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RÉSUMÉ. Une stratégie de mise en correspondance calcule des liens entre deux modèles en
exécutant un ensemble d’heuristiques. Dans ce papier, nous introduisons AML (pour AtlanMod
Matching Language), un langage dédié à l’expression des stratégies de mise en correspondance
des modèles. AML est conçu pour l’ingénierie des modèles et il implémente les stratégies de
mise en correspondance par des chaînes de transformation de modèles. Chacune de ces trans-
formations prend un ensemble de modèles en entrée et crée un modèle de correspondances en
sortie. Nous présentons un compilateur qui prend en entrée des programmes AML et génère
en sortie du code ATL (AtlanMod Transformation Language) et Apache Ant. Le code ATL ins-
trumente les transformations de modèles de mise en correspondance et le code Ant orchestre
leur exécution. Nous évaluons cette implantation sur deux stratégies de mise en correspondance
composé d’ensembles de transformations issues de la litérature.

ABSTRACT. A matching strategy computes mappings between two models by executing a set of
heuristics. In this paper, we introduce the AtlanMod Matching Language (AML), a Domain Spe-
cific Language (DSL) for expressing matching strategies. AML is based on the Model-Driven
paradigm, i.e., it implements model matching strategies as chains of model transformations. A
matching model transformation takes a set of models as input, and yields a mapping model as
output. We present a compiler that takes AML programs and generates ATL (AtlanMod Trans-
formation Language) and Apache Ant code. The ATL code instruments the matching model
transformations, and the Ant code orchestrates their execution. We evaluate this implementa-
tion on two strategies including robust matching transformations from the literature.

MOTS-CLÉS : Génie des Modèles, Transformation de Modèles, Mise en correspondance.

KEYWORDS: Model-Driven Engineering, Model Transformation, Matching.



1. Introduction

Business and technological changes influence the evolution and integration of soft-
ware systems. Software engineers have to deal with the heterogeneity among all the
artifacts (e.g., many versions for each software artifact) in order to get the systems
working. Various solutions have been proposed to tackle this issue. One of them,
called Matching, has been thoroughly studied in the ontology and database schema
contexts. The matching operation is also gaining importance in Model-Driven Engi-
neering (MDE) (Falleri et al., 2008).

An MDE system basically consists of a set of models, i.e., terminal models and
metamodels (Jouault et al., 2006a). A metamodel is composed of concepts and rela-
tionships. A terminal model contains instances of the metamodel concepts. In general,
the matching operation computes mappings between two models. A mapping is a re-
lationship between two model elements similar to each other in a way. The research
problem of the following works may illustrate the need of mappings between terminal
models and/or metamodels :

– Metamodel-to-metamodel (M2-to-M2). (Cicchetti et al., 2008) describes the
problem of adapting terminal models to their metamodels evolving. They uses the
mappings and differences between two metamodels (i.e., a given metamodel to a for-
mer version of the same metamodel) for deriving adaptation transformations.

– Terminal model-to-terminal model (M1-to-M1). (Javed et al., 2008) recovers
metamodels from a repository of terminal models. The approach translates the termi-
nal models into grammar-based representations, an engine then infers a metamodel
from them. This work may motivate the need of mappings between two terminal mo-
dels from which we can obtain metamodels.

– Terminal model-to-metamodel (M2-to-M1 or M1-to-M2). (Favre, 2004)
points out that software systems may rapidly become out of sync with the imple-
mentation. In MDE systems, an instance of this problem is that the developers often
change code without updating the corresponding terminal models and metamodels. In
this scenario, we imagine the mappings, between a terminal model (extracted from
source code) and a given metamodel, as artifacts for reconstructing the metamodel
(e.g., for finding out new metamodel types).

There are many strategies to deliver these kinds of mappings (we will refer to these
strategies as matching strategies). They typically execute a set of matching heuristics.
Inspired by them, we have proposed MDE matching strategies that find out M2-to-
M2 mappings (Garcés et al., 2008). Every strategy has been implemented as chains
of model transformations, where each model transformation instruments a matching
heuristic. A Matching Transformation (indicated as MT in the remaining sections)
takes as input a set of models (the models to be match –ModelA and ModelB–, a
mapping model returned by other transformation, and additional models), and yields
a mapping model conforming to a mapping metamodel.



After studying many matching strategies and performing some experimentations,
(see full results in (Garcés et al., 2008)), we have observed two main issues that impact
the productivity of matching developers :

1) Coupling of strategies and model representations. Most of matching ap-
proaches (Ohst et al., 2003)(Xing et al., 2005)(Girschick, 2006)(Treude et al., 2007)
write heuristics in terms of one internal model representation (as it will have to be).
Even though such heuristics compare very standard model features (e.g., labels, struc-
ture), these may be no longer applicable when the models to be matched conform to
other metamodels. The solution often is to rewrite a given heuristic for each pair of
metamodels. As a result, we get multiple heuristics encompassing the same matching
logic.

2) Lack of matching logic constructs. Matching heuristics have been mostly ins-
trumented using General-Purpose Languages (GPL), e.g., (Melnik et al., 2003) and
(Do, 2005). Matching experts may spend much more time for expressing a heuristic,
using the GPL constructs, than the time for inventing it. Considering that the number
of heuristics is rapidly increasing (OAEI, 2008), the question is : How can we reduce
effort to express matching heuristics ?

By considering the fairly good results of our early MDE matching strategies
(Garcés et al., 2008), we have decided to make more generic the original approach
(i.e., to develop not only strategies to match two metamodels, but to match any pair of
models), and to tackle the two issues described above. To achieve this goal, we pro-
pose the AtlanMod Matching Language (AML), a DSL that provides constructs for
straightforwardly expressing matching strategies. We deal with the coupling problem
using a compilation strategy which adapts matching rules to the models to be mat-
ched. Whereas a detailed discussion about the compilation strategy is out of scope of
the paper, this do focus on the language constructs, and the first significant results of
using them.

An outline of the remainder of this paper follows. Section 2 explains the matching
domain and the kinds of heuristics, and also introduces a motivating example. Section
3 describes the AML constructs and their semantics. Section 4 shows how to specify
the motivating example using AML. Section 5 reports the experimentation results.
Section 6 presents the related works. Finally, Section 7 concludes the paper.

2. Matching Domain Overview and Motivating Example

After analyzing the strategies compiled in (Euzenat et al., 2007), we can charac-
terize the matching domain. A matching strategy is a stepwise process that takes two
modelsA andB, along with optional domain knowledge, and produces mappings bet-
ween the models. A mapping relates (links) an element of A at most one element of
B. A mapping has a similarity value (between 0 and 1) that represents how similar the
linked elements are. A matching strategy deliveries mappings by applying at least 5
kind of heuristics :



– Creation establishes a mapping between the element a (in model A) and the
element b (in model B) when these elements satisfy a condition.

– Similarity computes a similarity value for each mapping prepared by the crea-
tion heuristics. One function establishes the similarity values by comparing particular
model aspects : labels, structures, and/or data instances (the latter has sense when the
models represent metamodels). In general, a given comparison is direct and/or indi-
rect. Direct means only the model elements, e.g., a and b, are compared each other.
The indirect comparison separately examines a and b in relation to a third element
(e.g, c) from a domain knowledge resource (e.g., an ontology).

– Aggregation combines similarity values by means of one expression. An ex-
pression often involves :

- n, the number of heuristics providing mappings.
- δ(ai, bi) similarity value computed by the heuristic i

- wi weight or importance of the heuristic i, where
∑n

i=1 wi = 1
– Selection selects mappings whose similarity values satisfy a condition.
– Rewriting retypes/reorganizes generic mappings that fill a condition. "Retypes"

intends to transform a generic mapping to a richer semantic mapping. "Reorganizes"
means to arrange mappings when there is a kind of relationships between the linked
elements.
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Figure 1. The strategies S0 and S1

Fig. 1 shows a motivating example whose purpose is to find out M2-to-M2
mappings using (among other model aspects) data instances. The main strategy,



i.e., S1, matches two metamodels MetamodelA and MetamodelB, conforming to
the same metametamodel, e.g., EMF/Ecore, KM3. In particular, S1 uses the mat-
ching transformation Instances which propagates similarity values of M1-to-M1 map-
pings to M2-to-M2 mappings. The M1-to-M1 mappings have been earlier com-
puted by the strategy S0. The strategy S0 therefore matches two terminal mo-
dels, TerminalModelA and TerminalModelB, conforming to the metamodels
MetamodelA and MetamodelB. Remark on both S0 and S1 reuse the matching
transformations EditDistance, Propagation, SimilarityFlooding, Normalization, and
Threshold. The difference is that the transformations match terminal models in S0,
and metamodels in S1. Note that Fig. 1 uses a particular symbol to indicate the type of
each transformation. The figure incorporates an additional type, user-defined, which
represents heuristics capturing functionality beyond our classification, e.g., Propaga-
tion. We describe these transformations in Section 4.

3. The AtlanMod Matching Language (AML) in a Nutshell

3.1. Overview

AML is a DSL for expressing MDE matching strategies. AML keeps the declara-
tive flavor (of some model transformation languages) for expressing matching trans-
formations, and adds dataflow programming constructs for describing matching trans-
formation chains. Fig. 2 shows the tools that support AML :

The Compiler takes a given AML program (including the constructs matching
rule and model flow) and performs the following tasks :

– Analyze the AML program (syntax and semantic)
– Merge pre-existent matching rules (which are available at a library of strategies)
– Generate a model matching transformation (written in a concrete model transfor-

mation language, i.e., ATL) for each matching rule. This transformation contains the
matching rule, and additional copying rules. The ATL compiler generates executables
from the code.

– Translate the model flow section into transformation chain specification code,
i.e., Ant scripts.

The Launcher executes Ant scripts. This specifies the input models to the trans-
formations, and saves the mapping models into a repository.

In this work we envision AML to specify matching strategies as automatic as pos-
sible. Model flow allows to specify no user assistance. The user can nonetheless refine
mapping models when a strategy execution ends, and apply strategies on manually
refined mapping models. The first AML version provides no constructs for rewri-
ting matching logic (described in section 2). As this logic highly depends on a gi-
ven domain (e.g., metamodel evolution), more work is needed to determinate whether
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constructs can factorize its patterns. Although there exist these limitations, AML re-
mains applicable in matching domain.

3.2. Concrete syntax and semantic

Listing. 1 gives the overall structure of a matching strategy. A matching strategy
needs a name, and contains an import section, a set of matching rule declarations, and
a model flow block. Below we present the concrete syntax and informal semantics of
the AML constructs.

Listing 1 – Overall structure of a matching strategy
1 s t r a t e g y S1 {
2 imports BasicStrategy ;
3 uses Propagation ( mappingM : MappingMM ) ;
4 c r e a t e TypeMM ( ) { . . . }
5 . . .
6 s e l Threshold ( ) { . . . }
7 modelFlow { . . . }
8 }

Import section enables to declare AML strategies to be imported. The imported
strategies contain matching rules supposed to be reused in a model flow block.

Listing 2 – Import section
1 strategyreflist := ( imports strategyref ) ? ;
2 strategyref := name | name , strategyref

Matching rule declaration specifies the matching rule type, followed by a name,
the list of input models (indicating their respective metamodels), the list of libraries to
be imported, and the matching rule body.

Listing 3 – Matching rule declaration
1 matchingrule := ( c r e a t e | sim | aggr | s e l | uses ) name inputmodellist

↪→libraryreflist ? { matchingrulebody }



2 inputmodellist := ( ) | ( inputmodel )
3 inputmodel := model | model , inputmodel

4 libraryreflist := uses libraryref

5 libraryref := library | library , libraryref

The developer declares a matching rule using the keywords create, sim, aggr,
sel, or uses. The keyword uses declares an external ATL transformation, which
should be executed somewhere in the strategy. The developer should only specify the
name and list of input models of the ATL transformation. The transformation functio-
nality is therefore defined in a separated ATL module. It is not necessary to specify
the mapping model (intended to be manipulated by the matching rule) in the input
model list, this remains intrinsic. A library list enables to import ATL libraries contai-
ning helpers. A helper can be used to specify operations on model elements (Jouault
et al., 2005). In AML, every helper is declared in ATL libraries.

Matching rule body specifies the expressions inpattern, variables, and si-

mexp. An inpattern indicates a set of source types coming from the metamodels spe-
cified in a rule input model list. Most of matching rules establish a condition, i.e.,
an OCL expression (OMG, 2006). When the condition is true, then the mappings are
manipulated in some way. In the creation and similarity rules the condition involves
the source types and the Mapping type. In the selection rules, in order, the condition
involves the similarity value. There is no condition in the aggregation rules. The va-
riables section makes possible to declare a number of local variables. The variables
declared in this section can be used in sim expressions. Sim expressions specify simi-
larity functions, these are mandatory in similarity and aggregation rules.

Listing 4 – Matching rule body
1 matchingrulebody := inpattern ? variables ? simexp ?
2 variables := us ing { variableslist }
3 variablelist := variabledecl | variabledecl ; variablelist

4 variabledecl := varname : vartype = initexp ;
5 inpattern := intypelist condition

6 intypelist := ( from intypedecl *) ?
7 condition := ( when oclexpression ) ?
8 intypedecl := varname : type in modelname ;
9 type := metamodelname ! typename

10 simexp := i s oclexpression

Model flow block allows to declare how models flow among matching transfor-
mations. A model flow block consists of a set of model variable declarations.

Listing 5 – Model flow section, concrete syntax
1 modelflowblock := ( modelFlow { modelvardecl* } ) ?
2 modelvardecl := ( modelname = ) ? modelflowexp

3 modelflowexp := ( modelexp | transformationcall | weightmodelflowexp )
4 transformationcall := name parammodelflowexplist

5 parammodelflowexplist := ( ) | parammodelflowexp

6 parammodelflowexp := modelflowexp | modelflowexp , parammodelflowexp

7 weightmodelflowexp := weight : transformationcall | modelexp

8 modelexp := model

9 model := modelname : metamodelname

A model variable declaration associates a model name to a model flow expression.
This can be an input model, a transformation call or weighted model flow expression.



When the model flow expression is a transformationcall(...), the AML system
serializes the transformation output as a model conforming to the mapping metamodel.

A transformation call refers to a transformation rule by means of its name. While
a transformation rule signature just contains input models, the transformation call in-
dicates the input models and the mapping models to be manipulated. Observe that the
developer can refer to input models or output models using a model flow expression
or its corresponding model name (if the expression has been previously associated to
a model name).

As a final point, weighted model flow expressions allow to associate a weight to a
transformation call or to an input model expression (if this refers to a mapping model).
An aggregation transformation call should use weighted model flow expressions as
parameters.

4. The Motivating Example Using AML

This section presents how to specify the main blocks of a given AML strategy, i.e.,
model flows and matching transformations.

4.1. Model flow of strategy S1

Listing. 6 illustrates the model flow block of the strategy S1. We have omit the
S0’s model flow due to space constraints, we have taken S1 as a reference because it
reuses S0’s matching transformations, and it is a more elaborated strategy. The strategy
S1 executes 8 MTs. Unlike the transformation TypeMM, the subsequent transforma-
tions take the previously produced mapping model as input. Listing. 6 distinguishes
different model flow block features. For example, the block contains the two types
of model variable declaration. While line 2 declares an additional input model, the
rest of lines state matching transformation calls. In line 5, we directly use transfor-
mation call as arguments, instead of declaring the transformation call first, and then
referring the output models. Whereas it is necessary to declare additional models and
mapping models as transformation call parameters (for example, inst and typeMM in
line 6), AML keeps the models to be matched intrinsic, e.g., TerminalModelA and
TerminalModelB in S0, and MetamodelA and MetamodelB in S1. Finally, the
model flow block contains an aggregation MT call (line 8). This notation enables to
indicate the importance of similarity values returned by the MTs Normalization and
Instances.

4.2. Matching rules of strategy S1

We discuss below the main MTs used in the strategies S0 and S1. Each matching
transformation has an AML code listing whose number is enclosed between parenthe-



sis. In brief, the main differences between the AML matching transformations and the
corresponding ATL versions are :

1) AML constructs hide source and target patterns that respectively specify : a)
types of conformance of models to be matched, and b) mapping metamodel concepts.
We can refer to them using the constructs thisLeft, thisRight, and thisMapping. The
developer uses thisLeft to refer to elements of modelA, thisRight to relate to elements
b of model B, and thisMapping to refer to mapping elements. In particular, the former
constructs allow to develop matching rules without the matter of specifying the meta-
model types to be matched. This makes some matching rules generic and applicable
to any pair of models.

2) In the AML versions only remain source patterns that queries additional input
models, conditions, and functions modifying similarity values.

3) AML provides constructors than factorize code, e.g., Summation, thisWeight,
thisSim, thisInstances, thisModel.

Listing 6 – Model flow of strategy S1
1 modelFlow {
2 inst = Instance : EqualMM ;
3 typeMM = TypeMM ( ) ;
4 levMM = EditDistance ( typeMM ) ;
5 normMM = Normalization ( SimilarityFlooding ( Propagation ( levMM ) ) ) ;
6 instanceMM = Instances ( typeMM , inst ) ;
7 weightedMM = Weighted ( 0 . 5 : normMM , 0 . 5 : instanceMM ) ;
8 thresMM = Threshold ( weightedMM ) ;
9 }

TypeMM (Listing. 7) creates a mapping for each pair of model elements having
the same type. In contrast to TypeMM, the MT Cartesian Product (in S0) simply spe-
cifies true as condition. As a result, we get a mapping for each pair of model elements
(without restrictions).

Listing 7 – TypeMM
1 c r e a t e TypeMM ( ) {
2 when
3 thisLeft . type = thisRight . type
4 }

EditDistance (Listing. 8) assigns a similarity value to each mapping prepared by
the transformation CartesianProduct. The values are computed by the helper editDis-
tance contained in the ATL library Strings. This compares the names of left and right
model elements, and returns a value depending on the edition operations that should
be applied to a name to obtain the other one. More edition operations, less similarity
value.

Listing 8 – EditDistance
1 sim EditDistance uses Strings {
2 is thisLeft . name . editDistance ( thisRight . name )
3 }



SimilarityFlooding (Listing. 9) propagates previously computed similarity values.
This is inspired on Melnik’s algorithm (Melnik et al., 2002). Our implementation has
two steps. The first step creates an association (i.e., a PropagationEdge) for each pair
of mappings (m1 and m2) whose linked elements are related each other. For example,
this step associates the mappings (Class1, Class1') and (Attribute1, Attri-

bute1') because Class1 of A contains Attribute1, and Class1' of B contains
Attribute1'. The second step propagates a similarity value from m1 to m2 because
of the relationship. As the first step requires not only mappings but also propagatio-
nEdges, we implement it using an external ATL transformation. SimilarityFlooding
then takes the external transformation result, and propagates similarity values along
mappings. Besides Similarity Flooding, the strategies S0 and S1 execute the MT Nor-
malization which makes similarity values conform to the range [0,1].

Listing 9 – Similarity Flooding
1 sim SF ( ) {
2 i s
3 thisSim

4 +
5 MappingMM ! PropagationEdge . allInstances ( )
6 −>select ( e | e . incomingLink = thisEqual )
7 −>collect ( e | e . propagation * e . outgoingLink . sim )
8 −>sum ( )
9 }

Instances (Listing. 10) propagates similarity values from M1-to-M1 mappings
to M2-to-M2 mappings. The M1-to-M1 mappings are computed by the strategy S0.
These mappings are supposed to be queried but not modified. We use the primitive thi-
sInstances (line 3) to recover, for each M2-to-M2 mapping, e.g., linking the concepts
a and b, the M1-to-M1 mapping whose linked elements conforming to a and b. The
similarity function (line 5) calculates the average of the M1-to-M1 mapping simila-
rity values. The function reuses the helper maxSim and introduces the helper totalSim
(also included in the generic ATL library). This performs an addition of similarity
values contained in a mapping set.

Listing 10 – Instances
1 sim Instances ( instancesModel : MappingMM ) {
2 us ing {
3 inst : Sequence ( MappingMM ! Mapping ) = thisInstances ( instancesModel ) ;
4 }
5 i s ( maxSim ( inst ) * totalSim ( inst ) ) / inst−>size ( )
6 }

Threshold (Listing. 11) selects mappings with a similarity value higher than a
given threshold. Line 2 specifies this condition.

Listing 11 – Threshold
1 s e l Threshold ( ) {
2 when thisSim > 0 . 7
3 }



Weighted (Listing. 12) computes a weighted sum of similarity values of mapping
models. This needs relative weights associated to the models. In strategy S1, Weigh-
ted takes the mappings returned by the MTs Normalization and Instances, and their
corresponding weights, i.e., 0.5–0.5 (see line 7 of Listing. 6). In Listing. 12, the ex-
pression Summation adds the similarity values (specified as thisSim), and multiplies
them with weights (specified as thisWeight).

Listing 12 – Weighted
1 aggr Weighted ( ) {
2 i s Summation ( thisSim * thisWeight )
3 }

5. Experimentation

This experimentation has three goals : 1) express robust matching strategies using
AML, 2) apply matching transformations to metamodels and terminal models, and 3)
evaluate the accuracy rendered by AML matching strategies.

5.1. Prototype

We have implemented the prototype on the AtlanMod Model Management Archi-
tecture (AMMA) platform (Kurtev et al., 2006). More specifically, we have implemen-
ted the AML concrete syntax using the Textual Concrete Syntax (TCS) tool (Jouault et
al., 2006b). TCS generates a parser that converts an AML program from text to model
format. We have developed the AML compiler by means of ATL code (of approxima-
tely 2300 lines). This code translates an AML model into : 1) a set of ATL matching
transformations, and 2) an Ant file instrumenting the transformation execution chain.
Additionally, we have used the AtlanMod Model Weaver (AMW) (Didonet Del Fabro
et al., 2005) to graphically manipulate the mappings models. We ran the benchmark
on a PC with a 2.4 GHz Intel Core 2 Duo processor, 1GB of RAM, and Windows XP
OS version 2002.

5.2. Procedure and dataset

We have implemented the strategies S0 and S1 using AML. The strategy S1 has
been applied to the pair of metamodels Families and Persons (Eclipse.org, 2009),
which respectively include the classes Family-Member, and Person-Male-Female.
The strategy S0 in turn has been applied to terminal models conforming to these me-
tamodels. The Families terminal model represents, for example, the family March.
We have obtained the Persons terminal model by applying the transformation Fami-
lies2Persons to the Families terminal model. The models have 8 elements on average.
The selection of the models has been driven by three main reasons : 1) we can fi-
gure out the expected (correct) mappings from the transformation, 2) the mappings



Tableau 1. Generated ATL code
Matching transformation Number of lines

CartesianProduct 90
TypeMM 90

EditDistance 75
Instances 80

Normalization 73
SimilarityFlooding 86

Threshold 75
Weighted 79

Tableau 2. Accuracy measures
Measure Value
Precision 0.4

Recall 0.3
Fscore 0.38

are simple but interesting enough to be analyzed in a paper, and 3) the metamodels
and terminal models are available as open-source.

5.3. Results and discussion

Generated code. Table. 1 shows the number of lines generated from each mat-
ching rule, involved in the strategies S0 and S1. The Ant Script contains 124 lines.
The AML compiler generates this code in 4 seconds.

Although this study has been primarily applied on eight matching transformations
and two strategies, it should be noted that AML considerably reduces the number of
lines of code to be written. Comparing the number of lines of an AML transformation
and its corresponding generated code, we find out that AML saves the codification of
80 lines of ATL code, and 10 lines of Ant code. We hope to implement more valida-
tions in future.

Accuracy. We have evaluated AML strategies accuracy using three me-
trics (Rijsbergen, 1979) : Precision = CorrectFoundMappings

TotalFoundMappings , Recall =
CorrectFoundMappings
TotalCorrectMappings , and Fscore = 2∗Recall∗Precision

Recall+Precision . The expected values of
these metrics are between 0 and 1. The higher is the precision value, the smaller is
the set of wrong mappings. The higher is the recall value, the smaller is the set of
the mappings that have not been found. Fscore is a global measure of the matching
quality. A high fscore value indicates a matching of high quality.



Table. 2 shows the accuracy values of S1, which have been influenced by the va-
lues of S0. In general, the values show that S1 has a relatively slow accuracy, matching
the metamodels Families and Persons. Taking fscore as an example, the percentage
of correct mappings is 38%. This value includes (for example) the correct mapping
(Member, Male). Based on these results, we have concluded that while the strategy
S1 is robust enough, it is nevertheless inappropriate to find out mappings between the
metamodels of our motivating example. The main reason is that the matching trans-
formation Instances, which has an important percentage of confidence in S1 (50%),
renders wrong matches. This is not associated to bugs in the code, but to the nature of
instances-based heuristics, which render best results in a few particular cases (Doan
et al., 2001). The results thus suggest the need of a more suitable strategy to match
the pair of metamodels Families and Persons. Unfortunately, we are unable to de-
terminate from this data the correctness of the AML compiler. A way to do that may
be to compare the accuracy of manually-developed transformations to transformations
generated by the AML compiler. It seems a interesting work to do in further researchs.

6. Related works

There has been many previous work on the matching problem. In this section,
we focus on the related works closer to MDE. We should nonetheless mention the
works described in (Wang et al., 2008)(Melnik et al., 2002)(Do, 2005). They present
robust strategies, that match schemas/ontologies, which have been implemented using
GPLs. The strategies and reported lessons have inspired the conception of the AML
constructs in some way.

In the MDE context, (Kolovos et al., 2008) proposes a DSL, named Epsilon Com-
parison Language (ECL), for specifying model comparison algorithms. (Fleurey et
al., 2007)(Rubin et al., 2008) in turn propose frameworks for model composition,
i.e., matching and merging. We now compare these approaches and AML taking into
account their contributions on model matching :

– Unlike the approaches described in (Fleurey et al., 2007) and (Rubin et
al., 2008), AML consider not only homogeneous models but also heterogeneous, i.e.,
models conforming to metamodels different each other.

– Whereas ECL and (Fleurey et al., 2007) offer only constructs to express simila-
rity between two models to be matched (direct comparison). AML provides a richer
set of concepts for expressing complete matching strategies. This includes indirect
comparison strategies.

– (Fleurey et al., 2007) and (Kolovos et al., 2008) enable to express comparison
algorithms that render binary values (0 or 1, equal or not equal). AML instead applies
the notion of probabilistic mappings, which is closer to real world mappings.

– AML promotes matching heuristics not coupled to the models to be matched.
The constructs thisLeft and thisRight allow to declare matching transformations wi-
thout the matter of distinguishing metamodel types. This is improvement on (Fleurey



et al., 2007)(Kolovos et al., 2008)(Rubin et al., 2008) which are metamodel type-
based.

EMF Compare is an Eclipse.org tool for model comparison. Its matching strategies
are hard-coded into the tool in Java. This prevents the customization of matching stra-
tegies necessary in many context, and supported by (Fleurey et al., 2007), (Kolovos et
al., 2008), (Rubin et al., 2008), and AML.

(Falleri et al., 2008) automatically detect mappings between two metamodels using
the algorithm Similarity Flooding described in (Melnik et al., 2002). The algorithm
is generic enough to match only metamodels. Remark on our AML version of the
Similarity Flooding algorithm is applicable to metamodels and terminal models.

After having compared AML to other model comparison approaches, we compare
its rule orchestration part to the Uniti (Vanhooff et al., 2007) transformation chain
definition framework. While Uniti is more declarative framework for transformation
chain definition, AML constructs have been tailored for the representation of matching
strategies in a more concise manner. Note that although the AML orchestration syntax
is currently compiled into Ant tasks, it could also be compiled into Uniti. This design
choice does not impact the user, and we simply chose the alternative we know better.

Although this section has concentrated on AML and the closer related languages,
we should refer to (Steel et al., 2007) as an approach dealing with the problem of
coupling transformation and model representation. Instead of single-type based trans-
formations, they propose a simple system based on a collection of interconnected
types. Notwithstanding this approach augment the reuse of transformations, transfor-
mations remain brittle and restricted to the pre-defined type list. In contrast to (Steel
et al., 2007), AML leverages transformation reuse by means of constructs that hide
model types at implementation time. AML compilation strategy therefore resolves the
appropriate types at compilation time.

7. Conclusion

The main purpose of this paper has been to present AML, a DSL for expressing
matching strategies. We have validated the DSL expressiveness by implementing two
robust matching strategies, and eight matching transformations. The results are overall
motivating. Firstly, we have developed matching transformation applicable to meta-
models and terminal models. AML likewise saves the implementation of a significant
amount of lines of code, i.e., 80 lines of ATL code, and 10 lines of Ant code (for each
matching rule). The AML constructs moreover factorize code that make the strategies
more readable. Thus, matching developers may analyze strategies, and modify them
in order to improve mapping accuracy. From the results, it is also clear that more vali-
dations are needed, e.g., to implement more strategies, matching transformations, and
to apply them to different pairs of models. Other further research may be : to compare
the solutions to the problem of coupling between strategy and model representation,
and to investigate constructs to express rewriting logic and matching user assistance.
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