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Abstract. Technological and business changes influence the evolution
of software systems. When this happens, the software artifacts may need
to be adapted to the changes. This need is rapidly increasing in systems
built using the Model-Driven Engineering (MDE) paradigm. An MDE
system basically consists of metamodels, terminal models, and transfor-
mations. The evolution of a metamodel may render its related terminal
models and transformations invalid. This paper proposes a three-step
solution that automatically adapts terminal models to their evolving
metamodels. The first step computes the equivalences and (simple and
complex) changes between a given metamodel, and a former version of
the same metamodel. The second step translates the equivalences and
differences into an adaptation transformation. This transformation can
then be executed in a third step to adapt to the new version any ter-
minal model conforming to the former version. We validate our ideas by
implementing a prototype based on the AtlanMod Model Management
Architecture (AMMA) platform. We present the accuracy and perfor-
mance that the prototype delivers on two concrete examples: a Petri Net
metamodel from the research literature, and the Netbeans Java meta-
model.

Key words: Model-Driven Engineering, Model Transformation, Adap-
tation.

1 Introduction

Software engineers usually have to adapt computer systems to technological
and business changes. This need is rapidly increasing in systems built using the
Model-Driven Engineering (MDE) paradigm. An MDE system basically consists
of metamodels, terminal models, and transformations. The addition of new fea-
tures and/or the resolution of bugs may change metamodels. The changes may
break the consistency of related terminal models and transformations. In this
work, we focus on terminal models consistency. Fig. 1 illustrates the problem: a
metamodel MM1 evolves into a metamodel MM2 (see the dotted arrow). Our
concern is to adapt any terminal model M1 conforming to MM1 to the new
metamodel version MM2 (see the dashed arrow).
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2 Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin

This paper proposes a three-step adaptation. Firstly, a matching process
computes the equivalences and changes between MM1 and MM2 by executing
a set of heuristics. Secondly, an adaptation transformation is derived from the
discovered equivalences and changes. Finally, this transformation brings M1 into
agreement with MM2, and persists the result in M2.

The bulk of this work is devoted to the first step that discovers equivalences,
as well as simple and complex changes. We explicitly distinguish two kinds of
changes because complex changes need a more insightful adaptation that simple
changes. Whereas a simple change describes the addition, deletion, or update
of one metamodel concept, a complex change integrates a set of actions affect-
ing multiple concepts 3. The paper reports a family of heuristics responsible
for figuring out both simple and complex changes, and representing them in a
straightforward way.

MM1 MM2

M1 M2

Evolution

Adaptation

c2 c2

c2: conformsTo

Fig. 1. Metamodel evolution and model adaptation

We have implemented a proof-of-concept prototype based on the AtlanMod
Model Management Architecture (AMMA) platform [2]. We have evaluated its
performance and accuracy on two examples: a Petri Net metamodel from the
research literature, and the Netbeans Java metamodel. The Petri Net metamodel
is selected because it is simple enough to be analyzed in a paper, and includes
complex changes. The concrete choice of the Netbeans Java metamodel is driven
by three main reasons: 1) it is a ”real-life” problem, 2) experimental data is
widely available (open-source), and 3) the metamodel and terminal models are
significantly larger than those of Petri Net, which illustrates the scalability of
our approach.

We investigate 6 versions of the Petri Net metamodel (containing between
10 and 20 elements), and 8 versions of the Java metamodel (containing approxi-
mately 250 elements). Using this prototype, we are able to analyze on a desktop
machine any pair of the Petri Net metamodels in under 1 second, and any pair
of the Java metamodels in under 10 seconds. Moreover, our tool always discovers
the changes, and only fails by identifying simple changes when in truth there is
an equivalence (in 1% of the cases).

3 The reader interested on examples of simple and complex changes may consult [1].

Prel
im

ina
ry 

Vers
ion



Managing Model Adaptation by Precise Detection of Metamodel Changes 3

This paper is organized as follows: Section 2 compares our contributions to
other known solutions. Section 3 presents a running example. Section 4 presents
our solution to adapt models to evolving metamodels. Section 5 describes the
results of applying our approach on the examples. Finally, Section 6 concludes
the paper.

2 Related works

We may divide the related approaches according to which of the two main issues
they deal with: 1) discovery of equivalences and differences, or 2) derivation of
adaptation transformations.

We now describe the related works closer to the first problem. In the context
of relational and object-oriented data bases, the production of equivalences be-
tween two schemas/ontologies has been invested in [3][4]. In the MDE domain,
the approaches of [5][6][7][8] present algorithms for detecting changes between
UML models. Sriplakich et al. [9] identify simple changes in terminal models
conforming to any metamodel. Wenzel et al. [10] present an approach which
discovers fine-grained traces between versions of modeling languages, e.g., UML
models, schemas, web service description languages, and domain specific lan-
guages. The EMF Compare tool [11] reports simple changes between terminal
model pairs or metamodel pairs. Finally, Falleri et al. [12] automatically detect
equivalences between two metamodels using the algorithm Similarity Flooding
described in [13].

In contrast to the first issue, the second one has been addressed by some
recent approaches. The works described in [14][15][16][17][18] assume traces of
changes are available, and derive adaptation transformations from them. In par-
ticular, [14], [18], and [17] apply stepwise automatic transactions on MM1 to
obtain MM2. These approaches then reuse the logs of applied transactions to
derive adaptation transformations. Cicchetti et al. [16] use difference models
provided by external tools.

The following six items position our approach in comparison with the solu-
tions mentioned above:

1. Similarly to [10][18], our approach computes equivalences and differences
between any pair of metamodels (e.g., representing schemas, UML models,
ontologies, grammars) .

2. Our solution overlaps the solutions presented in [14][16][17] in the sense of
considering both simple and complex changes.

3. As in [12], in our matching process the robust algorithm Similarity Flooding
can be executed. Falleri’s main contribution is to provide 6 graph repre-
sentation configurations. These configurations generate graphs that contain
some metamodel information or all the metamodel information. Although
light metamodel representations benefits to the algorithm performance, they
point out the matching process accuracy increases when all the metamodel
information is represented in the graphs. This is what our approach exactly
does.
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4 Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin

4. Unlike existing approaches [14][15][16][17][18], we do not suppose that the
changes are already known. We consider a more general case where the evo-
lution of metamodels is done without someone explicitly keeping track of the
applied changes.

5. The matching step executes modularized heuristics that discover the dif-
ferences between the metamodels. While most of the previous approaches
(with the exception of [4]) execute all the heuristics, each of our heuristics
may be plugged or unplugged on demand, which may mean a considerable
performance increase.

6. An experimentation shows that our approach scales to larger metamodels
and models. This is an improvement on other techniques developed to date.

To sum up, most of the listed works solve the two main issues in an isolated
fashion. Some of them are in contexts different to metamodel evolution. In con-
trast, we propose a solution that addresses all the described model adaptation
issues in a consistent and integrated way.

3 Running example

This section describes a running example, i.e., the Petri Net metamodel, and
how to represent it using the KM3 metametamodel. We omit describing the
Netbeans Java metamodel to save space, this is fully depicted in our technical
report [1]. We choose the KM3 notation because it is simple but expressive
enough to represent metamodels [19].

3.1 A sample Petri Net metamodel

This example is based on the six versions of the Petri Net metamodel provided by
[14]. Fig. 2 illustrates versions 0 (MM1 ) and 2 (MM2 ). MM1 represents simple
Petri Nets. These nets may consist of any number of places and transitions. A
transition has at least one input and one output place. MM2 represents more
complex Petri Nets. The principal changes between MM1 and MM2 illustrated
in Fig. 2 are:

– References place and transition change their multiplicity from 0-* to 1-*.
– Classes PTArc and TPArc as well as references in and out are added.
– References src and dst are extracted from classes Place and Transition.

Remark 1. The extraction of the reference dst illustrates a complex change
named Extract class. This implies to add and remove a reference, add a class,
and associate classes. In considering these actions as isolated simple changes,
we may skip changes without migrating involved data from M1 to M2. In con-
trast, when we distinguish the complex change, we infer (for instance) that the
added property (e.g., dst), contained in the new class PTArc, actually corre-
sponds to the property dst removed from the class Place. Since we know the
relationship between the properties we can migrate the data. We thus need to
explicitly distinguish complex changes in order to properly derive adaptation
transformations.
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Managing Model Adaptation by Precise Detection of Metamodel Changes 5

Place Transition

Net

+src 1..* +dst0..*

+dst
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+net

1

+transition 0..*

(a) Petri Net MM1 (version 0)

Place Transition

Net

+src 1

+out

0..*

+dst

1

+in

0..*

+net

1
+place 1..*

+net

1

+transition 1..*

PTArc

TPArc
+out

1..*

+src

1

+in

1..*
+dst1

(b) Petri Net MM2 (version 2)

Fig. 2. Petri Net metamodels

3.2 The KM3 metametamodel

Fig. 3 shows the basic concepts of the KM3 metametamodel. The ModelElement
class denotes concepts that have a name. Classifier extends ModelElement.
DataType and Class in turn specialize Classifier. Class consists of a set of
StructuralFeatures. There are two kinds of structural features: Attribute or
Reference. StructuralFeature has type and multiplicity (lower and upper
bound). Reference has opposite which enables to get the owner and target of
one reference. Class may extend zero or more other classes and may be abstract.
In the Petri Net metamodel, Place conforms to the Class concept. The reference
dst conforms to the Reference concept, this has the attributes lower and upper
with value 0 and *.

ModelElement

-name : String

Classifier

-lower : Integer

-upper : Integer

StructuralFeature

Datatype

-isAbstract : Boolean

Class Attribute Reference

+owner

1

+structuralFeatures

*

+opposite

0..1

1

+supertypes

*

*

+type

1 *

Fig. 3. KM3 concepts
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4 A model adaptation approach

As we introduced earlier, our model adaptation approach adapts terminal models
in three steps (Fig. 4). In the first step, a matching strategy computes equiva-
lences and differences between the metamodels MM1 and MM2 by executing a
set of heuristics (available in a library). Equivalences and differences are repre-
sented by a matching model. In the second step, the matching model is trans-
lated into an adaptation transformation by using a Higher-Order Transformation
(HOT). Finally, the adaptation transformation is executed. Below we discuss the
three steps in detail.

MM1

Mappings
(1)

Matching

(2)

Translation
Adaptation

Transf.
Library (3)

Execution

M1

MM2 M2

Fig. 4. Approach Overview

4.1 Matching equivalences and differences

Matching model Before describing the matching step, we explain how match-
ing models represent equivalences and differences. A matching model conforms to
the Matching metamodel4 illustrated in Listing 1.1. The main concept is Equal
which describes a mapping (or correspondence) between an element of MM1
(leftElement) and an element of MM2 (rightElement). Equal has a similarity
value (between 0 and 1) that represents the plausibility of the correspondence.
An equivalence with similarity value 1 represents that the MM2 element is an
identical copy of the MM1 element. An equivalence with similarity value 0.7
describes that the MM2 element is a copy of the MM1 element including simple
modifications. An equivalence with similarity value 0 link elements different to
each other. Other basic concepts are Added and Deleted which mark a meta-
model element as deleted/added from/into MM1.

Equal, Added, and Deleted can be extended to describe more specific equiva-
lences or changes. For example, EqualClass, EqualStructuralFeature, Equal-
Reference, EqualAttribute indicate the (KM3) types of leftElement and
rightElement. The concept AssociatedClassExtracted, in order, links prop-
erties undergoing the change Extract class.

Listing 1.1. Excerpt of the matching metamodel
1 class LeftElement extends WLinkEnd {}
2 class RightElement extends WLinkEnd {}

4 This metamodel extends the core weaving metamodel proposed by [20].
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Managing Model Adaptation by Precise Detection of Metamodel Changes 7

3 class Link extends WLink {
4 reference left [0−1] container : LeftElement ;
5 reference right [0−1] container : RightElement ;
6 }
7 class Equal extends Link {
8 attribute similarity : Double ;
9 }

10 class Added extends Link {}
11 class Deleted extends Link {} . . .
12 class AssociatedClassExtracted extends EqualStructuralFeature {
13 reference associatedReference container : RightElement ;
14 }

Matching step Matching models are computed by matching strategies, i.e.,
processes that incrementally execute a set of heuristics. The heuristics are needed
because the comparison of metamodels (graphs) is a NP complete problem [21].
Fig. 5 is a simple overview of what a matching strategy is. There may be more
elaborated matching strategies, e.g., including loops. Fig. 5 presents the kinds of
heuristics (using a particular symbol) and their execution order. Every heuristic
produces a matching model. For the sake of simplicity, we omit intermediate
matching models in Fig. 5.

Fig. 5 shows a Creation heuristic which prepares a collection of equivalences
by matching the elements of MM1 and MM2. Afterward, Similarity heuris-
tics compute similarity values by comparing the names, internal properties, and
structures of the matched elements. Subsequently, Filtering heuristics select
equivalences taking into account the confidence value computed by the Simi-
larity heuristics. A Differentiation heuristic recognizes equivalences, additions,
and deletions. The matching step finishes when Rewriting heuristics reorganize
a given matching model to make it closer to adaptation transformations. Note
that the user can build (tune) matching strategies by choosing concrete heuris-
tics (for each kind) from the available library. Moreover, s/he can refine the
matching models generated along the process.

Let us now conceptualize the kinds of heuristic presented in the previous
paragraph. Each category contains a set of particular heuristics. We select these
heuristics because they analyze ”safe” indicators (e.g., name) that two elements
are the same [6]. In this paper, we describe the heuristics in terms of the KM3
concepts. Our approach remains nonetheless generic (i.e., independent of KM3).
The heuristics can be implemented using other formalisms such as MOF or EM-
F/Ecore. We now illustrate the family of heuristics using the AtlanMod Transfor-
mation Language (ATL)[22]. An ATL transformation takes models (conforming
to input metamodels) as input, and yields models (conforming to output meta-
models) as output. The transformations are composed of rules. A rule consists of
two mandatory parts: the from, and the to [23]. The from part defines an input
pattern and an Object Constraint Language (OCL) condition [24] (written in
terms of input metamodel concepts). The to part specifies an output pattern
and bindings. Each category below has a code listing whose number is enclosed
between parenthesis.
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8 Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin

Matching

MM1

MM2

Matching

model
Creation Filtering RewritingDiffLibrary Similarity

Matching 

tuning

Fig. 5. A simple matching strategy

Creation (Listing 1.2) The creation heuristics match concepts of MM1 (line 3)
and concepts of MM2 (line 4), and create equivalences (lines 7-10) when the
concepts hold a condition (line 5). The properties left and right of Equal
refer to MM1 and MM2 (lines 8-9). The condition is written in terms of the
KM3 metamodel concepts.

Listing 1.2. Creation transformation excerpt
1 rule Creation {
2 from
3 a : KM3 !<Concept> in MM1
4 b : KM3 !<Concept> in MM2
5 ( condition ) -- for example , a. type = b. type
6 to
7 e : EqualMM ! Equal (
8 left <− a . ref ,
9 right <− b . ref

10 )
11 }

A simple Creation heuristic is Creation by type. This creates a mapping when
two elements conform to the same KM3 type (i.e., Class, Reference or At-
tribute) (see comment in line 5). Another Creation heuristic is Creation by
Type and FullName which creates mappings when two elements has the same
KM3 type and fullname. The fullname is a string that concatenates the names of
elements related to another element. For example, the fullName of transition
reference is PetriNet|Net|transition because PetriNet package contains Net
class, and this class contains transition reference.

Similarity (Listing 1.3) The similarity heuristics compute a similarity value for
each equivalence prepared by Creation heuristics (line 3). A function (func)
establishes the similarity values (line 6). Note that the Similarity heuristics
have no longer the KM3 concepts in the input pattern. Instead of that, the
Equal concept is used. The function refers to MM1 and MM2 concepts by using
left and right of Equal.

Listing 1.3. Similarity transformation excerpt
1 rule Similarity {
2 from
3 e : EqualMM ! Equal
4 to
5 e : EqualMM ! Equal (
6 sim <− func
7 )
8 }
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Managing Model Adaptation by Precise Detection of Metamodel Changes 9

Next we present four Similarity heuristics whose functions calculate similar-
ity values by comparing particular properties of the KM3 metamodels.

– Name Similarity compares the names of KM3 elements in different ways, for
instance, using string comparison algorithms [25] or dictionaries of synonyms
[26].

– Multiplicity Similarity compares the multiplicity of references and attributes.
This assigns a similarity value to mappings connecting metamodel references
that have the same multiplicity (lower and upper bounds).

– Similarity by Internal Properties compares several properties of the KM3
elements. Each property contributes a relative similarity value, i.e., the sim-
ilarity value multiplied by a weight. The net similarity value is the sum of
all relative values. For instance, the net similarity value of elements con-
forming to Reference is the sum of the relative values of names, types,
multiplicities, and opposites.

– Context Similarity compares the relationships between metamodel elements.
For example, this compares attributes/references contained in a given class,
its superclasses, and its associated classes. The implementation of this Sim-
ilarity heuristic is more complex than the previously presented ones. This
is inspired from the Similarity Flooding (SF) algorithm. Our algorithm is
executed in two steps. The first step associates two equivalences (e1 and
e2 ) if there is a relationship between the linked elements. The second step
propagates the similarity value from e1 to e2 because of the relationship.

Filtering (Listing 1.4) The previous heuristics may have created unwanted equiv-
alences (i.e., equivalences with low similarities). The filtering heuristics select the
equivalences (line 3) whose similarity values satisfy a condition (line 4). A basic
filtering heuristic is Threshold. This selects the mappings with a similarity value
higher than a given threshold value (see comment of line 4).

Listing 1.4. Filtering transformation excerpt
1 rule Filtering {
2 from
3 e : EqualMM ! Equal
4 ( condition ) -- For example , e. similarity > threshold
5 to
6 e : EqualMM ! Equal
7 }

Differentiation (Listing 1.5) This kind of heuristic distinguishes between equiva-
lent, deleted, and added metamodel elements. A concrete implementation of Dif-
ferentiation heuristics compares KM3 elements to equivalences. The intuition is
that not linked metamodel elements correspond to deletions and additions. List-
ing. 1.5 marks MM1 elements as deleted elements (line 6) when they are not
linked by equivalences (lines 3-4). The implementation contains another rule,
ommitted because of space constraints, that marks unlinked MM2 elements as
added elements.
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10 Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin

Listing 1.5. Differentiation transformation excerpt
1 rule Deleted {
2 from
3 a : KM3 ! ModelElement in MM1
4 a . notLinked ( )
5 )
6 to
7 e : EqualMM ! Deleted
8 }

Rewriting (Listing 1.6) Before this step, most equivalences and differences are
contained in a single large collection. This heuristic reorganizes/retypes the
equivalences and differences in order to make them more semantically richer.
We discern three Rewriting heuristics: Nesting, Flattening, and Complex changes.
The Nesting and Flattening heuristics reorganize the equivalences considering
the relationships (containment and inheritance) between the linked concepts. For
instance, the Nesting heuristic rewrites (transition, transition) as a child
of (Net, Net) because of the containment relationship between these elements.
The Complex change heuristic infers complex changes from equivalences, addi-
tions, and deletions. For example, Listing 1.6 shows a rule that verifies if change
Extract Class has happened. The rule assemblies two properties a (added) and
d (deleted) using the AssociatedClassExtracted type. The conditions are: 1)
an introduced class owns the property a (line 5), and 2) this class is associated
to other class that contains d (line 7).

Listing 1.6. Complex changes transformation excerpt
1 rule AssociatedClassExtracted {
2 from
3 d : EqualMM ! DeletedStructuralFeature ,
4 a : EqualMM ! AddedStructuralFeature (
5 a . right . target . owner . isNewClass ( )
6 and
7 a . right . target . owner . isAssociatedTo ( d . left . target . owner )
8 )
9 to

10 e : EqualMM ! AssociatedClassExtracted
11 }

4.2 Translation to adaptation transformations

In this step, the equivalences and differences are translated into an executable
adaptation transformation via a HOT. The HOT takes as input the final match-
ing model, and generates as output a model transformation written in a particu-
lar transformation language (e.g., ATL, XSLT, SQL-like). The HOT follows the
guidelines below:

– Yield a transformation rule for each EqualClass that links no abstract
classes. The HOT takes referred left and right classes to yield input and
output patterns.

– Create a binding for each EqualStructuralFeatures attached to a Equal-
Class. The binding complexity depends on the Equal type. While a simple
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Managing Model Adaptation by Precise Detection of Metamodel Changes 11

EqualStructuralFeature generates a simple binding, EqualStructuralFea-
ture extensions (e.g., AssociatedClassExtracted) generate more elabo-
rated bindings. In general, sophisticated bindings instruments the code that
adapt M1 models to complex changes.

Listing. 1.7 shows an adaptation transformation, written in ATL, which is
generated by a concrete HOT. This creates the transformation rule Place2Place
(line 1) from the equivalence (Place, Place). The from part matches the ele-
ments conforming to Place (line 3). The to part creates elements conforming to
Place. The HOT moreover generates a complex binding (see line 6) from the
equivalence (out, dst). The binding calls an additional rule (i.e., dstPTArc) to
initialize dst of PTArc (lines 18) using the values dst of Place.

Listing 1.7. Transformation excerpt (Petri Net example)
1 rule Place2Place {
2 from
3 pV1 : MM1 ! Place
4 to
5 pV2 : MM2 ! Place (
6 out <− pV1 . dst −> collect ( tV1 | thisModule . dstPTArc ( tV1 , pV1 ) }) )
7 )
8 }
9 unique lazy rule dstPTArc {

10 from
11 transition : MM1 ! Transition ,
12 place : MM1 ! Place
13 to
14 tV2 : MM2 ! PTArc (
15 dst <− transition
16 )
17 }

4.3 Adaptation transformation execution

This step simply executes the generated adaptation transformation. The trans-
formation takes any terminal model M1 and generates a terminal model M2.

5 Experimental validation

Section 5.1 describes the prototype platform. Section 5.2 presents the experimen-
tal settings including dataset and procedure. Section 5.3 provides the metrics to
evaluate the results. Section 5.4 discusses the experimentation results. Finally,
Section 5.5 shows the results of applying the EMF Compare tool to the running
examples, and compares them to our results.

5.1 Prototype implementation

We implement the prototype on the AMMA platform [2]. More specifically, we
use the AtlanMod Model Weaver (AMW) [27] to work with matching mod-
els, and we specify the heuristics and HOT in ATL. The HOT generates the
adaptation transformation in ATL code. In particular, we develop a library that
contains the heuristics described in Section 4.1.
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12 Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin

5.2 Experimental settings

Data set We have results from experimentations which use 8 versions of the
Netbeans Java metamodel, and 6 versions of a Petri Net metamodel provided
by [14]. For the sake of readability, we just present the results in applying our
approach on three versions of each metamodel. These versions are chosen because
they contain significant changes. In the Java example, we choose the versions
1.12, 1.13, and 1.15. In the Petri Net example, we use the versions 0, 1, and
2. Table 1 shows the number of elements (classes, attributes and references)
contained in the versions. We match the following couples of versions: 0 – 1, 0 –
2, 1.12 – 1.13, and 1.12 – 1.15.

Table 1. Metamodel elements

Example PetriNet Java

Version 0 1 2 1.12 1.13 1.15

Elements 11 11 21 255 256 258

Procedure We tested different matching configurations until obtaining the
strategies more suitable for the examples. Garces et al. [1] presents lessons
learned from this selection process. We have picked up the matching strategies
(A and B) for matching the Petri Net metamodels and the Java metamodels,
respectively. The heuristics that include each strategy are:

– Matching Strategy A: Creation by type, Similarity by internal proper-
ties, Context similarity, Threshold, Differentiation, Nesting, and Complex
changes.

– Matching Strategy B: Creation by type and fullname, Similarity by inter-
nal properties, Context similarity, Threshold, Differentiation, Nesting, and
Flattening.

This selection should not question the applicability of our approach, but show
that the matching accuracy and performance highly depends on the metamodels.

5.3 Metrics

We have measured the matching step accuracy by applying three metrics [28]:
Precision(x) = CorrectFound(x)

TotalFound(x) , Recall(x) = CorrectFound(x)
TotalCorrect(x) , and Fscore(x) =

2∗Recall(x)∗Precision(x)
Recall(x)+Precision(x) .

The x denotes equivalences, additions/deletions, or complex changes. Besides
additions and deletions, we have not evaluated other simple changes because
these require no elaborated adaptation transformations. The expected values of
these metrics are between 0 and 1. The higher is the precision value, the smaller
is the set of wrong mappings. The higher is the recall value, the smaller is the
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Managing Model Adaptation by Precise Detection of Metamodel Changes 13

set of the mappings that have not been found. Fscore is a global measure of the
matching quality. A high fscore value indicates a matching of high quality.

We have identified the correct equivalences and changes in two ways. In the
Petri Net example, we manually discovered the changes. In the Java example,
we relied on the changes logged in the Netbeans repository. We also considered
other manually discovered changes. We remarked that some repository logs do
not report all the performed changes.

Besides matching accuracy, we have measured the matching process perfor-
mance. This has been executed on a machine with Intel Core 2 Duo (2.4 GHz)
and 1GB RAM.

5.4 Results

Matching accuracy Fig. 6 gives the prototype’s accuracy. The histograms dis-
play measures (precision, recall, fcore) for each selected couple of version. The
three bars (from left to right) show the accuracy of equivalences, additions/dele-
tions, and complex changes. Some bars are missing because certain couples of
versions contain no deletions/additions or complex changes.

The results show that the prototype achieves a high accuracy not only in de-
tecting the correct equivalences, additions/deletions, but also in detecting com-
plex changes. Taking fscore as an example, the percentage of correct equivalences,
and additions and deletions ranges from 99%-100%, and 90%-100%, respectively.
Averanging accross all experiments, the fscore of complex changes is 100%. In
particular, our prototype fails in identifying additions/deletions instead of equiv-
alences (1% of cases).

Even though we have applied our approach to only a small number of test
cases (mostly because of model availability restrictions), this number is sig-
nificant in comparison with test cases of other closely related approaches like
[14][15][16][17][18]. We are looking for other benchmarks in open-source projects,
and we hope to provide more validation material in the future.

Performance In the Petri Net example, the matching process consumes less
than 1 second. In the Java example, the matching process approximately takes
10 seconds. A table containing the execution times of the heuristics in detail can
be find in [1]. Even if the matching step consumes a relevant amount of resources,
we should remember that this process generates an adaptation transformation
that can be used several times.

5.5 EMF Compare versus our approach

We have compared the metamodel changes computed by EMF Compare to our
results. We chose EMF Compare because this is a prototype completely available
to compare metamodels. Table 2 shows the fscore that EMF Compare and our
approach, denoted by i. and ii., deliver on the Petri Net (couple 0-2) and Java
(couple 1.12 - 1.15) examples. While EMF Compare is fairly good for identifying
additions and deletions, this fails in rendering them as isolated actions. Because
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Fig. 6. Matching accuracy results

model adaptation automation needs to distinguish complex changes (i.e., not
only simple changes), our approach is more appropriate for this purpose than
EMF Compare.

Table 2. Fscore EMF Compare (i.) - Our approach (ii.)

Example PetriNet Java

Couples of versions 0-2 1.12-1.15

Approach i. ii. i. ii.

Additions-Deletions 0.8 1 1 0.9
Complex changes 0 1 0 0

6 Conclusions

In this paper, we presented an MDE approach for adapting models to their evolv-
ing metamodel. Matching strategies compute equivalences and changes between
two metamodels by executing a set of heuristics. These equivalences and differ-
ences are saved in a matching model. A Higher-Order Transformation translates
this matching model into an executable adaptation transformation. We reported
the performance and precision of our approach which are pretty good, and may
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be even further improved by means of tuning. We also compared our solution
to related works, and we showed that no other work known to us covers fully
the problem as we identified it (e.g., most other works only cover evolution
with available trace of changes). Moreover, our validation covers a wider spec-
trum than existing works: a relatively simple case from the literature (i.e., a
Petri Net metamodel), but also a real-life scenario (i.e., a Java metamodel). We
have used the family of heuristics to design the constructs of the AtlanMod
Matching Language (AML), a Domain-Specific Language (DSL) for expressing
matching strategies [29]. AML allows to express not only strategies to match
two metamodels, but also any pair of models. By using this language, we hope
to implement matching strategies more easily, and extract further guidelines on
proper parametrization of them.
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