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Abstract

We investigate the profile of the blowing up solutions to the nonlinear nonlocal
system (FDS)

u′(t) + Dα
0+

(u − u0)(t) = |v(t)|q, t > 0,

v′(t) + Dβ
0+

(v − v0)(t) = |u(t)|p, t > 0,

where u(0) = u0 > 0, v(0) = v0 > 0, p > 1, q > 1 are given constants and Dα
0+

and Dβ
0+

, 0 < α < 1, 0 < β < 1 stand for the Riemann-Liouville fractional
derivatives. Our method of proof relies on comparisons of the solution to the
(FDS) with solutions of the subsystems obtained from (FDS) by dropping either
the usual derivatives or the fractional derivatives.
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up time, Laplace transform.
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1. Introduction

In this paper, we are concerned with the profile of the blowing up solutions
to the nonlinear system of fractional differential equations (FDS)

u′(t) + Dα
0+

(u − u0)(t) = |v(t)|q, t > 0,

v′(t) + Dβ
0+

(v − v0)(t) = |u(t)|p, t > 0,
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subject to the initial conditions

u(0) = u0, v(0) = v0, (1)

where p > 1, q > 1, u(0) = u0 > 0, v(0) = v0 > 0 are constants, Dα
0+

and Dβ
0+

stand for the Riemann-Liouville fractional derivatives of orders 0 < α < 1 and
0 < β < 1, respectively.

It has been proven by Furati and Kirane in [1] that, under the constraint 1 −
1/pq ≤ α+β/p or 1−1/pq ≤ β+α/q, any solution emerging from (u0, v0), (u0 >
0, v0 > 0) blows up in a finite time. Moreover, they gave an upper bound for
the blow up time. Their method of proof relies on the weak formulation of the
system (FDS) with a judicious choice of the test function. Here, we present
estimates from above and below of the blowing up solutions by comparing them
with the solutions of the particular systems obtained from (FDS):

{
u′(t) = λ|v(t)|q, t > 0, p > 1,
v′(t) = λ|u(t)|p, t > 0, q > 1, (2)

the system of ordinary differential equations (ODS) with either λ = 1 or λ = 1/2,
and {

Dα
0+

(u − u0)(t) = µ|v(t)|q, t > 0,
Dβ

0+
(v − v0)(t) = µ|u(t)|p, t > 0,

(3)

the system of fractional differential equations (PFDS), with either µ = 1 or µ =

1/2. As the solutions to (ODS) are easy to obtain, we will investigate in particular
the system (PFDS).

Our paper is organized as follows: some definitions and known results needed
in the sequel are stated in the next section. Section 3 is devoted to our main
results for the investigation of the profile of the blowing up solutions of system
(FDS). In the last section, we provide numerical approximations of the solutions,
and the profiles are given for particular examples.

2. Preliminaries

In this section, the necessary definitions and notations from fractional calcu-
lus needed for the paper are recalled for the sake of the reader.

The Riemann-Liouville fractional integral of order 0 < α < 1 is

Jα0+
f (t) :=

1
Γ(α)

t∫

0

f (τ)
(t − τ)1−αdτ, t > 0, (4)
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where Γ(α) is the Euler Gamma function and f : R+ → R is a real valued
integrable function. The integral (4) can be written as a convolution

Jα0+
f (t) = (φα ? f )(t), (5)

where

φα :=
{

tα−1

Γ(α) , t ≥ 0,
0 t < 0.

(6)

The Laplace transform of the Riemann-Liouville integral of order 0 < α < 1 is

L{Jα0+
f (t) : s} = L{ f (t) : s}/sα.

The Riemann-Liouville fractional derivative of order 0 < α < 1 is

Dα
0+

f (t) :=
d
dt

J1−α
0+

f (t) =
1

Γ(1 − α)
d
dt

t∫

0

f (τ)
(t − τ)α

dτ. (7)

In particular, when α = 0, D0
0+

f (t) = f (t); note that the Riemann-Liouville
fractional derivative of a constant is not equal to zero.

The Caputo fractional derivative of order 0 < α < 1 is defined by

CDα
0+

f (t) := J1−α
0+

d
dt

f (t) =
1

Γ(1 − α)

t∫

0

f ′(τ)
(t − τ)α

dτ. (8)

The relation between the Riemann-Liouville and the Caputo fractional deriva-
tives is

CDα
0+

f (t) = Dα
0+

(
f (t) − f (0)

)
, 0 < α < 1. (9)

The formula for the integration by parts in [0,T ] is given by

T∫

0

f (t)Dα
0+

g(t)dt =

T∫

0

Dα
T− f (t)g(t)dt, (10)

see [2], where Dα
T−

is the right sided fractional derivative defined by

Dα
T− f (t) := − 1

Γ(1 − α)
d
dt

T∫

t

f (τ)
(τ − t)α

dτ, 0 < α < 1. (11)
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The Laplace transforms of the Riemann-Liouville derivative Dα
0+

f (t) and the Ca-
puto derivative CDα

0+
f (t) are

L{Dα
0+

f (t) : s} = sαL{ f (t) : s} − J1−α
0+

f (0), 0 < α < 1, (12)

L{CDα
0+

f (t) : s} = sαL{ f (t) : s} − sα−1 f (0), 0 < α < 1. (13)

At this stage let us recall the test function considered in [1]:

ϕ(t) =

{
T−λ(T − t)λ, t ∈ [0,T ],
0 t > T ; (14)

it satisfies
T∫

0

Dα
T−ϕ(t)dt = Cα,λT 1−α, Cα,λ =

Γ(λ + 1)
Γ(λ − α + 2)

, (15)

and for p > 1, λ > αp − 1

T∫

0

ϕ1−p(t)
∣∣∣Dα

T−ϕ(t)
∣∣∣p dt = Cp,αT 1−αp, (16)

where
Cp,α =

1
λ − pα + 1

[
Γ(λ + 1)

Γ(λ + 1 − α)

]p
. (17)

The main result in [1] is the

Theorem 2.1 ([1]). Suppose that 0 < α, β < 1, p, q > 1 and u0 > 0, v0 > 0, then
solutions to system (FDS) subject to (1) blow up in a finite time, whenever

1 − 1
pq
≤ α +

β

p
, or 1 − 1

pq
≤ β +

α

q
.

Let us recall that the blowing up solution of the system (ODS) with λ = 1
{

u′(t) = |v(t)|q, t > 0, p > 1,
v′(t) = |u(t)|p, t > 0, q > 1, (18)

subject to the initial conditions (u(0) = u0 > 0, v(0) = v0 > 0) is

uod(t) = C1

(
Tmax − t

)− q+1
pq−1
, vod(t) = C2

(
Tmax − t

)− p+1
pq−1
, (19)
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where Tmax, C1 and C2 are given by

Tmax =

(C2u0

C1v0

) pq−1
p−q
,

C1 =

( (p + 1)q(q + 1)
(pq − 1)q+1

) 1
pq−1
, C2 =

( (p + 1)(q + 1)p

(pq − 1)p+1

) 1
pq−1
. (20)

Alike, the blowing up solution of the system (ODS) with λ = 1/2
{

u′(t) = 1
2 |v(t)|q, t > 0, u(0) = u0 > 0,

v′(t) = 1
2 |u(t)|p, t > 0, v(0) = v0 > 0, (21)

for p, q > 1, is given by

u∗od(t) = C∗1
(
T ∗max − t

)− q+1
pq−1
, v∗od(t) = C∗2

(
T ∗max − t

)− p+1
pq−1
,

where T ∗max, C∗1 and C∗2 are given by

T ∗max =

(C∗2u0

C∗1v0

) pq−1
p−q
,

C∗1 = 2
q+1
pq−1

((p + 1)q(q + 1)
(pq − 1)q+1

) 1
pq−1
, C∗2 = 2

p+1
pq−1

( (p + 1)(q + 1)p

(pq − 1)p+1

) 1
pq−1
.

Notice that the solution of the system (18) blows up earlier than the solution of
the system (21) since T ∗max = 2Tmax.

3. Main Results

In this section, we consider the nonlinear system of fractional differential
equations (PFDS)

Dα
0+

(u − u0)(t) = µ|v(t)|q, t > 0,

Dβ
0+

(v − v0)(t) = µ|u(t)|p, t > 0,

for 0 < α, β < 1, with either µ = 1 or µ = 1/2, subject to the initial conditions
(1). For µ = 1 we will give the necessary conditions for solutions to blow up in
a finite time; moreover an upper bound on the blow up time is provided.

Let us set

s =
pα + β

1 − pq
, s̃ =

α + qβ
1 − pq

, Cv = K2(K1)
p

pq−1 , Cu = K∗2(K∗1)
q

pq−1 ,
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where K1,K2,K∗1 and K∗2 are:

K1 = C
1
p′
p′,αC

1
pq′
q′,β, K2 = C

1
q′
q′,βC

−1
β,λ,

K∗1 = C
1
q′
q′,βC

1
qp′
p′,α, K∗2 = C

1
p′
p′,αC

−1
α,λ,

and the constants {Cα,λ,Cβ,λ} and {Cp′,α,Cq′,β} are given by (15) and (17) respec-
tively.

The first result is given by

Theorem 3.1. Let p, q > 1 and u0 > 0, v0 > 0. If

1 − 1
pq
≤ α +

β

p
, or 1 − 1

pq
≤ β +

α

q
,

then any solution to the system (PFDS) with µ = 1 subject to the initial conditions
(1) blows up in a finite time Tmax. Furthermore, an upper bound on the blow up
time Tmax is given by min{Tu,Tv} where

Tv =

[ v0

Cv

]1/s
Tu =

[ u0

Cu

]1/s̃
.

Proof. The proof is by contradiction; suppose (u, v) is a global solution of the
system (PFDS). Multiplying the equations of system (PFDS) by ϕ and integrat-
ing over [0,T ], we, by virtue of (10), obtain

T∫

0

uDα
T−ϕ = u0

T∫

0

Dα
T−ϕ +

T∫

0

|v|qϕ, (22)

T∫

0

vDβ
T−ϕ = v0

T∫

0

Dβ
T−ϕ +

T∫

0

|u|pϕ, (23)

for any function ϕ such that Dα
T−ϕ exists and ϕ(T ) = 0. Using Hölder’s inequality,

we obtain
T∫

0

uDα
T−ϕ ≤

[ T∫

0

|u|p ϕ
]1/p[ T∫

0

∣∣∣Dα
T−ϕ

∣∣∣p′ ϕ−p′/p
]1/p′

, (24)

T∫

0

vDβ
T−ϕ ≤

[ T∫

0

|v|q ϕ
]1/q[ T∫

0

∣∣∣Dβ
T−ϕ

∣∣∣q′ ϕ−q′/q
]1/q′

, (25)
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where p, p′, q, q′ satisfy p + p′ = pp′ and q + q′ = qq′. If we set

I :=
T∫

0
|u|p ϕ, J :=

T∫
0
|v|q ϕ,

A :=
T∫

0

∣∣∣Dα
T−ϕ

∣∣∣p′ ϕ−p′/p, B :=
T∫

0

∣∣∣Dβ
T−ϕ

∣∣∣q′ ϕ−q′/q,

(26)

then (22), (23), (24) and (25) lead to:

J ≤ I1/pA1/p′ and I ≤ J1/qB1/q′ .

As u0 > 0, v0 > 0 and
T∫

0
Dα

T−ϕ > 0 when ϕ(t) is selected as in (14), it is clear that

J1− 1
pq ≤ A1/p′B1/pq′ , (27)

I1− 1
pq ≤ A1/qp′B1/q′ . (28)

Using (16), with λ ≥ max{αp′ − 1, βq′ − 1}, we have

A = Cp′,αT 1−αp′ , B = Cq′,βT 1−βq′ .

Consequently, (27) takes the form

J1− 1
pq ≤ K1T s1 , (29)

where
s1 = 1 − α − β

p
− 1

pq
.

Thus J is bounded under the constraint s1 ≤ 0 which is equivalent to

1 − 1
pq
≤ α +

β

p
.

The equality (23) and the estimates (25) allow us to write

v0

T∫

0

Dβ
T−ϕ ≤ J1/qB1/q′ , (30)

which in virtue of (30) becomes

v0 ≤ K2J1/qT r1 , (31)
7



where r1 = −1/q.
Letting T → ∞, in (31) we obtain the contradiction 0 < v0 ≤ 0. Similarly, an

analysis could be done along I; it leads to

1 − 1
pq
≤ β +

α

q
.

To obtain an estimation on the blow up time, we estimate J in (31) by (29) to
obtain

v0 ≤ K2(K1)
p

pq−1 T
ps1

pq−1 +r1

= CvT s

where s < 0.
Whereupon a bound on the blow-up time is given by

Tmax ≤ Tv =

[ v0

Cv

]1/s
.

A similar bound on Tmax can be obtained in terms of u0 if we use (22) and (28);
it reads

Tmax ≤ Tu =

[ u0

Cu

]1/s̃
.

Finally, Tmax ≤ Min{Tu,Tv}.
Now, we present estimates from below and above of the blowing up solutions

to the system (FDS) via the solutions of systems (PFDS) and (ODS) for µ =

1, 1/2 and λ = 1, 1/2. First observe that system (PFDS) is equivalent to the
nonlinear system of Volterra equations



u(t) = u0 +
µ

Γ(α)

t∫
0

|v(τ)|q
(t−τ)1−α dτ, t > 0,

v(t) = v0 +
µ

Γ(β)

t∫
0

|u(τ)|p
(t−τ)1−β dτ, t > 0.

(32)

Due to the positivity of initial conditions (1), the solution of the system (32) is
always greater or equal than the solution of the system



ũ(t) =
µ

Γ(α)

t∫
0

|ṽ(τ)|q
(t−τ)1−α dτ, t > 0,

ṽ(t) =
µ

Γ(β)

t∫
0

|ũ(τ)|p
(t−τ)1−β dτ, t > 0,

(33)
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with µ = 1 or µ = 1/2. Following [3], growth rates near the blow-up time for
blowing up solutions to the system (33) are available. They are stated in

Theorem 3.2. The profiles of the components of the solution (ũ(t), ṽ(t)) for the
system (33) with µ = 1 are given by

ũ(t) ∼ C1,α,β(Tα,β
max − t)−δ, ṽ(t) ∼ C2,α,β(Tα,β

max − t)−ξ, as t → Tα,β
max, (34)

where Tα,β
max is the blow-up time and

C1,α,β =

(
Γ(pδ)

Γ(pδ − β)

) q
pq−1

(
Γ(qξ)

Γ(qξ − α)

) 1
pq−1
, C2,α,β =

(
Γ(qξ)

Γ(qξ − α)

) p
pq−1

(
Γ(pδ)

Γ(pδ − β)

) 1
pq−1
,

with
δ =

α + qβ
pq − 1

, ξ =
β + pα
pq − 1

. (35)

Alike, the profiles of u(t), v(t) for the system (33) with µ = 1/2 are given by

u(t) ∼ C∗1,α,β(τ
α,β
max − t)−δ, v(t) ∼ C∗2,α,β(τ

α,β
max − t)−ξ, as t → τα,βmax, (36)

where

C∗1,α,β =

(
Γ(pδ)

2Γ(pδ − β)

) q
pq−1

(
Γ(qξ)

Γ(qξ − α)

) 1
pq−1
, C∗2,α,β =

(
Γ(qξ)

2Γ(qξ − α)

) p
pq−1

(
Γ(pδ)

Γ(pδ − β)

) 1
pq−1
,

where δ and ξ are defined in (35).
Let us notice at this stage that the analysis in [3] gives no information on Tα,β

max

or τα,βmax.
Now, let eα(t) := Eα,1(−tα) where Eα,β(t) is the Mittag-Leffler function of two

parameters α and β.

Lemma 3.3. The solution (u, v) to the system (FDS) satisfies

u(t) = u0 +

t∫

0

e1−α(t − τ)|v(τ)|qdτ, (37)

v(t) = v0 +

t∫

0

e1−β(t − τ)|u(τ)|pdτ. (38)
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Proof. Taking the Laplace transform of both sides of the first equation of the
system (FDS) and using (9) and (13), we obtain

L{u(t) : s} =
u0

s
+
L{|v(t)|q : s}

(s + sα)
,

which, via the inverse Laplace transform, leads to:

u(t) = u0 +L−1
(L{|v(t)|q : s}

(s + sα)

)
.

Notice that L{|v(t)|q : s}
(s + sα)

=
s−α

(s1−α + 1)
L{|v(t)|q : s};

by means of the inverse Laplace transform of convolution of functions, equation
(37) is obtained. Following the same steps, we obtain equation (38).

Lemma 3.4. For the system (FDS), the functions u′(t) and v′(t) satisfy

u′(t) = |v(t)|q +

t∫

0

e′1−α(t − τ)|v(τ)|qdτ, (39)

v′(t) = |u(t)|p +

t∫

0

e′1−β(t − τ)|u(τ)|pdτ. (40)

Proof. By virtue of the definition of the Caputo derivative, for 0 < α < 1, the
equation corresponding to u(t) in system (FDS) takes the form

u′(t) + J1−α
0+

u′(t) = |v(t)|q, t > 0, (41)

which can be written as

u′(t) = (1 + J1−α
0+

)−1|v(t)|q, t > 0. (42)

Since

(1 + J1−α
0+

)−1 = 1 +

+∞∑

k=1

(−1)kJ(1−α)k,

we have

u′(t) = |v(t)|q +

( +∞∑

k=1

(−1)k t(1−α)k−1

Γ((1 − α)k)

)
? |v(t)|q,

= |v(t)|q +

t∫

0

e′1−α(t − τ)|v(τ)|qdτ,
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where relations (5) and (6) have been used.
Let us mention that the same result can be obtained by using the Laplace

transform technique: taking the Laplace transform of both sides of equation (41),
it follows

L{u′(t) : s} =
s1−αL{|v(t)|q : s}

s1−α + 1
. (43)

There are different ways of writing the solution from equation (43); for example
we can write

s1−αL{|v(t)|q : s}
s1−α + 1

= s
( s−αL{|v(t)|q : s}

s1−α + 1

)
,

and we obtain
u′(t) =

d
dt

(
e1−α ? |v(t)|q

)
.

Another way of writing equation (43) is

L{u′(t)} =
s−α

s1−α + 1

(
sL{|v(t)|q : s} − |v(0)|q

)
+

s1−α

s−α + 1
|v(0)|q;

taking the inverse Laplace transform, we get

u′(t) =

t∫

0

d
dt

(
|v(t − τ)|q

)
eα(τ)dτ + |v(0)|qeα(t).

Noting that e1−α(0) = E1−α,1(0) = 1, equation (43) can be written as

L{u′(t) : s} =

( s1−α

s1−α + 1
− 1

)
|v(s)|q + |v(s)|q,

hence

u′(t) =

t∫

0

|v(τ)|qe′1−α(t − τ)dτ + |v(t)|q.

The equation (40) can be obtained similarly.

3.1. Analysis of the results
It is a well known fact [4] that the Mittag-Leffler function E1−α,1(−t1−α) =:

e1−α(t) is completely monotone for t > 0, 0 < α < 1; so, in particular e′1−α(t) ≤ 0
for t > 0. Then equations (39) and (40) allow us to write

11



u′(t) ≤ |v(t)|q, v′(t) ≤ |u(t)|p, t > 0. (44)

The differential inequalities (44) lead to the estimates from above of the so-
lution (u, v) for 0 < t < Tmax < +∞

u(t) ≤ C1

(
Tmax − t

)− q+1
pq−1
, v(t) ≤ C2

(
Tmax − t

)− p+1
pq−1
,

where Tmax, C1 and C2 are given in (20). To obtain estimates from below for u
and v, we notice that system (FDS) can be written as:

Dα
0+

(u − u0)(t) = |v(t)|q − u′(t), Dβ
0+

(v − v0)(t) = |u(t)|p − v′(t), t > 0. (45)

Using inequalities (44) we obtain

Dα
0+

(u − u0)(t) ≥ 0, Dβ
0+

(v − v0)(t) ≥ 0.

Lemma 3.5. For any u0 > 0, v0 > 0, it holds:

u′ > 0, v′ > 0.

Proof. Let u′− = max(0,−u′), u′+ = max(0, u′), v′− = max(0,−v′), v′+ = max(0, v′),
so, u′ = u′+−u′− and v′ = v′+−v′−. We are intended to show that u′− = 0 and v′− = 0.
From system (FDS) and using DDα

0+
= Dα

0+
D (where D is the first order integer

derivative) we have

u′′ + Dα
0+

u′ = qvq−1v′, (46)

v′′ + Dβ
0+

v′ = pup−1u′. (47)

Multiplying both sides of the equation (46) with u′− and using the definitions of
u′+ and u′−, we get the equation

(u′′−)(u′−) + (u′−)D
α
0+

(u′−) = −qvq−1v′(u′−). (48)

Taking the integral over [0,T ] and using the inequality
T∫

0
w(t)Dα

0+
w ≥ 0,w(0) =

0, 0 < α < 1 [5], the following inequality is obtained

T∫

0

(u′′−)(u′−) ≤ −q

T∫

0

vq−1v′(u′−),

12



= −q

T∫

0

vq−1v′+(u′−) + q

T∫

0

vq−1v′−(u
′
−),

≤ q

T∫

0

vq−1v′−(u
′
−),

Using Hölder’s inequality, we obtain

d
dt

(1
2

T∫

0

(u′−)
2
)
≤ qC(T )ε

T∫

0

(v′−)
2 + qC(T )C∗(ε)

T∫

0

(u′−)
2,

≤ C1

( T∫

0

(v′−)
2 +

T∫

0

(u′−)
2
)
, (49)

where C1 = max{qC(T )ε, qC(T )C∗(ε)}, since v is locally bounded. Likewise, we
obtain

d
dt

(1
2

T∫

0

(v′−)
2
)
≤ C2

( T∫

0

(v′−)
2 +

T∫

0

(u′−)
2
)
. (50)

Adding (49) and (50), we obtain

d
dt

( T∫

0

(u′−)
2 + (v′−)

2
)
≤ C

( T∫

0

(v′−)
2 +

T∫

0

(u′−)
2
)
, (51)

where C = max(2C1, 2C2). Using Gronwall’s inequality and the fact that u′−(0) =

v′−(0) = 0, we conclude that u′− = 0 and v′− = 0; hence the result.

At this stage, the following configuration is obtained

Dα
0+

(u − u0)(t) ≤ |v(t)|q, Dβ
0+

(v − v0)(t) ≤ |u(t)|p,
u′(t) ≤ |v(t)|q, v′(t) ≤ |u(t)|p. (52)

Furthermore, the system (FDS) along with u′ > 0, v′ > 0 and Dα
0+

(u − u0)(t) ≥
0,Dβ

0+
(v − v0)(t) ≥ 0 allow us to write

either u′(t) ≥ 1
2
|v(t)|q or Dα

0+
(u − u0)(t) ≥ 1

2
|v(t)|q,

13



and
either v′(t) ≥ 1

2
|u(t)|p or Dβ

0+
(u − u0)(t) ≥ 1

2
|u(t)|p.

The analysis of the above inequalities gives us the precise profile of the blowing
up solutions of system (FDS).

Remark 3.6. The lack of estimates on the blow up time for (PFDS) prevent us
to have bilateral estimates on the blow up time for the solutions of (FDS).

4. Numerical implementation

For the numerical treatment of the system (FDS), we will approximate the
solution (u, v) through equations (37) and (38). The approximation of solutions
to the system (PFDS) is obtained via its equivalent form given by the system of
Volterra equations in (32).

The numerical approximations of the solutions to both systems (FDS) and
(PFDS) require the approximations of the convolution integrals; this has been
studied to a reasonable extent in the literature. One of the techniques is the
convolution quadrature method in which the quadrature weights are determined
by the Laplace transform of the convolution kernel and a linear multistep method
(see [6] and references therein).

In this work, the backward Euler convolution quadratures are used for ap-
proximating the convolution integral

t∫

0

K(t − τ)g(τ)dτ. (53)

Let % > 0 be the time step of the discretization, then

t∫

0

K(t − τ)g(τ)dτ =

t∫

0

( 1
2πi

∫

γ

es(t−τ)L{K(τ) : s}ds
)
g(τ)dτ

=
1

2πi

∫

γ

y(s, t)L{K(τ) : s}ds,

where γ is a suitable path connecting −i∞ to +i∞ and

y(s, t) =

t∫

0

es(t−τ)g(τ)dτ

14



is the solution of the initial value problem

y′ = sy + g, y(0) = 0, 0 ≤ t ≤ T. (54)

The backward Euler convolution quadrature is obtained as
∫ tn

0
K(tn − s)u(s) ∼ 1

2πi

∫

γ

L{K(τ) : s}yn(s)ds,

where tn = n%, and yn(s) stands for the approximation of y(s, tn) reached by the
backward Euler method applied to (54). Therefore, if δ(σ) is the generating
polynomial for the backward Euler method that is δ(σ) = 1 − σ, then

tn∫

0

K(tn − τ)g(τ)dτ ∼
n∑

j=0

qαn− jg(t j); (55)

the convolution quadrature weights qαj are given by the coefficients of

+∞∑

j=0

qαjσ
j = L

{
K(t) :

δ(σ)
%

}
. (56)

For more details on the convolution quadrature methods one is referred to [6]
and references therein.

Let for n ≥ 0 the approximation of u(tn) be un, then the discritization of
the system (FDS) via equations (37), (38) by the backward Euler convolution
quadrature method gives

un = (1 − qα0qβ0)−1
[
u0 + qα0v0 +

n−1∑

j=0

q(α)
n− jv j + qα0

( n−1∑

j=0

qβn− ju j

)]
, (57)

vn = (1 − qα0qβ0)−1
[
v0 + qβ0u0 +

n−1∑

j=0

q(α)
n− jv j + qβ0

( n−1∑

j=0

qαn− ju j

)]
, (58)

for n = 1, 2, 3, ..., where the quadrature coefficients qαj , qβj are determined from
equation (56) with K(t) = e1−α and K(t) = e1−β, respectively. Similarly, a numer-
ical scheme for the system (PFDS) can be obtained.

Example 1:
For the figure 1 we set p = 1.5, q = 2, α = 0.75, β = 0.5; the initial conditions are

15



u0 = 3, v0 = 2. In fig(1) (a) the solution curves u(t) corresponding to the systems
(FDS), (PFDS) and (ODS) are plotted. The dotted curve is the solution of the
system (ODS) with λ = 1. As expected, the middle solid curve corresponds to
the solution of the system (FDS). Finally, the dash followed by a dot curve is the
solution of the system (PFDS) with µ = 1/2.

Likewise, in fig(1) (b) the solution curves v(t) for the systems are plotted.
It could be seen that the solution curves of the system (FDS) are between the
solution curves of (ODS) and (PFDS).

(a) (b)

Figure 1: Solution curves for p = 1.5, q = 2, α = 0.75, β = 0.5, u0 = 3, v0 = 2 (a) Solution
curves u(t) for the systems (FDS), (PFDS) and (ODS) (b) Solution curves v(t) for the systems
(FDS), (PFDS) and (ODS).

Example 2:
In the second example, we take the parameters p = 1.1, q = 1.4, α = 0.5 = β; the
initial conditions u0 = 3 = v0. In fig(2) (a) the solution curves u(t) corresponding
to the systems (FDS), (PFDS) and (ODS) are plotted. The dotted curve (which
serve as lower bound for the solution curve of (FDS)) is the solution of the system
(ODS) with λ = 1/2. The solid curve is the solution of the system (FDS) and the
dash followed by dot curve is the solution of the system (PFDS) with µ = 1.

In fig(2) (b) the corresponding solution curves v(t) for the systems are plotted.
The profiles of the solution curves for the system (FDS) match the analysis of
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section 3.

(a) (b)

Figure 2: Solution curves for p = 1.1, q = 1.4, α = 0.5, β = 0.5, u0 = 3, v0 = 3 (a) Solution
curves u(t) for the systems (FDS), (PFDS) and (ODS) (b) Solution curves v(t) for the systems
(FDS), (PFDS) and (ODS).

Example 3:
For figure 3, we set p = 1.1, q = 1.8, α = 0.25, β = 0.4; the initial conditions are
u0 = 5, v0 = 1. The profile of the solution (u, v), for the system (FDS) is given
by the system (ODS) with λ = 1 and the system (PFDS) with µ = 1/2.

As expected, our simulations show a dependance between the parameters
(α, β, u0, v0, p, q) and the calculated blow up.
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(a) (b)

Figure 3: Solution curves for p = 1.1, q = 1.8, α = 0.25, β = 0.4, u0 = 5, v0 = 1 (a) Solution
curves u(t) for the systems (FDS), (PFDS) and (ODS) (b) Solution curves v(t) for the systems
(FDS), (PFDS) and (ODS).
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