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FIXED POINTS AND LINES IN 2-METRIC SPACES

ABDELKRIM ALIOUCHE AND CARLOS SIMPSON

Abstract. We consider bounded 2-metric spaces satisfying an
additional axiom, and show that a contractive mapping has either
a fixed point or a fixed line.

1. Introduction

Gähler introduced in the 1960’s the notion of 2-metric space [6] [7]
[8], and the several authors have studied the question of fixed point the-
orems for mappings on such spaces. A 2-metric is a function d(x, y, z)
symmetric under permutations, satisfying the tetrahedral inequality

d(x, y, z) ≤ d(x, y, a) + d(x, a, z) + d(a, y, z) for all x, y, z, a ∈ X.

as well as conditions (Z) and (N) which will be recalled below. In the
prototypical example, d(x, y, z) is the area of the triangle spanned by
x, y, z.
This notion has been considered by several authors (see [5]), who

have notably generalized Banach’s principle to obtain fixed point theo-
rems, for example White [22], Iseki [9], Rhoades [20], Khan [10], Singh,
Tiwari and Gupta [21], Naidu and Prasad [18], Naidu [19] and Zhang
[11], Abd El-Monsef, Abu-Donia, Abd-Rabou [2], Ahmed [3] and oth-
ers.
The contractivity conditions used in these works are usually of the

form
d(F (x), F (y), a) ≤ . . .

for any a ∈ X . We may think of this as meaning that d(x, y, a) is a
family of distance-like functions of x and y, indexed by a ∈ X . This
interpretation intervenes in our condition (I) below.
There have also been several different notions of a space together

with a function of 3-variables. For example, Dhage [4] introduced the
concept of D-metric space and proved the existence of a unique fixed
point of a self-mapping satisfying a contractive condition. Dhage’s def-
inition uses the symmetry and tetrahedral axioms present in Gähler’s
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2 A. ALIOUCHE AND C. SIMPSON

definition, but includes the coincidence axiom that d(x, y, z) = 0 if and
only if x = y = z.
A sequence {xn} in a D-metric space (X, d) is said by Dhage to be

convergent to an element x ∈ X (or d-convergent) [4] if given ǫ > 0,
there exists an N ∈ N such that d(xm, xn, x) < ǫ for all m,n ≥ N . He
calls a sequence {xn} in a D-metric space (X, d) Cauchy (or d-Cauchy)
[4] if given ǫ > 0, there exists an N ∈ N such that d(xn, xm, xp) < ǫ for
all n,m, p ≥ N .
These definitions, distinct from those used by Gähler et al, motivate

the definition of the property LIM(y, (xi)) in Definition 4.1 and studied
in Theorem 4.6 below.
The question of fixed-point theorems on such spaces has proven to

be somewhat delicate [15]. Mustafa and Sims introduced a notion of
G-metric space [16] [17], in which the tetrahedral inequality is replaced
by an inequality involving repetition of indices. In their point of view
the function d(x, y, z) is thought of as representing the perimeter of a
triangle.
The question of fixed points for mappings on G-metric spaces has

been considered by Abbas-Rhoades [1], Mustafa and co-authors [13],
[14]. This is not an exhaustive description of the large literature on
this subject.
We will consider a situation in which one can obtain either a fixed

point or a fixed line, adding an additional axiom (I) to the definition
of 2-metric.
In the present paper, after first considering an easy variant of the

triangle inequality, we return to the case of 2-metric spaces, suppose
that d is bounded (B), and add a quadratic axiom (I). The axiom (I)
will be shown to hold in the example X = S2 where d(x, y, z) is given
by a determinant (Section 5), which has appeared in [12]. This axiom
allows us to consider a notion of fixed line of a mapping F which is
contractive in the sense that

d(F (x), F (y), F (z)) ≤ kd(x, y, z)

for k < 1. With these hypotheses on d and under appropriate com-
pactness assumptions we prove that such a mapping has either a fixed
point or a fixed line.

2. Asymmetric triangle inequality

Suppose X is a set together with a function ϕ(x, y) defined for x, y ∈
X such that:
(R)—ϕ(x, x) = 0;
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(S)—ϕ(x, y) = ϕ(y, x);
(AT)—for a constant C ≥ 1 saying

ϕ(x, y) ≤ ϕ(x, z) + Cϕ(z, y).

In this case we say that (X,ϕ) satisfies the asymmetric triangle in-
equality.
It follows that ϕ(x, y) ≥ 0 for all x, y ∈ X . Furthermore, if we

introduce a relation x ∼ y when ϕ(x, y) = 0, then the three axioms
imply that this is an equivalence relation, and furthermore when x ∼ x′

and y ∼ y′ then ϕ(x, y) = ϕ(x′, y′). Thus, ϕ descends to a function
on the quotient X/ ∼ and on the quotient it has the property that
ϕ(x, y) = 0 ⇔ x = y. In view of this discussion it is sometimes
reasonable to add the strict reflexivity axiom
(SR)—if ϕ(x, y) = 0 then x = y.
It is easy to see for (X,ϕ) satisfying the asymmetric triangle inequal-

ity, that the notion of limit for the distance function ϕ makes sense,
similarly the notion of Cauchy sequence for ϕ makes sense, and we can
say that (X,ϕ) is complete if every Cauchy sequence has a limit. If a
sequence has a limit then it is Cauchy. The function ϕ is continuous,
i.e., it transforms limits into limits. If furthermore the strictness axiom
(SR) satisfied, then limit is unique.
A point of accumulation of a sequence (xi)i∈N is a limit of a subse-

quence, that is to say a point y such that there exists a subsequence
(xi(j))j∈N with i(j) increasing, such that y = limj→∞ xi(j). A set X
provided with a distance function satisfying the asymmetric triangle
inequality (i.e. (R), (S) and (AT)), is compact if every sequence has a
point of accumulation. In other words, every sequence admits a conver-
gent subsequence. This notion should perhaps be called “sequentially
compact” but it is the only compactness notion which will be used in
what follows.

Lemma 2.1. Suppose (X,ϕ) satisfies the asymmetric triangle inequal-
ity with the constant C. Suppose F : X → X is a map such that
ϕ(Fx, Fy) ≤ kϕ(x, y) with k < (1/C). Then for any x ∈ X the se-
quence {F i(x)} is Cauchy. If (X,ϕ) is complete and strictly reflexive
then its limit is the unique fixed point of F .

Proof. Let x0 be an arbitrary point in X and {xn} the sequence defined
by xn+1 = F (xn) = F n(x0) for all positive integer n. We have

ϕ(xn+1, xn) = ϕ(Fxn, Fxn−1) ≤ kϕ(xn, xn−1).

By induction, we obtain

ϕ(xn+1, xn) ≤ knϕ(x0, x1)
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Using the asymmetric triangle inequality several times we get for all
positive integers n,m such that m > n

ϕ(xn, xm) ≤ ϕ(xn, xn+1) + Cϕ(xn+1, xn+2) + C2ϕ(xn+2, xn+3) + ...

... + Cm−n−1ϕ(xm−1, xm).

Then

ϕ(xn, xm) ≤ knϕ(x0, x1) + Ckn+1ϕ(x0, x1) + C2kn+2ϕ(x0, x1) + ....

...+ Cm−n−1km−1ϕ(x0, x1).

Therefore

ϕ(xn, xm) ≤ (1 + Ck + C2k2 + .... + Cm−n−1km−n−1)knϕ(x0, x1)

and so

ϕ(xn, xm) <
kn

1− Ck
ϕ(x0, x1)

Hence, the sequence {xn} is Cauchy. Since (X,ϕ) is complete, it con-
verges to some x ∈ X . Now, we show that z is a fixed point of F .
Suppose not. Then

ϕ(Fz, Fxn) ≤ kϕ(z, xn−1)

As n tends to infinity we get z = Fz using (SR). The uniqueness of z
follows easily. �

Corollary 2.2. Suppose (X,ϕ) satisfies the asymmetric triangle in-
equality, is strictly reflexive and complete. If F : X → X is a map
such that ϕ(Fx, Fy) ≤ kϕ(x, y) with k < 1. Then F has a unique fixed
point.

Proof. Since k < 1 there exists a0 ≥ 1 such that ka < (1/C) for any
a ≥ a0. Then the previous lemma applies to F a whenever a ≥ a = 0,
and F a has a unique fixed point za. Choose b ≥ a0 and let zb be the
unique fixed point of F b. Then

F ab(zb) = (F b)a(zb) = zb,

but also

F ab(za) = (F a)b(za) = za.

Thus za and zb are both fixed points of F ab; as ab ≥ a0 its fixed point
is unique so za = zb. Apply this with b = a+ 1, so

F (za) = F (F a(za)) = F b(za) = F b(zb) = zb = za.

Thus za is a fixed point of F . If z is another fixed point of F then it is
also a fixed point of F a so z = za; this proves uniqueness. �
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2.1. Triangle inequality with cost. If d(x, y, z) is a function of three
variables, the “triangle inequality with cost” is

ϕ(x, y) ≤ ϕ(x, z) + ϕ(z, y) + d(x, y, z).

This enters into Lemma 3.2 below.
We mention in passing (but it will not be used elsewhere) a “triangle

inequality with multiplicative cost”: suppose given a function ϕ(x, y)
plus a function of 3 variables ψ(x, y, z) such that

ϕ(x, y) ≤ (ϕ(x, z) + ϕ(z, y))eψ(x,y,z).

Assume also that ϕ is invariant under transposition, with ϕ(x, y) =
0 ⇔ x = y and that ψ is bounded above and below. We can define
limits and Cauchy sequences, hence completeness and the function ϕ
is continuous.

Proposition 2.3. Suppose given ϕ, ψ as above. If F is a map such
that ϕ(F (x), F (y)) ≤ kϕ(x, y) and ψ(F (x), F (y), F (z)) ≤ kψ(x, y, z),
whenever both sides are positive, then we get a Cauchy sequence F k(x).
If (X,ϕ) is complete then the limit of this Cauchy sequence is the unique
fixed point of F .

Proof. Let x0 be an arbitrary point in X and {xn} the sequence defined
by xn+1 = F (xn) = F n(x0) for all positive integer n. We have

ϕ(xn, xm) ≤ (ϕ(xn, xn+1) + ϕ(xn+1, xm))e
ψ(xn,xm,xn+1)

≤ knϕ(x0, x1)e
ψ(xn,xm,xn+1) + ϕ(xn+1, xm)e

ψ(xn,xm,xn+1)

≤ knϕ(x0, x1)e
ψ(xn,xm,xn+1)+

(ϕ(xn+1, xn+2) + ϕ(xn+2, xm))e
ψ(xn+1,xm,xn+2)+ψ(xn,xm,xn+1)

≤ knϕ(x0, x1)e
ψ(xn,xm,xn+1)+

kn+1ϕ(x0, x1)e
ψ(xn+1,xm,xn+2)+ψ(xn,xm,xn+1)+

ϕ(xn+2, xm)e
ψ(xn+1,xm,xn+2)+ψ(xn,xm,xn+1)

≤ knϕ(x0, x1)e
ψ(xn,xm,xn+1)+

kn+1ϕ(x0, x1)e
ψ(xn+1,xm,xn+2)+ψ(xn,xm,xn+1)+

kn+2ϕ(x0, x1)e
ψ(xn+2,xm,xn+3)+ψ(xn+1,xm,xn+2)+ψ(xn,xm,xn+1)+

ϕ(xn+3, xm)e
ψ(xn+2,xm,xn+3)+ψ(xn+1,xm,xn+2)+ψ(xn,xm,xn+1)

≤ knϕ(x0, x1)e
ψ(xn,xm,xn+1)+

kn+1ϕ(x0, x1)e
ψ(xn+1,xm,xn+2)+ψ(xn,xm,xn+1)+

kn+2ϕ(x0, x1)e
ψ(xn+2,xm,xn+3)+ψ(xn+1,xm,xn+2)+ψ(xn,xm,xn+1) + ...+

km−1ϕ(x0, x1)e
ψ(xn,xm,xn+1)+ψ(xn+1,xm,xn+2)+ψ(xn+2,xm,xn+3)+...+ψ(xm−2,xm,xm−1)

≤ knϕ(x0, x1)(e
knψ(x0,xp,x1) + kek

nψ(x0,xp,x1)+kn+1ψ(x0,xp,x1)+
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k2ek
nψ(x0,xp,x1)+kn+1ψ(x0,xp,x1)+kn+2ψ(x0,xp,x1)+

.........................................................+

km−n−1ek
nψ(x0,xp,x1)+kn+1ψ(x0,xp,x1)+kn+2ψ(x0,xp,x1)+...+km−1ψ(x0,xp,x1))

≤ knϕ(x0, x1)(e
Mkn + keM(kn+kn+1) + k2eM(kn+kn+1+kn+2)+

.........................................................+

km−n−1eM(kn+kn+1+kn+2+...+km−1))

since ψ is bounded. Hence, the sequence {xn} is Cauchy. Since (X,ϕ)
is complete, it converges to some x ∈ X . The rest of the proof follows
as in Lemma 2.1. �

3. Bounded 2-metric spaces

Gähler defined the notion of 2-metric space to be a set X with func-
tion d : X3 → R denoted (x, y, z) 7→ d(x, y, z) satisfying the following
axioms [6] [7] [8]:
(Sym)—that d(x, y, z) is invariant under permutations of the variables
x, y, z.
(Tetr)—for all a, b, c, x we have

d(a, b, c) ≤ d(a, b, x) + d(b, c, x) + d(a, c, x).

(Z)—for all a, b we have d(a, b, b) = 0.
(N)—for all a, b there exists c such that d(a, b, c) 6= 0.
One can think of d(x, y, z) as measuring how far are x, y, z from being

“aligned” or “colinear”.
The 2-metric spaces (X, d) have been the subject of much study, see

[1] and [2] for example. The prototypical example of a 2-metric space is
obtained by setting d(x, y, z) equal to the area of the triangle spanned
by x, y, z.
Assume that the 2-metric is bounded, and by rescaling the bound can

be supposed equal to 1:
(B)—the function is bounded by d(x, y, z) ≤ 1 for all x, y, z ∈ X .
Define the associated distance by

ϕ(x, y) := sup
z∈X

d(x, y, z).

Lemma 3.1. We have d(x, y, z) ≥ 0 and hence ϕ(x, y) ≥ 0. Also
ϕ(x, x) = 0 and ϕ(x, y) = ϕ(y, x).

Proof. Applying the axiom (Tetr) with b = c, we get

d(a, b, b) ≤ d(a, b, x) + d(b, a, x) + d(a, b, x).
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By the axiom (Z) and the symmetry of d we obtain d(a, b, x) ≥ 0 and
so d(x, y, z) ≥ 0. Then, ϕ(x, y) ≥ 0. Symmetry of ϕ follows from
invariance of d under permutations (Sym). �

Lemma 3.2. We have the triangle inequality with cost

ϕ(x, y) ≤ ϕ(x, z) + ϕ(z, y) + d(x, y, z).

Therefore

ϕ(x, y) ≤ ϕ(x, z) + ϕ(z, y) + min(ϕ(x, z), ϕ(z, y))

and hence the asymmetric triangle inequality (AT)

ϕ(x, y) ≤ ϕ(x, z) + 2ϕ(z, y).

Proof. We have

d(x, y, z0) ≤ d(x, y, z) + d(y, z0, z) + d(x, z0, z)

≤ ϕ(x, z) + ϕ(z, y) + d(x, y, z).

For the next statement, note that by definition

d(x, y, z) ≤ min(ϕ(x, z), ϕ(z, y)),

and for the last statement, min(ϕ(x, z), ϕ(z, y)) ≤ ϕ(z, y). �

In particular the distance ϕ satisfies the axioms (R), (S) and (AT) of
Section 2. Note that axiom (N) for d is equivalent to strict reflexivity
(SR) for ϕ; if this is not assumed from the start, it can be fixed as
follows.

3.1. Nondegeneracy. It is possible to start without supposing the
nondegeneracy axiom (N), define an equivalence relation, and obtain
a 2-metric on the quotient satisfying (N). For the next lemma and its
corollary, we assume that d satisfies all of (Sym), (Tetr), (Z), (B), but
not necessarily (N).

Lemma 3.3. If a, b, x, y are any points then

|d(a, b, x)− d(a, b, y)| ≤ 2ϕ(x, y).

Proof. By condition (Tetr),

d(a, b, y) ≤ d(a, b, x) + d(b, y, x) + d(a, y, x) ≤ d(a, b, x) + 2ϕ(x, y).

The same in the other direction gives the required estimate. �

Corollary 3.4. If x, y are two points with ϕ(x, y) = 0 then for any
a, b we have d(a, b, x) = d(a, b, y). Therefore, if ∼ is the equivalence
relation considered in the second paragraph of Section 2, the function
d descends to a function (X/ ∼)3 → R satisfying the same properties
but in addition its associated distance function is strictly reflexive and
d satisfies (N).
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Proof. For the first statement, apply the previous lemma. This invari-
ance applies in each of the three arguments since d is invariant under
permutations, which in turn yields the descent of d to a function on
(X/ ∼)3. The associated distance function is the descent of ϕ which is
strictly reflexive. �

In view of this lemma, we shall henceforth assume that ϕ satisfies
(SR) or equivalently d satisfies (N) too. In particular the limit of a
sequence is unique if it exists.

3.2. Surjective contractive mappings. If F is contractive on the
function d, and also surjective, then it is contractive on ϕ too and
usual arguments yield a fixed point.

Lemma 3.5. Suppose F : X → X is a map such that

d(F (x), F (y), F (z)) ≤ kd(x, y, z)

for some constant k > 0. If F is surjective then ϕ(F (x), F (y)) ≤
kϕ(x, y). If k < 1 and for any point x the sequence {F i(x)} is Cauchy;
if (X,ϕ) is complete then this sequence has a limit which is a fixed point
of F .

Proof. Suppose x, y ∈ X . For any z ∈ X , choose a preimage w ∈ X
such that F (w) = z by surjectivity of F . Then

d(F (x), F (y), z) = d(F (x), F (y), F (w)) ≤ kd(x, y, w) ≤ kϕ(x, y).

It follows that

ϕ(F (x), F (y)) = sup
z∈X

d(F (x), F (y), z) ≤ kϕ(x, y).

Apply 2.1 to obtain the rest of the lemma. �

4. Colinearity

Consider a bounded 2-metric space (X, d) , that is to say satisfy-
ing axioms (Sym), (Tetr), (Z), (N) and (B), and require the following
additional axiom:
(I)—for all a, b, c, x, y we have

d(a, b, x)d(c, x, y) ≤ d(a, x, y) + d(b, x, y).

In Section 5 below we will see that a form of geodesic area function
satisfies this additional axiom.
The term d(c, x, y) may be replaced by its sup over c which is ϕ(x, y).

If we think of d(a, b, x) as being a family of distance-like functions of a
and b, indexed by x ∈ X , (I) can be rewritten

d(a, b, x) ≤ (d(a, y, x) + d(y, b, x))ϕ(x, y)−1
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for y 6= x. This formulation may be related to the notion of “triangle
inequality with multiplicative cost” discussed in Section 2.1.
Axiom (I) allows us to look at the question of fixed subsets of a

contractive mapping F when F is not surjective.

Definition 4.1. Say that (x, y, z) are colinear if d(x, y, z) = 0.
Consider a sequence of points xi ∈ X. The property LIM(y, (xi)) is

defined to mean:

∀ǫ > 0 ∃aǫ, ∀i, j ≥ aǫ, d(y, xi, xj) < ǫ.

Suppose LIM(y, (xi)) and LIM(y′, (xi)). We would like to show
that d(y, y′, xi) → 0. However, this is not necessarily true: if (xi) is
Cauchy then the properties LIM are automatic (see Proposition 4.7
below). So, we need to include the hypothesis that our sequence is not
Cauchy, in the following statements.

Lemma 4.2. Suppose (xi) is not Cauchy. If both LIM(y, (xi)) and
LIM(y′, (xi)) hold, then d(y, y

′, xi) → 0 as i→ ∞.

Proof. The sequence (xi) is supposed not to be Cauchy for ϕ, so there
exists ǫ0 > 0 such that for anym ≥ 0 there are i, j ≥ m with ϕ(xi, xj) ≥
ǫ0. Therefore, in view of the definition of ϕ, for any m there exist
i(m), j(m) ≥ m and a point z(m) ∈ X such that d(xi(m), xj(m), z(m)) ≥
ǫ0/2.
We now use condition (I) with x = xi(m) and y = xj(m) and c = z(m),

for a = y and b = y′. This says

d(y, y′, xi(m))ǫ0/2 ≤ d(y, xi(m), xj(m)) + d(y′, xi(m), xj(m)).

If LIM(y, (xi)), LIM(y′, (xi)), then for any ǫ we can assume m is big
enough so that

d(y, xi(m), xj(m)) ≤ ǫǫ0/4

and

d(y′, xi(m), xj(m)) ≤ ǫǫ0/4.

Putting these together gives d(y, y′, xi(m)) ≤ ǫ.
Choose m so that for all j, k ≥ m we have d(y, xj, xk) ≤ ǫ and the

same for y′. Then we have by (Tetr), for any j ≥ m

d(y′, y, xj) ≤ d(xi(m), y, xj) + d(y′, xi(m), xj) + d(y′, y, xi(m)) ≤ 3ǫ.

Changing ǫ by a factor of three, we obtain the following statment: for
any ǫ > 0 there exists m such that for all i ≥ m we have d(y′, y, xi) ≤ ǫ.
This is the required convergence. �
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Corollary 4.3. If the sequence (xi) is not Cauchy for the distance ϕ,
then the following property holds:
—if LIM(y, (xi)), LIM(y′, (xi)), and LIM(y′′, (xi)) then (y, y′, y′′) are
colinear.

Proof. We use the fact that

d(y, y′, y′′) ≤ d(y, y′, xi) + d(y′, y′′, xi) + d(y, y′′, xi).

By Lemma 4.2, all three terms on the right approach 0 as i→ ∞. This
proves that d(y, y′, y′′) = 0. �

Lemma 4.4. Suppose that (xi) is not Cauchy for the distance ϕ. If
LIM(y, (xi)), LIM(y′, (xi)), ϕ(y, y

′) > 0 and y′′ is a point such that
(y, y′, y′′) are colinear, then also LIM(y′′, (xi)).

Proof. By Lemma 4.2, for any ǫ > 0 there exists m such that for all
i ≥ m we have d(y′, y, xi) ≤ ǫ.
Let u, v denote some xi or xj . By hypothesis ϕ(y, y′) > 0 so there

is a point z such that d(y, y′, z) = ǫ1 > 0. Then condition (I) applied
with a = y′′, b = u, x = y′, c = z, y = y gives

d(y′′, u, y′)d(z, y′, y) ≤ d(y′′, y′, y) + d(u, y′, y).

Hence

d(y′′, u, y′) ≤ d(u, y′, y)/ǫ1.

We can do the same for v, and also interchanging y and y′, to get

d(y′′, v, y′) ≤ d(v, y′, y)/ǫ1,

d(y′′, u, y) ≤ d(u, y, y′)/ǫ1,

d(y′′, v, y) ≤ d(v, y, y′)/ǫ1.

We have

d(y′′, u, v) ≤ d(y, u, v) + d(y′′, y, v) + d(y′′, u, y)

≤ d(y, u, v) + (d(u, y, y′) + d(v, y, y′))/ǫ1.

For u = xi and v = xj with i, j ≥ m as previously we get

d(y′′, xi, xj) ≤ d(y, xi, xj) + (d(xi, y, y
′) + d(xj , y, y

′))/ǫ1.

By choosing m big enough this can be made arbitrarily small, thus
giving the condition LIM(y′′, (xi)). �

A line is a maximal subset Y ⊂ X satisfying

(4.1) ∀y, y′, y′′ ∈ Y, d(y, y′, y′′) = 0.

A line is nonempty, by maximality since d(y, y, y) = 0 by (Z).
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Lemma 4.5. If x 6= y are two points then there is a unique line Y
containing x and y, and Y is the set of points a such that d(a, x, y) = 0.

Proof. The set {x, y} satisfies Condition (4.1), so there is at least one
maximal such set Y containing x and y. If a ∈ Y then automatically
d(a, x, y) = 0.
Suppose d(a, x, y) = 0.
If v 6= w then ϕ(v, w) > 0 which means that there exists c ∈ X

with d(c, v, w) > 0. Condition (I) therefore says that if d(a, v, w) = 0,
d(u, v, w) = 0 and v 6= w then d(a, u, v) = 0.
Setting v = x, w = y this gives, for any u ∈ Y , that d(a, u, x) = 0.
Now suppose u, v ∈ Y . If v = x then the preceding shows that

d(a, u, v) = 0. If v 6= x then apply the previous statement with
w := x, noting that d(u, v, w) = 0 since u, v, x ∈ Y ; and d(a, v, w) =
d(a, v, x) = 0 by the preceding result. Thus we can conclude that
d(a, u, v) = 0. This shows that a is colinear with any two points of Y .
In particular, Y ∪ {a} also satisfies Condition (4.1) so by maximality,
a ∈ Y . This shows that Y is the set of points a such that d(a, x, y) = 0,
which characterizes it uniquely. �

Theorem 4.6. Suppose that (X, d) is a bounded 2-metric space satis-
fying axiom (I) as above. Suppose (xi) is a sequence. Then there are
the following possibilities (not necessarily exclusive):
—there is no point y with LIM(y, (xi));
—there is exactly one point y with LIM(y, (xi));
—the sequence (xi) is Cauchy for the distance ϕ; or
—the subset Y ⊂ X of points y such that LIM(y, (xi)), is a line.

Proof. Consider the subset Y ⊂ X of points y such that LIM(y, (xi))
holds. We may assume that there are two distinct points y1 6= y2 in Y ,
for otherwise one of the first two possibilities would hold. Suppose that
(xi) is not Cauchy for ϕ; in particular, Lemmas 4.2, 4.4 and Corollary
4.3 apply.
If y, y′, y′′ are any three points in Y , then by Corollary 4.3, they are

colinear. Thus Y is a subset satisfying Condition (4.1) in the definition
of a line; to show that it is a line, we have to show that it is a maximal
such subset.
Suppose Y ⊂ Y1 and Y1 also satisfies (4.1). Since y1 6= y2, and we are

assuming that ϕ satisfies strict reflexivity (SR), we have ϕ(y1, y2) 6= 0.
By Lemma 3.1, ϕ(y1, y2) > 0. If y ∈ Y1 then by (4.1), d(y, y1, y2) = 0.
By Lemma 4.4, y must also satisfy LIM(y, (xi)), thus y ∈ Y . This
shows that Y1 ⊂ Y , giving maximality of Y . Thus, Y is a line. �
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The following proposition shows that the case when (xi) Cauchy has
to be included in the statement of the theorem.

Proposition 4.7. If (xi), (yj) and (zk) are Cauchy sequences, then the
sequence d(xi, yj, zk) is Cauchy in the sense that for any ǫ > 0 there ex-
istsM such that for i, j, k, p, q, r ≥M then |d(xi, yj, zk)−d(xp, yq, zr)| <
ǫ. In particular d is continuous. If (xi) is Cauchy then LIM(y, (xi))
holds for any point y ∈ X.

Proof. For given ǫ, by the Cauchy condition there is M such that
for i, j, k, p, q, r ≥ M we have ϕ(xi, xp) < ǫ/6, ϕ(yj, yq) < ǫ/6, and
ϕ(zk, zr) < ǫ/6. Then by Lemma 3.3

|d(xi, yj, zk)− d(xi, yj, zr)| ≤ ǫ/3,

|d(xi, yj, zr)− d(xi, yq, zr)| ≤ ǫ/3,

and
|d(xi, q, zr)− d(xp, yq, zr)| ≤ ǫ/3.

These give the Cauchy property

|d(xi, yj, zk)− d(xp, yq, zr)| ≤ ǫ.

This shows in particular that d is continuous. Suppose (xi) is Cauchy
and y is any point. Then the sequence d(y, xi, xj) is Cauchy in the
above sense in the two variables i, j, which gives exactly the condition
LIM(y, (xi)). �

We say that a sequence (xi) is tri-Cauchy if

∀ǫ > 0, ∃mǫ, i, j, k ≥ mǫ ⇒ d(xi, xj , xk) < ǫ.

Lemma 4.8. Suppose (xi) is a tri-Cauchy sequence, and y ∈ X is an
accumulation point of the sequence with respect to the distance ϕ. Then
LIM(y, (xi)).

Proof. The condition that y is an accumulation point means that there
exists a subsequence (xu(k)) such that (xu(k)) → y with respect to the
distance ϕ. We have by (Tetr)

d(y, xi, xj) ≤ d(xu(k), xi, xj) + d(y, xu(k), xj) + d(y, xi, xu(k)),

and all three terms on the right become small, for i, j big in the original
sequence and k big in the subsequence. Hence d(y, xi, xj) → 0 as
i, j ≫ 0, which is exactly the condition LIM(y, (xi)). �

We say that (X, d) is tri-complete if, for any tri-Cauchy sequence,
the set Y of points satisfying LIM(y, (xi)) is nonempty. By Theorem
4.6, Y is either a single point, a line, or (in case (xi) is Cauchy) all of
X .
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Lemma 4.9. Suppose (X,ϕ) is compact. Then it is tri-complete, and
for any tri-Cauchy sequence (xi) we have one of the following two pos-
sibilities:
—(xi) has a limit; or
—the subset Y of points y with LIM(y, (xi)) is a line.

Proof. Suppose (xi) is a tri-Cauchy sequence. By compactness there
is at least one point of accumulation, so the set Y of points y with
LIM(y, (xi)) is nonempty by Lemma 4.8. This rules out the first pos-
sibility of Theorem 4.6.
Suppose Y consists of a single point y. We claim then that xi → y.

Suppose not: then there is a subsequence which doesn’t contain y in its
closure, but since X is compact after going to a further subsequence
we may assume that the subsequence has a limit point y′ 6= y. But
again by Lemma 4.8, we would have LIM(y′, (xi)), a contradiction. So
in this case, the sequence (xi) is Cauchy for ϕ and has y as its limit;
thus we are also in the situation of the third possibility. Note however
that, since (xi) is Cauchy, the set of points Y consists of all of X by
Proposition 4.7, so the second possibility doesn’t occur unless X is a
singleton.
From Theorem 4.6 the remaining cases are that (xi) is Cauchy, in

which case it has a limit by compactness; or that Y is a line. �

5. An example

Let X := S2 := {(x1, x2, x3) ∈ R
3, x21 + x22 + x23 = 1}. Define the

function d(x, y, z) by taking the absolute value of the determinant of
the matrix containing x, y, z as column vectors:

d









x1
x2
x3



 ,





y1
y2
y3



 ,





z1
z2
z3







 :=

∣

∣

∣

∣

∣

∣

det





x1 y1 z1
x2 y2 z2
x3 y3 z3





∣

∣

∣

∣

∣

∣

.

This has appeared in Example 2.2 of [12].

Proposition 5.1. This function satisfies axioms (Sym), (Tetr), (Z),
(B), (I).

Proof. Invariance under permutations (Sym) comes from the corre-
sponding fact for determinants. Condition (Z) comes from vanishing
of a determinant with two columns which are the same. Condition (B)
comes from the fact that the determinant of a matrix whose columns
have norm 1, is in [−1, 1]. We have to verify (Tetr) and (I).
For condition (Tetr), suppose given vectors x, y, z ∈ S2 as above, and

suppose that d(x, y, z) > 0 i.e. they are linearly independent. Suppose
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given another vector a =





a1
a2
a3



 too. Then the determinants d(a, y, z),

d(x, a, y) and d(x, y, a) are the absolute values of the numerators ap-
pearing in Cramer’s rule. This means that if we write

a = αx+ βy + γz

then
d(a, y, z)

d(x, y, z)
= |α|,

d(x, a, z)

d(x, y, z)
= |β|,

and
d(x, y, a)

d(x, y, z)
= |γ|.

Now by the triangle inequality in R
3 we have

1 = ‖a‖ ≤ |α|+ |β|+ |γ|

which gives exactly the relation (Tetr).
To prove (I), notice that it is invariant under orthogonal transforma-

tions of R3 so we may assume that

x =





1
0
0



 , y =





u
v
0



 , u2 + v2 = 1.

Notice that in this case, supc∈S2 d(c, x, y) = |v|, so we are reduced to
considering

a =





a1
a2
a3



 , b =





b1
b2
b3



 .

Now d(a, x, y) = |a3v| and d(b, x, y) = |b3v|, so we have to show that

d(a, b, x)|v| ≤ |a3v|+ |b3v|.

But d(a, b, x) = |a2b3 − a3b2| so this inequality is true (since |a2| ≤ 1
and |b2| ≤ 1). This completes the proof of (I). �

Corollary 5.2. If X ⊂ S2 then with the same function d(x, y, z), it
still satisfies the axioms.

�

The “lines” for the function d defined above, are the great circles or
geodesics on S2.
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Remark 5.3. The distance function ϕ is not strictly reflexive in this
example, indeed the associated equivalence relation identifies antipodal
points. The quotient S2/ ∼ is the real projective plane. The corre-
sponding function on the quotient is a bounded 2-metric satisfying (I).

6. Fixed points of a map

Suppose that (X,ϕ) is compact meaning that every sequence has a
convergent subsequence. Suppose F : X → X is a d-decreasing map
i.e. one with d(F (x), F (y), F (z)) ≤ kd(x, y, z) for 0 < k < 1.
Pick a point x0 ∈ X and define the sequence of iterates inductively

by xi+1 := F (xi).

Corollary 6.1. Suppose (X,ϕ) is compact and F is a d-decreasing
map. Pick a point x0 and define the sequence of iterates (xi) with
xi+1 = F (xi). This sequence is tri-Cauchy; hence either it is Cauchy
with a unique limit point y ∈ X, or else the subset Y ⊂ X of points y
with LIM(y, (xi)) is a line.

Proof. Note first that the sequence (xi) is tri-Cauchy. If m ≤ i, j, k
then

xi = Fm(xi−m), xj = Fm(xj−m), xk = Fm(xk−m).

Hence using the global bound (B),

d(xi, xj, xk) ≤ kmd(xi, xj, xk) ≤ km.

As 0 < k < 1, for any ǫ there exists m such that km < ǫ; this gives the
tri-Cauchy property of the sequence of iterates.
Then by Lemma 4.9, either (xi) → y or else the set Y of points y

with LIM(y, (xi)) is a line. �

Theorem 6.2. Suppose X is nonempty and d is a bounded 2-metric
satisfying (I), such that (X,ϕ) is compact. Suppose F is a d-decreasing
map for a constant 0 < k < 1. Then, either F has a fixed point, or
there is a line Y fixed in the sense that F (Y ) ⊂ Y and Y is the only
line containing F (Y ).

Proof. Pick x0 ∈ X and define the sequence of iterates (xi) as above.
By the previous corollary, either xi → y or else the set Y of points y
with LIM(y, (xi)) is a line.
Suppose we are in the second possibility but not the first; thus (xi)

has more than one accumulation point. Recall that LIM(y, (xi)) means
d(y, xi, xj) < ǫ for i, j ≥ mǫ. Hence if i, j ≥ mǫ + 1 then

d(F (y), xi, xj) = d(F (y), F (xi−1), F (xj−1)) < kǫ.

This shows the property LIM(F (y), (xi)). Thus, F (Y ) ⊂ Y .
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Suppose Y1 is a line with F (Y ) ⊂ Y1. If F (Y ) contains at least
two distinct points then there is at most one line containing F (Y )
by Lemma 4.5 and we obtain the second conclusion of the theorem.
Suppose F (Y ) = {y0} consists of a single point. Then, y0 ∈ Y so
F (y0) ∈ F (Y ), which shows that F (y0) = y0; in this case F admits a
fixed point.
We may now assume that we are in the first case of the first para-

graph: xi → y. If F (y) = y we have a fixed point, so assume1 F (y) 6= y.
Let Y be the unique line containing y and F (y) by Lemma 4.5 which
also says Y is the set of points colinear with y and F (y).
We claim that F (X) ⊂ Y . If z ∈ X then LIM(z, (xi)) by the last

part of Proposition 4.7. For a given ǫ there is mǫ such that i, j ≥ mǫ ⇒
d(xi, xj, z) < ǫ. However, for i fixed we have xj → y by hypothesis,
and the continuity of d (Proposition 4.7) implies that d(xi, y, z) < ǫ.
Apply F , giving

∀i ≥ mǫ, d(xi+1, F (y), F (z)) < kǫ.

Again using continuity of d, we have

d(xi+1, F (y), F (z)) → d(y, F (y), F (z))

and the above then implies that d(y, F (y), F (z)) < kǫ for any ǫ > 0.
Hence d(y, F (y), F (z)) = 0 which means F (z) ∈ Y . This proves that
F (X) ⊂ Y a fortiori F (Y ) ⊂ Y . If F (F (y)) is distinct from F (y) then
Y is the unique line containing F (Y ), otherwise F (y) is a fixed point
of F . This completes the proof of the theorem. �

Corollary 6.3. Suppose X ⊂ S2 is a closed subset. Define the function
d(x, y, z) as in Section 5. If F : X → X is a function such that
d(F (x), F (y), F (z)) ≤ kd(x, y, z) for 0 < k < 1 then either it has a
fixed pair of antipodal points, or a fixed great circle.

Proof. Recall that we should really be working with the image of X in
the real projective space RP2 = S2/ ∼ (Remark 5.3). On this quotient,
the previous theorem applies. Note that by a “fixed great circle” we
mean a subset Y ⊂ X which is the intersection of X with a great circle,
and such that Y is the intersection of X with the unique great circle
containing F (Y ). �

1We need to consider this case: as F is not assumed to be surjective, it is not
necessarily continuous for ϕ so the convergence of the sequence of iterates towards
y doesn’t directly imply that y is a fixed point.
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