the intra-cavity power by a fac-
tor around 22 at 1064 nm and 12 at 1319 nm. To find
the powers coupled into the cavity fundamental mode,
we sent the lasers independently into the cavity with
a known incident power. Comparing the measured in-
tracavity power (inferred from the power transmitted
through M2 and the measured value of its transmit-
tance) with the one expected from the reflectances gives
the fraction of incident power effectively coupled to the
fundamental mode, around 85% for both wavelengths.
The measured reflectances as well as coupling efficien-
cies were taken into account in our numerical simula-
tions, predicting a conversion efficiency η ≃ 0.9 for the
photons at λ2 coupled into the cavity (see [20]). The
maximal measured output power of 800 mW, which cor-
responds to η = 0.92, is in fair agreement with this re-
sult.

4.4 Cavity setup and locking

An essential requirement to achieve a stable output with
high efficiency is to ensure that both pump lasers are si-
multaneously resonant in the cavity. In order to maintain
the cavity on resonance for both wavelengths, a double
locking scheme using the stable 1319 nm source as a
master laser is implemented (see Fig. 3a). Both lasers
are routed together through an electro-optical modulator
(EOM) placed before the cavity, and resonantly driven
at a frequency fmod = 1 MHz. This dithers the laser fre-
quencies and generate a dispersive signal from the cavity
transmission. In our implementation, the weaker pump
laser 2 is used as a master laser onto which the cav-
ity length is locked using an integrating servo-loop. In
a second step, the stronger pump 1 laser is locked onto
the cavity, and consequently on the master laser, en-
suring stable operation of the ensemble. In details, the
small fraction of infrared light transmitted by the sec-
ond mirror M2 is collected by two separate photodiodes
(see Fig. 1). Two piezoelectric transducers glued to the
cavity mirrors M2 and M3 are used to tune the cavity
length. The first one (M3) allows fast response in the
30 kHz range, but has a limited travel of a few tens of
nm. The second piezoelectric stack allows to correct for
larger drifts of the cavity length, occuring over much
longer timescales (from a few ms to a few hours). The

and the function f . The optimal couple (Ropt
1 ,Ropt

2 ) is then
tracked using an adaptative stepsize algorithm maximizing
f .
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Figure 3 a: Locking scheme for the SFG cavity. Solid lines represent optical paths, while dashed lines indicate electronic
connections. LA + I: Use of a lock-in amplifier and an integrator to lock the lasers or the cavity to the maximum of a
signal produced by one of the photodiode (Ph.). b: Linear combination used to compensate for the dip in intra-cavity power
due to conversion. The photodiode monitoring laser 2 sees a power drop while the photodiode monitoring laser 3 sees a peak.
Summing them up allows one to always maintain a peak signal to lock to. c: Automatic gain control circuit to control integrator
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photodiode signal at 1319 nm (Ph.2) is demodulated by a
lock-in amplifier operating at the modulation frequency
fmod driving the EOM, producing a dispersive error sig-
nal subsequently fed back to both piezoelectric transduc-
ers (with appropriate filters in the feedback loop). This
locks the length of the cavity on the stable 1319 nm
source. The photodiode signal at 589 nm (Ph.3) is de-
modulated in a similar way, and the resulting signal can
be used to react on laser 1 frequency using available
piezoelectric and temperature control to ensure that it
follows the cavity resonance.

In situations where the conversion efficiency is large,
this standard locking scheme leads to serious stability
problems with both IR lasers simultaneously present in
the cavity. To see this, picture a situation where the
cavity is on lock with the 1064 laser off-resonant. As the
1064 nm laser frequency is tuned to reach resonance, the
power level of the 1319 nm drops due to conversion into
589 nm photons (see Fig. 3b). This large drop of the
1319 nm power level when both lasers resonate cannot
be distinguished from a perturbation by the cavity lock.
Hence, the cavity lock actually works against keeping
both lasers on resonance simultaneously, and resists in-
creasing the conversion efficiency above the level where
the 1319 nm lineshape is distorted significantly. We have
devised a simple solution to this problem [20,32]. First,
instead of the bare 1319 nm photodiode transmission,
the error signal for the cavity lock is derived from a
linear combination of this transmission signal and of

the yellow output of the laser. The combination is done
electronically before the lock-in amplifier, with weights
empirically chosen to minimize distortions of the cavity
lineshape and to optimize the servo gain around the lock
point. Our “fringe reshaping” method works for any level
of conversion, and allows stable operation of the laser on
a day time scale, even at the highest efficiencies. Second,
choosing the 589 nm output as the error signal for the
second servo-loop instead of the 1064 nm transmission
ensures that the system locks to the maximal converted
power. Our method relies on the fact that the SFG is a
phase-coherent process : a modulation sideband present
on the 1319 nm laser is automatically present on the out-
put (with a different weight that depends on the 1064 nm
power). Synchronous demodulation by the lock-in ampli-
fier therefore preserves the linear combination.

When these two servos are in action, the cavity is
doubly resonant, and the two lasers are frequency locked
to each other. We have found that the lock of the second
laser was somewhat sensitive to disturbances occurring
near the optical table. This is a well-known features of
integrating servo-loops, which typically encounter diffi-
culties to recover from disturbances with large amplitude
that cause the integrator to saturate [33]. Integrators are
required to achieve zero DC errors in a servo loop, and
replacing them with a simpler proportional control is
not an option. We have implemented an electronic cir-
cuit that bypasses this problem and prevents the inte-
grator from saturating after violent perturbations, while
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maintaining the laser locked at all times. This can be
seen as an automatic gain control circuit that limits the
DC gain when the input becomes too large. The circuit,
shown schematically in Fig.3c , uses the laser power level
to detect such disturbances, and compares it to a pre-
set threshold value (set to 80% of the nominal value in
our case). A sample and hold amplifier (SH) samples
the integrator voltage, with its output connected (“boot-
strapped”) to the integrator input through a differential
amplifier. Regular operations correspond to the SH in
“sample” mode, where the output closely tracks the in-
put. The output Vdiff of the differential amplifier is zero
and the integrator behaves normally. When the output
of the laser falls below the threshold, the comparator
triggers the SH circuit to switch to “hold” mode. The
SH output is frozen at the value Vth it had at thresh-
old, so that the differential amplifier output becomes
Vdiff = Vout − Vth. The output voltage at frequency ω
then becomes

Vout = −

R2

R1
Vin − Vth

1 + iR2Cω
, (18)

where Vin is the incoming error signal and Vout the out-
put of circuit. The integrator is thus neutralized before
saturating, and the circuit behaves as a proportional con-
troller around the threshold value. When the perturba-
tion is removed, the SH turns back to sample mode and
restores regular integrator operation. We use this circuit
on all servo controllers in the laser system.

With this last improvement, the system can with-
stand severe mechanical perturbations without unlock-
ing and requires very little maintenance compared to dye
lasers. It is mostly insensitive to temperature fluctua-
tions because the infrared lasers are thermally stabilized
and the cavity length fluctuations are compensated by
the servo. Alignement is left untouched over weeks, with
a power drop below 10%, and when needed adjustments
are only required on the injection path into the cavity.
The cavity alignment itself has not been touched for six
months. The laser stays locked for a day on its own, and
for several hours when tracking an atomic line.

Finally, the frequency drift of the yellow laser is can-
celled by locking laser 2 to the D2 line of Na using stan-
dard saturated absorption spectroscopy, yielding a long-
term frequency-stabilized laser source.

5 Yellow laser characterization

5.1 Beam quality

We have characterized the spatial mode of the laser emerg-
ing from the cavity. The output beam was focused through
a converging lens and imaged on a charge-coupled de-
vice (CCD) camera at various distances from the lens.
The beam profile for each distance was fitted to a gaus-
sian with 1/e2 radius w identified as the beam waist
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Figure 4 Measurement of the M2 coefficient for the 589 nm
laser in the vertical (triangles) and horizontal (circles) direc-
tions. The laser is focused with a f = 100 mm converging
lens at the output of the cavity.

(see Fig. 4). We fitted this function to w0

√

1 + θ(z/w0)2,
where w0 is the waist of the beam near focus, θ is its di-
vergence, and z the direction of propagation. This gives a
M2 parameter M2 = πw0θ/λ = 1.02, indicating diffraction-
limited performances. This shows the high-quality of the
transverse mode of the output beam. Measurements in
both transverse directions show no visible astigmatism.

5.2 Intensity noise measurements
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Intensity noise of the output was characterized by
recording the beam power on a fast photodiode (band-
width 10 MHz) followed by a 16 bits analog acquisition
card (National Instruments NI-6259). From such sam-
ples, we determined the one-sided power spectral den-
sity SRIN of the instantaneous intensity normalized to
the mean intensity,

SRIN(ν) =
1

T

〈∣

∣

∣

∣

∣

∫ T

0

I(τ)

〈I〉
ei2πντdτ

∣

∣

∣

∣

∣

2〉

, (19)
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where 〈· · · 〉 denotes statistical averaging and where T ≈
100 ms is the measurement time. The results averaged
over 100 samples are shown in Fig. 5. This corresponds to
a noise δI/〈I〉 ≈ 4×10−3 integrated over a 5 Hz−500 kHz
bandwidth. Two broad noise peaks are visible near 190 kHz
and 330 kHz, which probably reflect resonances in the
cavity piezoelectric actuators. The noise level is sufficient
for our application, but could be controlled actively to
a lower level if needed, for instance by monitoring the
instantaneous power and reacting on the incident power
from the 1064 nm laser.

5.3 Absorption from laser-cooled Sodium atoms
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Because the two pump sources are extremely narrow
in frequency, one can expect similar spectral purity of
the output. At present times, we have no means to mea-
sure such narrow linewidths, but we can place an upper
bound on the laser linewidth from high-resolution spec-
troscopy measurements.

To this aim, we used cold atoms from a magneto-
optical trap (MOT) formed using the SFG laser source.
Sodium atoms were introduced in a high-vacuum cell
using electrically-controlled dispenser sources (Alvatec
GmbH). Repumping light was derived from the main
laser using a high-frequency (1.7 GHz) acousto-optical
modulator (Brimrose Corp.). A MOT was formed in
the vacuum cell using a magnetic field gradient around
10 G/cm and approximately 10 mW optical power in
each of the six MOT beams. The cloud typically con-
tained a few 107 atoms, at a temperature T ∼ 110 µK.
We measured the absorption of a weak probe beam (in-
tensity ∼ 1 mW/cm2) by the atomic cloud (with MOT
beams turned off) as a function of the probe frequency.
According to Beer-Lambert’s law, this measures σ(δ),
the optical density at a detuning δ = ωL − ω0, with
ωL the laser frequency and ω0 the atomic resonance fre-
quency. Typical results are plotted in Fig. 6. These mea-

surements have been fitted using the theoretical expres-
sion

σ(δ)/σ(0) =
Γ 2/4

δ2 + Γ 2/4
, (20)

where Γ is the natural linewidth for the D2 transition
of sodium. We deduce a measured value Γ/(2π) ≈ 9.6±
0.5 MHz, compatible with the value found in the liter-
ature, Γ/(2π) = 9.8 MHz. Since no broadening of the
absorption profile due to the linewidth of the laser could
be observed within our measurement accuracy, the lat-
ter is small compared to the natural linewidth of the
atoms. We conclude that the laser source fullfils all the
requirements for laser cooling applications.

6 Conclusion

In conclusion, we have demonstrated a single-frequency,
tunable, compact and robust all-solid-state SFG yellow
laser source for cooling and trapping sodium atoms. The
long-term stability of the laser source, despite the com-
plexity brought by the use of a doubly-resonant enhance-
ment cavity, stems from an original electronic servo loop.
This servo is designed both to bypass the large depletion
dip observed on the weaker input laser resonance fringe
under high conversion, and to avoid saturation due to
disturbances of the various integrators used in the servo
loops. In the current configuration, the maximum out-
put power of 800 mW remains lower than what can be
produced with a dye laser. However, based on our mea-
surements, we calculate that increasing the powers of the
infrared laser sources to P1 = 2 W and P2 = 800 mW
(both commercially available) should allow output pow-
ers in excess of 1 W, ultimately limited by the possible
occurrence of thermal effects in the crystal [29,34,35].
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