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Abstract. Model-Driven Engineering (MDE) and the Semantic
Web are valuable paradigms. This paper sketches how to use a sci-
entific and technical result around MDE in the Semantic Web. The
work proposes a mechanism to automatize the evaluation of model
matching algorithms. The mechanism involves megamodeling and a
Domain Specific Language named AML (AtlanMod Matching Lan-
guage). AML allows to implement matching algorithms in a straight-
forward way. We present how to adapt the mechanism to the ontology
context, for example, to the Ontology Alignment Evaluation Initia-
tive (OAEI).

1 Introduction
Over the last decade, whereas the software engineering community
has advanced the Model-Driven Engineering (MDE) paradigm, the
Web, AI, and database communities have promoted the Semantic
Web. MDE suggests to develop a model of the system under study,
which is then transformed into an executable software entity [12].
The Semantic Web, in turn, aims to express Web information in
a precise, machine-interpretable form, ready for software agents to
process [12].

Even though MDE has foundations and applications different from
the Semantic Web’s, researches have raised the question: how the sci-
entific and technical results around MDE can be used productively
in the Semantic Web, and vice versa? [21] elucidates the potential of
ontologies technologies in MDE. Given a classical MDE transforma-
tion scenario, [21] proposes further transformations into the ontology
working context. The idea is to enable model checking, logics-based
model analysis, and reasoning. [12], in turn, details how to use MDE
for ontology development on the Semantic Web. The authors suggest
MDE to automate the semantic markup of Web resources which has
been done more or less manually.

Just as [12], we investigate how MDE can contribute to ontol-
ogy development. In particular, our work is about matching systems
evaluation. The Semantic Web defines matching like an operation
computing alignments between ontologies. Alignments are the more
longstanding solution to the interoperability problem. Because the
number of matching systems is rapidly increasing, it is necessary to
pursue efforts on an extensive evaluation [9].

To illustrate what a matching system evaluation consists of, let
us consider to the Ontology Alignment Evaluation Initiative (OAEI).
Every year since 2004, the OAEI develops a campaign that evaluates
ontology matching systems presented by participants. Fig. 1 illus-
trates a classical evaluation. The matching system f takes as input
two ontologies (o and o′), an initial alignment (A), parameters (p),
and resources (r), and yields as output a new alignment (A′). R is a
reference alignment (or gold standard), the one that participants must
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find. The evaluation mechanism calculates matching metrics (M ) by
comparing R to each A′. The OAEI uses such metrics to figure out
strengths and weaknesses of proposed matching systems.
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Figure 1. Ontology matching systems evaluation (Adapted from [19])

Each campaign involves three phases: preparation, execution, and
evaluation. During the preparation phase, the OAEI defines a set of
test cases to compare matching systems and algorithms on the same
basis. A given test case includes ontologies (coming from differ-
ent domains) and their corresponding alignments. In the execution
phase, the participants use their algorithms to match all test cases.
Finally, the OAEI organizers check the results obtained in the evalu-
ation phase.

Inspired from the OAEI framework, we have developed a mech-
anism that automatizes the evaluation of model matching systems.
Instead of ontologies, our mechanism involves systems that match
metamodels (i.e., formalisms to represent models). In addition, the
mechanism itself is based on MDE.

In a nutshell, our approach tackles two issues of matching algo-
rithm evaluation.

1. Not enough test cases. Whereas it is relatively easy to pairs of
metamodels, the availability of reference alignments is restricted.
Instead of asking experts for reference alignments, our mechanism
automatically extracts them from model transformations.

2. Low evaluation efficiency. Evaluation is a time-consuming task.
By using a megamodel (i.e., a map), our mechanism executes
matching algorithms over test cases in an automatic way. Such
automatization can reduce the time spent during evaluations, and
increase the confidence on results.

We believe that these problems are relevant to ontology matching
systems evaluation too. The aim of this paper is to present the whole
mechanism and draw out how the Semantic Web community can take
advantage of it. Besides megamodels, our approach uses AML pro-
grams. AML (AtlanMod Matching Language) is a Domain Specific
Language (DSL) to implement matching algorithms. In an experi-
mentation, our mechanism evaluates an AML program over 30 test
cases in 40 minutes.

The paper structure is as follows: Section 2 presents an overview
of the mechanism. The subsequent three sections describe the mech-
anism in detail. Each of them briefly outlines how to integrate our



approach to the ontology context. Section 6 shows and discusses the
results of applying the approach. Section 8 concludes the paper.

2 Mechanism Overview
Fig. 2 shows the artifacts manipulated by our mechanism along the
evaluation phases. The artifacts are stored in a model repository.

• Preparation. The mechanism constitutes a given test case using
two metamodels, m and m′, and a transformation tm2m′ writ-
ten in terms of them. A reference alignment R is extracted from
tm2m′ (block e in Fig. 2).

• Execution. We develop a matching algorithm f with AML.
• Evaluation. The mechanism executes f which computes a candi-

date alignment A′ from m, m′, A, r, and p. Finally, the block c
compares A′ to R and derives matching metrics M(A′, R).

A megamodel is a kind of map of a model repository. Our ap-
proach uses a megamodel to constitute many test cases, launch a set
of matching algorithms, and compute metrics. Next sections describe
our mechanism in detail.
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Figure 2. A mechanism to automatize matching system evaluation

3 Preparation: Getting Test cases from Model
repositories

In this phase, our mechanism prepares a set of test cases. Each test
case consists of a pair of metamodels and a reference alignment.

3.1 Discovering test cases
The megamodel is the cornerstone of our approach, it provides a
roadmap of all the modeling artifacts stored in a repository, as well
as, the relations between them [23]. Note that in MDE everything
is a model (metamodels, transformations, etc). Before working with
the megamodel it has to be populated. Since a model repository is
continuously growing, we have implemented a strategy to automati-
cally populate the megamodel. The strategy consists of the following
steps:

1. A program parses a set of files containing metadata. The metadata
describes, for example, in terms of what metamodels a transfor-
mation is written. The output of the parsing is a text file.

2. A textual syntax tool [6] translates the text file into a megamodel.

3. Because the megamodel refers to more models than the ones we
are interested in, a program refines the megamodel to keep only
the records related to transformations and their corresponding
metamodels.

Fig. 3 shows the metamodels of an extracted test case. In general,
the elements of a metamodel are classes and structural features (i.e.,
attributes, and references). For instance, the Ant metamodel contains
the class Project, the attribute message, and the reference de-
fault.

(a) Make metamodel

(b) Ant metamodel

Figure 3. Metamodels of a test case

3.2 Extracting reference alignments from
transformations

Having the megamodel, the mechanism extracts reference align-
ments from transformations. A transformation is a program that
translates models, conforming to source metamodels, into models,
conforming to target metamodels. A transformation may be available



in various flavors, i.e., being developed by programmers geographi-
cally distributed, or using model transformation languages different
each other. Thus, we should define the extraction scope by answering
the questions: 1) in what languages the available transformations are
developed?, and 2) what patterns are embedded in them?

For example, we have found the following patterns in ATL 2 trans-
formations (Listing. 1 shows a concrete example):

• Each transformation contains a set of rules (lines 1-9).
• Each rule consists of a pair of patterns, i.e., inPattern and
outPattern. The inPattern matches a class of m (line 3),
and the outPattern a class (or set of classes) of m′ (line 5).

• Each outPattern is composed of a set of bindings. A binding
initializes a rightClass property using a structural feature of left-
Class. We have characterized four types of bindings:

1. rightStructuralFeature ← a leftStruc-
turalFeature (line 6).

2. rightStructuralFeature← an OCL [20] iteration ex-
pression which includes a leftStructuralFeature (line
7).

3. rightStructuralFeature← an operation (i.e., a helper
expression) involving a leftStructuralFeature.

4. rightStructuralFeature← a variable referring to an-
other rightClass created in the outPattern.

Note that the more we figure patterns out, the better is the quality
of reference alignments. The quality can be further increased by ex-
tracting alignments not only from one transformation but also from a
set of transformations tm2m′ if they are available. Alignments con-
form to one extension of the AMW core metamodel [2]. AMW (At-
lanMod Model Weaver) is a tool to manipulate model-based align-
ments.

Listing 1. Excerpt of the transformation Make2Ant
1 rule Makefile2Project{
2 from
3 m : Make!Makefile
4 to
5 a : Ant!Project(
6 name <- m.name,
7 targets <- m.elements -> select(c | c.

oclIsKindOf(Make!Rule))
8 )
9 }

There are ways to bring the gap between modeling artifacts and
ontologies. Tools like EMFTriple [13] can translate metamodels to
ontologies. A transformation moreover can transform our alignments
to a more standard alignment format (e.g., the Alignment API [8]).

4 Execution: Implementing and Testing Matching
Algorithms with AML

The execution phase typically involves implementation, testing, and
deployment3 of matching algorithms. In our approach, the execution
only embraces development and testing. We drop the deployment to
the evaluation phase.

Instead of GPLs, we propose a DSL to implement and test match-
ing algorithms. In general, DSLs improve programmers productiv-
ity and software quality. Often, this is achieved by reducing the cost
of initial software development as well as maintenance costs. The

2The AtlanMod Transformation Language [14].
3We call deployment the stage that executes algorithms in order to pro-

duce the final matching results.

improvements - programs being easier to write and maintain - ma-
terialize as a result of domain-specific guarantees, analysis, testing
techniques, verification techniques, and optimizations [18].

According to [22], the matching operation has been investigated
from the early 1980s. We promote the use of a DSL gathering all
the expertise gained over the last twenty years. The DSL has to cap-
ture a significant portion of the repetitive tasks that a expert needs to
perform in order to produce an executable matching algorithm.

A first approximation to such DSL is the AtlanMod Matching Lan-
guage (AML) which is based on the MDE paradigm [11]. AML in-
struments the fundamental behind the most recent matching algo-
rithms: to assemble multiple components each one employing a par-
ticular matching technique [15]. Internally, an AML algorithm is a
chain of model transformations, each one implementing a matching
technique. Input/output flow along the chain as models.

Roughly speaking, an AML program is a text file containing three
sections [11]:

1. Import section enables reusing of pre-existing AML algorithms.
2. Matching rule declaration allows to specify a concrete matching

technique. This conforms to one of 5 kinds of techniques:

• Creation establishes an alignment between the element a (in
metamodel m) and the element b (in metamodel m′) when
these elements satisfy a condition.

• Similarity computes a similarity value for each alignment pre-
pared by the creation techniques. One function establishes the
similarity values by comparing particular metamodel aspects:
labels, structures, and/or data instances.

• Aggregation combines similarity values by means of one ex-
pression. An expression often involves:

– n, the number of matching techniques providing alignments.

– σi(a, b) similarity value computed by the matching technique
i

– wi weight or importance of the matching technique i, where∑n
i=1 wi = 1

• Selection selects alignments whose similarity values satisfy a
condition, e.g., thresholding.

• User-defined represents matching techniques capturing func-
tionality beyond our classification.

3. Model flow block specifies how several matching techniques in-
teract to each other to deliver alignments.

Listing. 2 shows the excerpt of an AML algorithm named Lev-
enshteinBothMaxSim. For the sake of brevity we present the model
flow block and omit matching rule declarations 4. LevenshteinBoth-
MaxSim involves the following number of matching rules: 3 cre-
ation, 1 label-based similarity, 1 structure-based similarity, 1 aggre-
gation, 2 selection, and 1 user-defined. They have been inspired by
[3][4][16][9]. We have chosen such techniques because they report
good results. Below we describe their functionality:

Creation TypeClass, TypeReference, and TypeAttribute create
alignments between two metamodel elements conforming to the
same metametamodel type (class, reference or attribute).

4The reader interested in that may check [10]



Similarity

• Levenshtein returns a value depending on the edition operations
that should be applied to a label to obtain the other one. Leven-
shtein reuses the SimMetrics API [1].

• Propagation, SF, and Normalization instrument the algorithm
Similarity Flooding described in [17]. This algorithm strengthens
previously computed similarities based on the metamodel struc-
ture. Propagation associates two alignments (l1 and l2) if there is
a relationship between the linked elements, for example, l1 links
classes, and l2 links attributes, classes contain attributes. SF prop-
agates the similarity value from l1 to l2 because of their relation-
ship, e.g., containment. Normalization divides all the similarity
values by the maximal similarity value.

Aggregation The Merge matching technique puts together the
alignments returned by other techniques. We have implemented it
by means of an AML aggregation construct.

Selection BothMaxSim selects a given alignment if its similar-
ity value is the highest among the values of alignments of two sets
(e.g., leftSet and rightSet). The leftSet contains all the
alignments linking a left concept, and the rightSet the align-
ments linking a right concept. ThresholdMaxDelta moreover selects
an alignment when its similarity satisfies the range of tolerance
[Threshold−Delta, Threshold]. While BothMaxSim provides 1:1
alignments, ThresholdMaxDelta provides n:m. These matching tech-
niques (along with the thresholds) have been borrowed from [3].

User-Defined Whereas Propagation levers the execution of SF (a
similarity matching technique), Propagation is user-defined.

Listing 2. LevenshteinBothMaxSim model flow
1 modelsFlow{
2 tp = TypeClass[map]
3 typeRef = TypeReference[map]
4 typeAtt = TypeAttribute[map]
5
6 merged = Merge[1.0:tp, 1.0:typeRef, 1.0:typeAtt]
7

8 nam = Levenshtein[merged]
9

10 filtered = ThresholdMaxDelta[nam]
11 prop = Propagation[filtered]
12 sf = SF[filtered](prop)
13 norm = Normalization[sf]
14

15 tmpresult = WeightedAverage[0.5 : norm, 0.5:nam]
16

17 result = BothMaxSim[tmpresult]
18 }

Besides the techniques mentioned above, we have implemented
other sophisticated heuristics, for example, MSR (Measures of Se-
mantic Relateness), which extracts semantic similarity between two
labels based on a large corpora, e.g., Google or Wikipedia. Besides
creation techniques, our library has 10 techniques 5.

AML is build on top of ATL, one of the most popular transfor-
mation language. AML inherits the ATL declarative nature which al-
lows to straightforwardly implement matching rules. In addition, the
model flow block enables to easily assembly matching techniques
and tune algorithms. With respect to testing features, users can ver-
ify the correctness of alignments by displaying them in the AMW
graphical interface [2]. AML moreover provides a functionality that
compares computed alignments to gold standards and gives the re-
sults in HTML format.

5See http://wiki.eclipse.org/AML

Note that AML allows to develop user-defined matching tech-
niques in ATL (to go beyond pre-established DSL semantics) and
even invoke Java code. Thus, it is possible to integrate the vast set of
matching algorithms developed in the past.

5 Evaluation: Deploying and Assessing AML
Algorithms

Based on a megamodel, our mechanism automatically deploys
algorithms and computes metrics. The megamodel indicates the
algorithms to be executed, the required inputs, and the ref-
erence alignments. Our mechanism computes four matching
metrics [9]: Precision(R,A′) = R∩A′

|A′| , Recall(R,A′) =

R∩A′

|R| , Fscore(R,A′) = 2∗Recall(A′,R)∗Precision(A′,R)
Recall(A′,R)+Precision(A′,R)

, and
Overall(A′, R) = Recall(A′, R) ∗ (2 − 1

Precision(A′,R)
). This

moreover updates the megamodel with records associating A′, R,
and M(A′, R).

The use of DSLs and megamodels facilitates the evaluation phase.
Since there is an unique programming interface, launching the algo-
rithms become easier. By using the megamodel, our mechanism can
execute algorithms over a large set of test cases and to obtain results
by itself. This promotes a more confident evaluation of performance
and accuracy.

The ontology community has contributed several tools to compute
sophisticated matching metrics (e.g., PrecEvaluator [19]). We can
take advantage of these tools by translating our alignments to their
formats.

6 Experimentation: Results and Discussion
The approach has been tested over the “ATL Transformation Zoo”
[5]. This repository has so far 103 ATL transformation projects con-
tributed by the m2m Eclipse community [7]. Our mechanism auto-
matically populated the megamodel with 1064 entities, 185 of them
are metamodels and 156 are transformations. It took around 20 min-
utes to build the megamodel.

Figure 4. Automatic modeling artifact discovery results

After filtering the megamodel, for obtaining only the data matter
of our interest, we obtained 30 test cases. Fig. 5 shows the results
of applying the LevenshteinBothMaxSim algorithm to the test cases.
The algorithm spent 40 minutes matching the pairs of metamodels.
Fig. 5 reports low fscores (lower than 0.5). There are two reasons
behind these results:

1. The suitability of AML algorithms. The space of matching al-
gorithm is quite large, and sometimes it is difficult to find an algo-
rithm that accurately matches a certain pair of metamodels. Thus,
it is quite natural that LevenshteinBothMaxSim provides good re-
sults for few pairs of metamodels. We can see better the accuracy
of an algorithm as we compare its results to other algorithms’.

2. The quality of reference alignments. When transformations are
complex or incomplete, our mechanism may not extract enough
reference alignments.



• Complex means that a given transformation implements im-
perative patterns (rules with only outPattern). In contrast,
our mechanism relies on declarative patterns (as described in
Section 3.2, rules with inPattern and outPattern). One
example is the transformation Measure2Table which contains 6
rules, all of them imperative. The complexity of this transfor-
mation explains why our mechanism does not obtain any refer-
ence alignment, and why the fscore is zero.

• Incomplete means that a transformation lacks items. The justi-
fication is that developers write transformations in terms of the
data instances that they expect to have in the source and tar-
get models. If the data instances are not relevant, developers do
not written rules associating certain metamodel concepts. Thus,
even if an AML algorithm gives good results, it is possible to
obtain low fscores when reference alignments are poor.

Figure 5. Results

In the future, we wish to apply a larger set of AML algorithms to
the test cases extracted from the ATL transformation Zoo. With re-
spect to the quality of reference alignments, we think that it is accept-
able: only one transformation out of thirty has produced an empty
reference alignment, i.e., Measure2Table, the one containing imper-
ative rules. In general, ATL transformations contain declarative pat-
terns which allows to extract reference alignments much more easily.
We believe that transformations are a good source of reference align-
ments. So that, we can get an intuition about matching algorithm
accuracy as we use them.
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8 Conclusion

We presented a mechanism to automatize the evaluation of model
matching systems. Our early results are motivating. Firstly, the mech-
anism extracts complete test cases from open-source repositories.
The number of candidate test cases raises every year. Secondly, the
use of a DSL makes it possible to reuse matching techniques. Thus,
developers can improve their productivity. Finally, by using a meg-
amodel, our mechanism extensively evaluates matching algorithms
over extracted test cases. We outlined the tools needed to adapt our
mechanism to the ontology context. They are mostly based on model
transformations. In the near future, we wish to join an evaluation ini-
tiative, like the OAEI. The idea is to test our mechanism, notably, the
development of further matching algorithms.
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tation of models to evolving metamodels’, Technical report, INRIA,
(2008).

[11] Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin, ‘A
Domain Specific Language for Expressing Model Matching’, in Pro-
ceedings of the 5ère Journée sur l’Ingénierie Dirigée par les Modèles
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