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Abstract- In this paper, we introduce the notion of nonlinear and non-separable multi-scale

representation. We show how it can be derived from nonlinearand non-separable subdivision

schemes associated to a non-diagonal dilation matrix. We focus on nonlinear multi-scale

decomposition where the dilation matrix is either the quincunx or the hexagonal matrix. We

then detail the encoding and decoding algorithm of the representation and, in particular, how

the EZW (Embedded Zero-tree Wavelet) algorithm adapts in that context. Numerical

experiments on image compression conclude the paper.

Keywords- Nonlinear multi-scale representation, image compression.

EDICS Category:TEC-MRS

I. INTRODUCTION

Due to the hierarchical structure of visual information, the multi-scale representations are widely

applied in image processing [2][1][3]. Images are bidimensional complex objects made of homogeneous

regions separated by smooth singularities. It is then natural to process them using techniques which are

intrinsically bidimensional and are adapted to the information contained in an image. The multi-scale

representations based on the tensor product of wavelet bases are not well adapted to process efficiently

an image near the singularities. In order to have a better treatment of singularities, A. Harten in [5][6]

introduced a general framework to multi-scale data representations. The idea is to associate to any function

v, a set of sequencesMv := (v0, d0, d1, d2, . . .), where the sequencev0 := (v0k)k∈Zd is the coarsest

approximation ofv and the sequencesdj := (djk)k∈Zd, with j ≥ 0, are additional detail coefficients

which represent the fluctuations ofv between two successive levels of resolution.

There exist many ways to build such nonlinear representations. In most papers, the multi-scale structure

is associated to dyadic levels of resolution [5][2]. In [4],the quincunx matrix is used to define the levels,

and then a multi-scale representation is proposed. In the present paper, we build multi-scale representations

either based on quincunx or hexagonal dilation matrices. The general philosophy of the approach, is to

predict at a fine level using only coarser levels and to memorize prediction errors as detail coefficients.

The approach we propose is therefore well adapted to progressive transmission of data.

We first recall some definitions about nonlinear subdivisionoperators in a non-separable framework

and we will explain how this entails the convergence of multi-scale representations associated to such
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operators. We will then give applications to interpolatorymulti-scale representations corresponding to

quincunx or hexagonal dilation matrices. In particular, wewill study affine interpolatory scheme and

also interpolation using polynomial of total degree two. The whole procedure from the encoding of the

representation, to the compression step and, finally, to thedecoding step will be detailed. In particular,

we will show how the EZW (embedded zero-tree wavelets) adapts in our context. Some illustrations on

image compression conclude the paper.

II. N OTATIONS AND MULTI -RESOLUTION ANALYSIS DEFINITION

A. Notations

Let ℓ(Zd) be the space of all sequences indexed byZ
d. The subspace of bounded sequences is denoted

by ℓ∞(Zd) and ‖u‖ℓ∞(Zd) is the supremum of{|uk| : k ∈ Z
d}. We denoteℓ0(Zd) the subspace of all

sequences with finite support (i.e. the number of non-zero components of a sequence is finite). As usual,

let ℓp(Zd) be the Banach space of sequencesu on Z
d such that‖u‖ℓp(Zd) < ∞, where

‖u‖ℓp(Zd) :=

(

∑

k∈Zd

|uk|
p

) 1

p

for 1 ≤ p < ∞.

For anyw ∈ ℓp(Zd)d we will denote‖w‖ℓp(Zd)d , the supremum of theℓp-norm of the components of

w. As in the discrete case, we denote byLp(Rd) the space of all measurable functionsf such that

‖f‖Lp(Rd) < ∞, where

‖f‖Lp(Rd) :=

(
∫

Rd

|f(x)|pdx

) 1

p

for 1 ≤ p < ∞

and‖f‖L∞(Rd) is the essential supremum of|f | on R
d. A matrix M is called a dilation matrix if it has

integer entries and iflim
n→∞

M−n = 0. In the following, the invertible dilation matrix is alwaysdenoted

by M and m stands for|det(M)|. Finally, for two positive quantitiesA and B depending on a set

of parameters, the relationA <
∼ B implies the existence of a positive constantC, independent of the

parameters, such thatA ≤ CB. Also A ∼ B meansA <
∼ B andB <

∼ A.

B. Multi-Resolution Analysis

To begin with, letV be ad-dimensional Hilbertian space. From here on,M will denote a dilation

matrix. We recall the concept of multi-resolution analysisassociated to the spaceV .

Definition 1. A multi-resolution analysis ofV is a sequence(Vj)j∈Zd of closed subspaces embedded in

V satisfying the following properties:
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1) The subspaces are embeddedVj ⊂ Vj+1

2) f ∈ Vj if and only if f(M.) ∈ Vj+1

3) ∪j∈ZVj = V .

4) ∩j∈ZVj = {0}

5) We assume the existence of a compactly supported functionϕ ∈ V0 such that the family of their

translates{ϕ(· − k)}k∈Zd forms a Riesz basis forV0.

From V0 ⊂ V1, it follows that the functionϕ, called scaling function, satisfies:

ϕ(x) =
∑

n∈Zd

gnϕ(Mx− n), with
∑

n

gn = m. (1)

To build the approximation of a given functionv at levelj, we adopt the biorthogonal point of view that

is we assume the existence of adual function ϕ̃ with compact support satisfying:

ϕ̃(x) =
∑

k∈Zd

hkϕ̃(Mx− k), with
∑

k

hk = m, (2)

and such that the following duality property holds< ϕ̃(x − n), ϕ(x − k) >= δn,k, whereδn,k denotes

the Kronecker symbol and< ., . > the Euclidean inner product. The approximation at levelj can be

obtained by projection ofv on Vj as follows:

vj =
∑

n∈Zd

vjnϕ(M
jx− n) (3)

wherevjk = mj < v, ϕ̃(M jx− k) >. Note that wheñϕ is fixed,ϕ is a priori not unique which leads to

potentially differentvj.

III. M ULTI -SCALE REPRESENTATIONUSING DILATION MATRIX M

Let (Γj)j=0,···,J be the set of embedded grids withΓj = {M−jk, k ∈ Z
d}, J corresponding to the

finest level of resolution. We now define theprojectionandpredictionoperators on these grids.

A. Projection and Prediction Operators

Let (Γj)j=0,···,J be the multiresolution structure defined above and thenvJ = (vJk )k∈Zd the data at the

finest levelJ . The valuevJk is associated to the locationM−Jk on the gridΓJ . In order to build the

multi-scale representation ofvJ , we assume the existence of two discrete interscale operators:

1) the projectionP j
j−1 operator acting from fine to coarse level. Ifv̂j is an approximation ofvj on

Γj , we definevj−1 = P j
j−1v̂

j . This operator is always assumed to belinear. In our context,ϕ̃
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defined in (2) fixes the projection operator as follows:

vj−1
k := (m)−1

∑

n∈Γj

hn−Mkv̂
j
n. (4)

2) the prediction P j−1
j operator acting from coarse to fine level. This operator computes v̂j =

P j−1
j vj−1 and may benonlinear.

We further assume that these two operators satisfy theconsistencyproperty: the projection ofvj onΓj−1

coincides withvj−1, i.e.

P j
j−1P

j−1
j = I. (5)

Note that the prediction errorej = vj − v̂j , is not arbitrary data onΓj. Indeed, from (5), one has

P j
j−1e

j = P j
j−1v

j − P j
j−1v̂

j = vj−1 − vj−1 = 0.

Hence,ej ∈ Ker(P j
j−1). It follows that we may write this error in a non-redundant way using a basis of

Ker(P j
j−1). The coefficients of the errors in this kernel gives the detail coefficientsdj−1. Consequently,

the datavj is completely equivalent to(vj−1, dj−1). Iterating this process from the initial datavJ , we

obtain itsnonlinear multi-scale representation

MvJ = (v0, d0, · · · , dJ−1).

B. Interpolatory Multi-scale Representations

We now introduce interpolatory multi-scale representations. In that context, the data at levelj is:

vjk = v(M−jk),

for any k in Z
d. From this, we directly obtain the form of the projection operator (P j

j−1):

vj−1
k = v(M−j+1k) = vjMk

In that context, the principle of the multi-scale representation is based on the prediction ofvjMk+ε for

ε 6= 0 using the values ofvj−1 on Γj−1
0 . Knowing the prediction operatorP j−1

j , we then replace the

value ofvjMk+ε, ε 6= 0 by the error:ejMk+ǫ = vjMk+ǫ − (P j
j−1v

j−1)Mk+ǫ. The multi-scale representation

can then directly be written asMvJ = (v0, d0, · · · , dJ−1), wheredj−1 =
{

ejMk+ε, ε 6= 0, k ∈ Z
d
}

.
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IV. T HEORETICAL RESULTS ONNONLINEAR MULTI -SCALE REPRESENTATIONS

A. Definition of the Prediction Operator

The definition of the multi-scale representation is relatedto that ofP j
j−1, the prediction operator. In

the present paper, we allow the definition and the use ofquasi-linearprediction operator defined by:

Definition 1. A quasi-linear prediction operator is a function which associates to eachw ∈ ℓ∞(Zd) a

linear operatorS(w) defined by

(S(w)u)k :=
∑

{l∈Zd,‖k−Ml‖∞<K}

ak−Ml(w)ul,

for anyu ∈ ℓ∞(Zd) where‖ · ‖∞ denote the sup norm inZd and

|ak−Ml(w)| < C ∀w.

The constantsK andC are independent of the dataw.

Note that the recursive action of the quasi-linear prediction operatorSu := S(u)u on the initial data

u = u0, defines a nonlinear subdivision scheme:

uj := Suj−1 = S(uj−1)uj−1 = . . . = S(uj−1) . . . S(u0)u0 = Sju0.

We assume that the general form of the prediction operator for the given datavj−1 is then given by:

v̂jk = (P j−1
j vj−1)k = (S(vj−1)vj−1)k =

∑

l∈Zd

ak−Ml(v
j−1)vj−1

l .

The consistency property imposes thatak,l(v
j−1) satisfies

∑

k∈Zd

ak−Mp(v
j−1)hk−Mi = mδp−i. (6)

In an interpolatory framework,h = mδk,0 and (6) amounts toaMk(v
j−1) = δk,0.

B. Definitions of Schemes for the Differences and of Joint Spectral Radius

We say that the quasi-linear subdivision operatorS reproduces the constants when:

∑

p∈Zd

ak−Mp(u) = 1 ∀k ∈ Z
d and∀u ∈ ℓ∞(Zd).

Then, the following result holds:
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Proposition 1. Let S be a quasi-linear prediction operator reproducing the constants and assume

uj = Suj−1 defined in (6). Then there exists a local and bounded operatorS1 such that∇uj :=

S1(u
j−1)∇uj−1. where∇uk = (uk − uk−e1, · · · , uk − uk−ed).

PROOF: Consider

ujk+ei
− ujk =

∑

p∈V (k+ei)
⋃

V (k)

(ak+ei−Mp(u
j−1)− ak−Mp(u

j−1))uj−1
p

=
∑

p∈V (k+ei)
⋃

V (k)

αk−Mp(u
j−1)uj−1

p ,

where V (k) = {p, ‖k − Mp‖∞ < K}. Note that
∑

p∈V (k+ei)
⋃

V (k)

αk−Mp(u
j−1) = 0, we then de-

duce that, since
{

∇lδn,β, n ∈ V (k + ei)
⋃

V (k), β ∈ Z
d, l = 1, · · · , d

}

(with ∇luk = uk − uk−el) spans
(

αk−Mp(u
j−1)

)

p∈V (k+ei)
⋃

V (k)
[7], ujk+ei

− ujk =
∑

β∈Zd

∑

p∈V (k+ei)
⋃

V (k)

d
∑

l=1

cp−β,l∇lu
j−1
p , where(ck) is

a finite sequence. Computing the differences for other directions ei, we obtain the desired result�.

C. Convergence Theorem for the Multi-scale Representation

In this section, we state a convergence result for the multi-scale representation when the matrixM is

isotropic which corresponds to the following definition:

Definition 2. We say that a matrixM is isotropic if it is similar to the diagonal matrix diag(σ1, . . . , σd),

i.e. there exists an invertible matrixΛ such that

M = Λ−1diag(σ1, . . . , σd)Λ,

with |σ1| = . . . = |σd| being the eigenvalues of matrixM .

For an isotropic matrix holds|σ1| = . . . = |σd| = σ = m
1

d . Moreover, for any given norm inRd there

exist constantsC1, C2 such that for any integern and for anyv ∈ R
d

C1σ
n‖v‖ ≤ ‖Mnv‖ ≤ C2σ

n‖v‖.

The convergence theorems we now state involve Besov spaces.Let us briefly recall the definition of such

spaces. First consider the modulus of smoothness of orderN ∈ Z in Lp(Zd) of a functionv, given by

ωN(v, t)Lp = sup
h∈Zd:‖h‖2≤t

‖∇N
h v‖Lp(Rd),
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where‖.‖2 is the Euclidian norm and where∇N
h is the finite differences operator of orderN in the

directionh:

∇N
h v(x) :=

N
∑

β=0

(−1)βCβ
Nv(x− βh)

We now introduce the Besov spaceBs
p,q(R

d). Let N be any integer,N > s. For p, q > 0 ands > 0, the

spaceBs
p,q(R

d) contains functionsv ∈ Lp(Rd) such that(2jsωN (v, 2−j)Lp)j≥0 ∈ ℓq(Zd). The norm in

Bs
p,q(R

d) is then given by‖v‖Bs
p,q(R

d) := ‖v‖Lp(Rd) + ‖(2jsωN (v, 2−j)Lp)j≥0‖ℓq(Zd). If we consider an

isotropic dilation matrixM , we define fromv the setvj ,j ≥ 0 converging tov following (3) and then

the nonlinear multi-scale representation. Then, we have the following theorem:

Theorem 1. If the prediction operator reproduces the constants, then for all 0 < s < 1, one has the

inequality

‖v0. ‖ℓ∞(Zd) + ‖(σsj‖dj−1
. ‖ℓ∞(Zd))j≥0‖ℓq(Zd) <

∼ ‖v‖Bs
∞,q(R

d).

PROOF: First, we show that the consistency property implies that‖ej‖ℓ∞(Zd) <
∼ ‖∇vj‖ℓ∞(Zd)d . We

recall that

ejk := vjk − v̂jk = vjk −
∑

‖k−Ml‖∞≤K

ak−Ml(v
j−1)vj−1

l .

Using (4), we write the prediction error in the form

ejk = vjk −m−1
∑

l:‖k−Ml‖∞≤K

ak−Ml(v
j−1)

∑

p:‖p−Ml‖∞≤P

h̃p−Mlv
j
p

= vjk −m−1
∑

p:‖k−p‖∞≤K+P

vjp
∑

l:‖k−Ml‖∞≤K

ak−Ml(v
j−1)h̃p−Ml

=
∑

p∈F (k)

bk,p(v
j−1)vjp,

whereF (k) = {p : ‖p − k‖∞ ≤ P +K} is a finite set for any givenk. Let us define, for eachk ∈ Z
d,

a vectorbk(w) = (bk,n(w))n∈F (k). By hypothesis,ej = 0 if vjk = k, since the prediction operator

reproduces the constants. Since,{(∇iδn−l)n∈F (k) , l ∈ Z
d, i = 1, · · · , d} spans the orthogonal to the

family (lqii )l∈F (k),i=1,···,d,qi≤1, by denotingcl(w) the coordinates ofbk(w) in this basis and after simple

computations we obtain that

ejk =
∑

n∈F (k)

d
∑

i=1

cn,i(v
j−1)∇iv

j
n.
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This proves that‖ej‖ℓ∞(Zd) <
∼ ‖∇vj‖ℓ∞(Zd) since the sequencec is finitely supported. We get from this

that

‖v0‖ℓ∞(Zd) + ‖(σsj‖dj−1
. ‖ℓ∞(Zd))j≥0‖ℓq(Zd) <

∼ ‖v0‖ℓp(Zd) + ‖(σsj‖∇vj. ‖(ℓ∞(Zd))d)j≥0‖ℓq(Zd). (7)

Then remark that‖v0‖ℓ∞(Zd) = ‖v(.)‖ℓ∞(Zd) <
∼ ‖v‖L∞(Rd) and also, since the matrix is isotropic, we

can show that‖∇vj‖ℓ∞(Zd)d <
∼ ω1(v,Cσ−jt) <

∼ ω1(v, σ
−jt), the last inequality being a property of

the modulus of smoothness. Finally, replacing in equation (7), we get that:

‖v0‖ℓ∞(Zd) + ‖(σsj‖dj−1
. ‖ℓ∞(Zd))j≥0‖ℓq(Zd) <

∼ ‖v‖Bs
∞,q(R

d)�.

Note that the joint spectral radius is not involved in the above inequality but is of crucial importance

for the inverse theorem which we now state. We study the reconstruction process of a functionvr, where

r stands for ”reconstruction”, from its coefficientsv0,r anddj,r. In the case of nonlinear representations, it

is still possible to study the reconstruction algorithm of the functionvr from its coefficients by iteratively

using the reconstruction step

vj,r = P j−1
j vj−1,r + ej = P j−1

j vj−1,r + Edj−1,r.

In that context, the functionvr is the limit (when it exists) ofvj,r defined by:

vj,r(x) =
∑

k∈Zd

vj,rk ϕ(M jx− k)

whereϕ was defined in (1). The following theorem gives a sufficient condition for the limit function to

exist in Besov space:

Theorem 2. Let S be a quasi-linear prediction operator reproducing the constants. If ρ∞(S1) < σ−s

for somes > 0 and if (v0,r, d0,r, d1,r, . . .) are such that

‖v0,r. ‖ℓ∞(Zd) + ‖(σsj‖dj,r. ‖ℓ∞(Zd))j≥0‖ℓq(Zd) < ∞,

and assume that
∑

k∈Zd

ϕ(x− k) = 1, whereφ satisfies (1), then the functionv belongs toBs
∞,q(R

d) and

‖v‖Bs
∞,q

<
∼ ‖v0‖ℓ∞(Zd) + ‖(σsj‖dj. ‖ℓ∞(Zd))j≥0‖ℓq(Zd).

The proof of the inverse theorem is much more involved and details are available in [10]. Note that

the inverse theorem requires that the joint spectral radiusof the difference operator be smaller than1.

We will design in the following sections examples of prediction operators that satisfy this property.
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D. Stability of Nonlinear Multi-scale representations

The stability of nonlinear multi-scale decomposition is strongly related to that of the associated

prediction operator. We recall the important notion of the stability of quasi-linear prediction operator

[2]:

Definition 3. A quasi-linear prediction operator is stable if for everyv,w in ℓ∞(Zd):

‖S(v) − S(w)‖ℓ∞(Zd) ≤ C‖v − w‖ℓ∞(Zd)

whereC depends in a non-decreasing way on‖v‖ℓ∞(Zd).

The stability of the quasi-linear prediction operator is essential for the stability of the multi-scale

representationMvJ . We will tell when this property holds for the prediction operators we will consider,

but the study of the stability of the associated multi-scalerepresentation is beyond the scope of the present

article.

V. B IDIMENSIONAL INTERPOLATORY QUASI-L INEAR PREDICTION OPERATORS

The nonlinear representations we will study are essentially based on edge non-oscillatory (ENO)

approach in an interpolatory framework. ENO methods consist in computing a cost function denoted

by Cj(k) that determines the best prediction operator among a group of potential ones. Each of these

prediction operators are associated to interpolation polynomials on different stencils, the cost function

Cj(k) being a function computed on the stencils. An arbitrarily small change at the round off level would

be sufficient to change the stencil chosen for the predictionand thus the prediction operator. For that

reason, the ENO scheme is not stable [10]. Such a drawback canbe avoided using weighted-ENO (WENO)

interpolation which provides a smooth transition between prediction operators. The WENO formulation

is based on a convex combination of potential prediction operators given by the ENO method, that is:

v̂jk :=

m−1
∑

r=0

αrv̂
j,r
k

with αr ≥ 0 and
m−1
∑

r=0
αr = 1. A possible form for the weights is given byαr :=

ar
m−1∑

i=0

ai

for r = 0, . . . ,m−1

wherear := 1
ε+Cj(r) , whereCj(r) is the cost function of the corresponding rule. We will see, on examples

that the WENO prediction is continuously dependent on the data.

In the following, we build nonlinear multi-scale decompositions using the quincunx or the hexagonal

dilation matrix which are particular cases of isotropic matrices. A similar approach using the quincunx
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matrix was proposed in [4] in a lifting scheme framework, we will emphasize the differences with our

method when necessary. In one dimension and in a dyadic scales framework, the lifting scheme is made

of an update step at even locations and a prediction step at odd locations but, when one considers

interpolatory scheme to predict, as we will do, no update is required. Since we consider an interpolatory

scheme,h = mδ0 and the consistency property leads toaMk = δk,0. Consequently, we only defineaMk+ε

whenε is a non-zero coset vector ofM .

A. Nonlinear Affine Prediction Using the Quincunx Matrix

The quincunx matrix is defined by

M =





−1 1

1 1



 ,

whose coset vectors areε0 = (0, 0)T andε1 = (0, 1)T . Note thata0,0 = 1 since the scheme is interpolatory

(this corresponds tovjMk = vj−1
k ) and since the nonlinear prediction operators reproduce the constants we

shall have
∑

i
aMi+ǫ = 1 for all coset vectorsǫ. We consider prediction operators based on interpolation

by polynomials of degree 1 (i.e.a+bx+cy) onΓj−1, leading the following four potential stencils which

in turn entails the following prediction rules:

v̂j,1Mk+ε1
= 1

2(v
j−1
k + vj−1

k+e1+e2
) (8)

v̂j,2Mk+ε1
= 1

2 (v
j−1
k+e1

+ vj−1
k+e2

) (9)

Now, asM2 = 2Id, after double iteration these subdivision schemes could beassociated with a limit

function of the kind:

Ψ(x) =
∑

p

∑

k

(a↑M )kap−kΨ(2x− p)

where

(a↑M )p =







ak if p = Mk

0 otherwise,

and, therefore, we can draw a comparison between the different cases in terms of limit functions. On

Figure 1.C, we display the limit function corresponding to the separable case (i.e.Ψ(x) =
2
∏

i=1
max(0, 1−

|xi|)) where the predictions (8) and (9) are applied successively, while we display on Figure 1. A (resp.

B), the limit function corresponding to prediction (8) (resp. (9)). To relate this to the general biorthogonal

framework of section II, we shall say that the limit functioncorresponding to the separable case is the

functionϕ and the other predictions define other limit functions that are still orthogonal toϕ̃.
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Fig. 1. (A): the limit function associated with prediction (8),(B): the limit function associated with prediction (9);(C): the

limit function corresponding to the separable case; (D), (E)and (F): the corresponding contour plots.

We now pass on to ENO prediction, which consists in choosing between the two prediction rules (8)

and (9). In [4], the choice of stencils corresponds to:

min

(

|vjMk+ε1
−

1

2
(vj−1

k+e1
+ vj−1

k+e2
)|, |vjMk+ε1

−
1

2
(vj−1

k + vj−1
k+e1+e2

)|

)

.

The above cost function assumes that the true values at levelj are known before prediction which is not

relevant in a progressive data transmission context. To avoid this, we define the cost function as follows:

Cj(k) = min(|vj−1
k+e1

− vj−1
k+e2

|, |vj−1
k − vj−1

k+e1+e2
|).

When the minimum ofCj(k) corresponds to the first (resp. second) argument the prediction (9) (resp.

(8)) is used. One motivation for the choice of such a cost function is the following argument: when an

edge intersect the cellQj−1
k delimited by the pointsM−j+1{k, k + e1, k + e2, k + e1 + e2} of the grid

Γj−1, several cases may happen:

1) either the edge intersect[M−j+1k,M−j+1(k+ e1 + e2)] and [M−j+1(k+ e1),M
−j+1(k+ e2)] in

which case no direction is favored.

2) or the edge intersect[M−j+1k,M−j+1(k+e1+e2)] or [M−j+1(k+e1),M
−j+1(k+e2)], in which

case the prediction operator should favor the direction which is not intersected by the edge (this is

what the cost function does).
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WhenQj−1
k is not intersected by an edge, the gain between choosing one direction or the other is very

small [4]. Therefore, we will only apply this procedure for stencil selection only when:

argmin
k′=k,k+e1,k−e1

(

|vj−1
k′ − vj−1

k′+e1
|+ |vj−1

k′ − vj−1
k′+e2

|+ |vj−1
k′+e2

− vj−1
k′+e1+e2

|

+|vj−1
k′+e1

− vj−1
k′+e1+e2

|+ |vj−1
k′ − vj−1

k′+e1+e2
| + |vj−1

k′+e1
− vj−1

k′+e2
|
)

= 1 or

argmin
k′=k,k+e2,k−e2

(

|vj−1
k′ − vj−1

k′+e1
|+ |vj−1

k′ − vj−1
k′+e2

|+ |vj−1
k′+e2

− vj−1
k′+e1+e2

|

+|vj−1
k′+e1

− vj−1
k′+e1+e2

|+ |vj−1
k′ − vj−1

k′+e1+e2
|+ |vj−1

k′+e1
− vj−1

k′+e2
|
)

= 1 (10)

which corresponds to the case where the average first order differences are locally maximum in the

vertical or horizontal direction. We will also test anotherpossible choice to detect the cells where the

nonlinear prediction is potentially interesting which is the following:

argmin
k′=k,k+e1+e2,k−e1−e2

(|vj−1
k′ − vj−1

k′+e1+e2
|) = 1 or

argmin
k′=k,k+e1−e2,k−e1+e2

(|vj−1
k′+e1

− vj−1
k′+e2

|) = 1 (11)

which corresponds to the case where the first order differences are locally maximum is the direction of

prediction. When the cell does not satisfy this property, wewill apply the linear prediction method.

As far as the WENO approach is concerned, no cost function is needed since we have:

ṽjMk+ε1
=

a1
2(a1 + a2)

(vj−1
k+e1

+ vj−1
k+e2

) +
a2

2(a1 + a2)
(vj−1

k + vj−1
k+e1+e2

)

with

a1 =
1

ǫ+ |vj−1
k+e1

− vj−1
k+e2

|
, a2 =

1

ǫ+ |vj−1
k − vj−1

k+e1+e2
|
. (12)

The ENO and WENO prediction are such thatρ∞(S1) < 1 since they satisfy the following property:

Proposition 2. • whenk = Mk′, we can show that:

‖vj,1Mk+ε1
− vjMk‖l∞(Z2) ≤

1

2
‖∇vj−2

. ‖(l∞(Z2))2

‖vj,2Mk+ε1
− vjMk‖l∞(Z2) ≤ ‖∇vj−2

. ‖(l∞(Z2))2

• whenk = Mk′ + ε1, we can show that:

‖vj,2Mk+ε1
− vjMk‖l∞(Z2) ≤

1

2
‖∇vj−2

. ‖(l∞(Z2))2

‖vj,1Mk+ε1
− vjMk‖l∞(Z2) ≤ ‖∇vj−2

. ‖(l∞(Z2))2

The proof is available in Appendix B. The same result can be shown for other differences on the grid

Γj, which proves thatρ∞(S1) < 1 and then enables us to apply Theorem 2.
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B. Nonlinear Affine Prediction Using the Hexagonal DilationMatrix

We now focus on the construction of nonlinear multi-scale decompositions using as dilation matrix

the hexagonal matrix

M =





2 1

0 −2



 ,

with coset vectorsε0 = (0, 0)T , ε1 = (1, 0)T , ε2 = (1,−1)T , ε3 = (2,−1)T . We compute the prediction

of vj for the different coset points using an affine interpolant ofthe neighboring points associated to

values computed on the gridΓj−1. To do so, we use the following four different stencils on thegrid

Γj−1:

V j,1
k = M−j+1{k, k + e1, k + e2},

V j,2
k = M−j+1{k, k + e2, k + e1 + e2},

W j,1
k = M−j+1{k + e1, k + e2), k + e1 + e2},

W 2
k = M−j+1{k, k + e1, k + e1 + e2}.

We determine to which stencils each point ofΓj belongs to, and we then define the prediction as its

barycentric coordinates. Note, first, that the prediction rule atMk andMk + ε1 is independent of the

choice of the stencil, and we always have:

vjMk = vj−1
k andvjMk+ε1

=
1

2
vj−1
k +

1

2
vj−1
k+e1

. (13)

When one considers the prediction for the coset vectorε2, V 1
k or V 2

k can be used to predict leading

respectively to:

vj,1Mk+ε2
=

1

4
vj−1
k+e1

+
1

2
vj−1
k+e2

+
1

4
vj−1
k

vj,2Mk+ε2
=

1

2
vj−1
k +

1

4
vj−1
k+e2

+
1

4
vj−1
k+e1+e2

. (14)

When one considers the prediction rules for the coset vectorε3, W 1
k or W 2

k can be used leading to the

following two predictions:

vj,1Mk+ε3
=

1

4
vj−1
k+e2

+
1

4
vj−1
k+e1+e2

+
1

2
vj−1
k+e1

vj,2Mk+ε3
=

1

4
vj−1
k +

1

4
vj−1
k+e1

+
1

2
vj−1
k+e1+e2

(15)

when the stencilsW 1
k andW 2

k are used respectively.
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This leads to four different linear prediction rules depending on the choice for the prediction operator

for coset vectorε2 and ε3. The corresponding limit functions are shown on Figure 2. Torelate this to

the general biorthogonal framework of section II, the function ϕ would be associated to the predictions

(14.1) and (15.1) while other prediction rules defines otherlimit function that are still biorthogonal tõϕ.

The proposed nonlinear subdivision operator is such thatρ∞(S1) < 1 since we have:
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Fig. 2. (A): the limit function associated to predictions (14.1), (15.1); (B): the limit function associated to predictions (14.1),

(15.2); (C): idem with the predictions (14.2), (15.1); (D):idem with prediction (14.2), (15.2) . The corresponding contour plots

are depicted on figures (E),(F),(G) and (H) respectively.

Proposition 3. The prediction defined by (13), (14), (15) satisfies:

‖∇vjM.+ǫi
‖(l∞(Z2))2 ≤

3

4
‖∇vj−1‖(l∞(Z2))2

The proof is given in Appendix C.

The choice of stencil in the ENO method is determined by minimizing a certain cost function, which is

different forε2 andε3 since these coset points belong to different stencils. We will consider the following

cost function to predict atε2:

Cj,ε2,1
H (k) = min(|vj−1

k+e1
− vj−1

k+e2
|+ |vj−1

k+e1
− vj−1

k |, |vj−1
k − vj−1

k+e1+e2
|+ |vj−1

k+e1+e2
− vj−1

k+e1
|).

When the minimum corresponds to the first (resp. second) argument, the stencilV 1
k (resp.V 2

k ) is used.

Similarly, when one considers the prediction atε3, we will compute:

Cj,ε3,1
H (k) = min(|vj−1

k+e1
− vj−1

k+e2
|+ |vj−1

k+e1+e2
− vj−1

k+e2
|, |vj−1

k − vj−1
k+e1

|+ |vj−1
k+e1+e2

− vj−1
k |).
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When the minimum corresponds to the first (resp. second) argument, the stencilW 1
k (resp.W 2

k ) is used.

The above cost function to determine which stencil to use will apply only on cellsQj−1
k containing an

edge. Such cells are determined in the same way as in the quincunx case finding local maxima of first

order differences computed on the cell. When the hexagonal dilation matrix is used, to compute the cost

function in the direction of prediction as in the quincunx case does not make sense since the direction

of prediction does not exist strictly speaking. Therefore,to compute edge cells we will only consider

formula (10).

As far as WENO prediction is concerned, we may write that:

ṽjMk+ε2
= (

α1
1

4
+

α1
2

2
)vj−1

k +
α1
1

4
vj−1
k+e1

+ (
α1
1

2
+

α1
2

4
)vj−1

k+e2
+

α1
2

4
vj−1
k+e1+e2

,

ṽjMk+ε3
= (

α2
1

4
+

α2
2

4
)vj−1

k+e1
+

α2
2

2
vj−1
k + (

α2
1

2
+

α2
2

4
)vj−1

k+e1+e2
+

α2
1

4
vj−1
k+e2

,

with

a11 =
1

ε+ |vj−1
k+e1

− vj−1
k+e2

|
, a12 =

1

ε+ |vj−1
k − vj−1

k+e1+e2
|
,

a21 =
1

ε+ |vj−1
k+e1

− vj−1
k+e2

|
, a22 =

1

ε+ |vj−1
k − vj−1

k+e1+e2
|
. (16)

The WENO predictions satisfy the following stability property:

Theorem 3. If ar are defined by (12) for quincunx matrix and (16) for hexagonalmatrix, the corre-

sponding WENO subdivision schemes are stable.

The proof is given in Appendix A.

C. Prediction Operators Using Higher Degree Polynomials

We now introduce prediction rules based on higher degree polynomials. Prediction Operators build

using an affine interpolation suffers from the drawback thatthe prediction inside a given cell does not

depend on neighboring cells. To consider higher degree polynomials enables to build more sophisticated

prediction operators but results in spurious oscillationsclose to edges due to Gibbs phenomenon. In [8],

the PPH scheme is introduced and aims at limitating oscillations close to the edges. It is derived from

the one dimensional prediction operator defined as follows on a dyadic grid:

vj2k+1 =







vj−1
k+1+vj−1k

2 − 1
4

∇2vj−1
k ∇2vj−1

k+1

∇2vj−1
k +∇2vj−1

k+1

if ∇2vj−1
k ∇2vj−1

k+1 > 0

vj−1
k+1+vj−1

k

2 otherwise

March 25, 2010 DRAFT



17

where∇2vj−1
k is the second order divided difference based onxj−1

k−1, x
j−1
k , xj−1

k+1. From this prediction

operator, one can derive a bidimensional prediction operator using a tensor product approach. The

convergence of the one dimensional subdivision scheme was shown in [8] and also the stability in

[9]. The philosophy of the PPH approach is different from that we propose next in that the prediction

operator is neither quasi-linear nor non-separable. Furthermore, the convergence of the bidimensional

scheme derived by tensor product remains an open issue.

In what follows, we consider polynomials of degree2 for prediction. These polynomials interpolatesv

on different stencils which we define below. The approach we propose next is valid both for the quincunx

and the hexagonal dilation matrices. The prediction rules we consider are based on the following stencils

defined onΓj−1:

V 1 = M−j+1 {k, k + e1, k + e2, k + e1 + e2, k + 2e1, k + 2e2}

V 2 = M−j+1 {k, k + e1, k + e2), k + e1 + e2, k − e1, k + 2e2}

V 3 = M−j+1 {k, k + e1, k + e2, k + e1 + e2, k + 2e1, k − e2}

V 4 = M−j+1 {k, k + e1, k + e2, k + e1 + e2, k − e1, k − e2} . (17)

As in the affine case, to detect edge-cells, we check property(10). Then, we use nonlinear affine prediction

on edge-cells. Once we have dealt with edge-cells, we apply the following strategy on remaining cells:

• If a cell has a edge-cell as neighboring cell in the vertical or horizontal direction then the prediction

is made using stencil selection we describe below,

• otherwise, we apply the stencilV 1 for the prediction.

Now, let us explain how we do stencil selection. For each stencil V i, defined in (17), we consider the

triangles made of neighboring points inside that stencil. This corresponds to 6 triangles. For instance

for stencil V 1, the triangles are as follows:M−j+1{k, k + e1, k + e2},M
−j+1{k, k + e1, k + e1 +

e2},M
−j+1{k, k + e2, k + e1 + e2},M

−j+1{k + e1, k + e2, k + e1 + e2},M
−j+1{k + e1, k + 2e1, k +

e1+e2)},M
−j+1{k+e2, k+e1+e2, k+2e2}. The triangles are defined the same way for other stencils.

We compute a cost function on each triangle as the sum of the first order differences along its edges (for

instance, the cost function for the first triangle ofV 1 is |vj−1
k+e1

−vj−1
k |+ |vj−1

k+e2
−vj−1

k+e1
|+ |vj−1

k+e2
−vj−1

k |).

The cost functionCj,i(k) associated toV i is then the sum of the cost functions computed on all the

triangles that make upV i. For the prediction, we then use the stencil with minimal cost.

In the case whereM is the quincunx matrix, the stencilsV i are used to predictvjMk+ε1
, ε1 = (0, 1)

while whenM is the hexagonal matrix, the stencils are used to predictvjMk+εi
, with ε1 = (1, 0), ε2 =
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(1,−1), ε3 = (2,−1). To prove the convergence of such schemes would involve the computation of all

the differences in the canonical directions. However, at each coset point we have this time 4 potential

predictions, so it would be prohibitive to detail the computation here. We are currently looking for a con-

cise proof of the conjecture that these nonlinear operatorssatisfy the condition on the joint spectral radius

(i.e. ρ∞(S1) < 1). Once the prediction operator is chosen, we implement the multi-scale representation

MvJ . This is what we deal with next.

VI. M ULTI -SCALE REPRESENTATION WHENM2 = λId

Note first that sinceM2 = λId, the finest resolution levelJ is considered even. LetΓJ = {xJk1
, yJk2

}NJ−1
k1,k2=0, x

J
k1

=

k1hJ , y
J
k2

= k2hJ , hJ = 2−Jh0, NJ = 2JN0 whereN0 is some integer andh0 = 1/N0. SinceM2 = λId,

we obtain, fork1, k2 = 0, ..., NJ/λ − 1, xJλk1
= xJ−2

k1
andyJλk2

= yJ−2
k2

. The connections between the

levelsJ andJ − 1 or J − 1 andJ − 2 are more elaborate.

A. Encoding and Decoding Algorithm

Let us detail the quincunx case, the hexagonal case can be dealt with the same way. The following

encoding and decoding algorithms were originally proposedin [11], but we recall it for the sake of

consistency.

We recall that the quincunx matrix satisfiesM2 = 2Id. For the first step, we have fork2 = 0, ..., NJ−1

(xJ2k1
, yJk2

) = (xJ−1
k1

, yJ−1
k2

), k1 = 0, ..., NJ/2− 1 if k2 even,

(xJ2k1−1, y
J
k2
) = (xJ−1

k1
, yJ−1

k2
), k1 = 1, ..., NJ/2 if k2 odd,

and for the second

(xJ−1
k1

, yJ−1
2k2

) = (xJ−2
k1

, yJ−2
k2

), k1, k2 = 0, ..., NJ/2− 1.

The following steps are performed similarly. Let us putNj := NJ/2
(J−⌊j/2⌋). We considervjk1,k2

=

v(xjk1
, yjk2

), where if j is even0 ≤ k1, k2 ≤ Nj − 1 and if j is odd0 ≤ k2 ≤ 2Nj and1 ≤ k1 ≤ Nj . The

projection operators are forj evenvj−1
k1,k2

= (P j
j−1v

j)k1,k2
= vj2k1,k2

if k2 is even,vj−1
k1,k2

= (P j
j−1v

j)k1,k2
=

vj2k1−1,k2
if k2 is odd, and forj odd vj−1

k1,k2
= (P j

j−1v
j)k1,k2

= vjk1,2k2
. In particular, we obtain forj even

that the kernel of the linear operator of decimation,P j
j−1 , readsKer(P j

j−1) = {vj ∈ V j , vj2k1,k2
=

0, k2 even, vj2k1−1,k2
= 0, k2 odd }, and for j odd Ker(P j

j−1) = {vj ∈ V j, vjk1,2k2
= 0}. Thus, if we

denote byek the prediction error, we will need to keep whenj is evenej2k1−1,k2
for k2 even,ej2k1,k2

for k2 odd andejk1,2k2−1 when j is odd. A reconstruction procedure for this discretizationis given by
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operatorS(vj−1) := S(vj−1)vj−1 that interpolates the datavj−1 at the grid points ofΓj−1. We consider

three different types of prediction rules: linear prediction, ENO and WENO prediction. Let us remark

that in the algorithm given below we denotev̂j = vj \ vj−1, that is, for allj = 0, . . . , J , vj =
⋃j

k=1 v̂
k.

Then, encoding and decoding algorithms take the following form:

Encoding Algorithm

Quincunx Matrix

for j = J-2, . . . , 2; j = j - 2

for k1,k2 = 1, . . . ,Nj−1

v̂j−2
k1,k2

= vj2k1−1,2k2−1

v̂j−1
k1,2k2

= vj2k1,2k2

end

for k1, k2=1, . . .,Nj−1

ej−1
k1,k2

= vj2k1,2k2
− S(vj−2)2k1,2k2

end

for k1 = 1, . . . ,Nj−1

for k2 = 1, . . . ,Nj; k2 = k2 + 2

ejk1,2k2
= vj2k1,k2

− S(vj−1)2k1,k2

ejk1,k2+1 = vj2k1−1,k2+1 − S(vj−1)2k1−1,k2+1

end

end

end

Hexagonal Matrix

for j = J-2, . . . , 2; j = j - 2

for k1,k2 = 1, . . . ,Nj−1

v̂j−2
k1,k2

= vj4k1−3,4k2−3, v̂
j−1
k1,3k2−2 = vj4k1−1,4k2−2

v̂j−1
k1,3k2−1 = vj4k1−3,4k2−1, v̂

j−1
k1,3k2

= vj4k1−1,4k2

end

for k1, k2=1, . . .,Nj−1

ej−1
k1,3k2−2 = vj4k1−1,4k2−2 − S(vj−2)4k1−1,4k2−2

ej−1
k1,3k2−1 = vj4k1−3,4k2−1 − S(vj−2)4k1−3,4k2−1

ej−1
k1,3k2

= vj4k1−1,4k2
− S(vj−2)4k1−1,4k2

end

for k1 = 1, . . . ,Nj−1

for k2 = 1, . . . ,Nj ; k2 = k2 + 2

ej3k1−2,k2
= vj4k1−2,k2

− S(vj−1)4k1−2,k2

ej3k1−1,k2
= vj4k1−1,k2

− S(vj−1)4k1−1,k2

ej3k1,k2
= vj4k1,k2

− S(vj−1)4k1,k2

ej3k1−2,k2+1 = vj4k1−3,k2+1 − S(vj−1)4k1−3,k2+1

ej3k1−1,k2+1 = vj4k1−3,k2+1 − S(vj−1)4k1−3,k2+1

ej3k1,k2+1 = vj4k1,k2+1 − S(vj−1)4k1,k2+1

end

end

end

The encoding algorithm leads to the following representation: MvJ = (v0, d0, ..., dJ−1), where dj

was defined at the end of section III. Making the same reasoning, we can encode the multiresolution

decomposition obtained with the hexagonal sampling matrix.

Then, we concatenate matricesv0, d0, . . . , dJ−1 in one matrixV of dimensionNJ (that is, of the same
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dimension asvJ ). To build V , we start by writing down matrixv0 in its left upper corner. Then, we

write down the matrixd1 to the right of matrixv0 and thend1 below matricesv0 andd0 thus getting a

square matrix. We proceed in the same way (writing down matrix dj to the right ofdj − 2 if j is even

and below ifj is odd) until j = J . The result of this concatenation is represented on Figure 3.(A) for

the Quincunx matrix and in Figure 3.(B). for the Hexagonal matrix (the subspacedj is represented by

Dj).

V 0 0D

D 1
D

2

D
3

D

D
D

D

V 0 0

1
2

3

Fig. 3. (A): quincunx matrix, (B): hexagonal matrix.

Therefore, we are led to encodeV . Let us notice that in general the prediction error is largerwhen the

resolution is low. That is, the smallerj, the larger the elements of sub-matrixDj . This naturally leads

us to build an EZW (Embedded zero-tree wavelet) encoder adapted to our context.

The EZW (Embedded Zero-tree Wavelet) encoding algorithm isan encoder specially developed to use

with wavelet transforms. It is based on progressive encoding: the data is compressed in multiple passes

with increasing accuracy. The initial threshold is set to beequal toT0 = 2⌊log2(max |V (k1,k2)|)⌋, where

max |V (k1, k2)| means the maximum element of matrixV . The encoder scans next element, compares it

with threshold and gives ’p’, ’n’, ’z’ or ’t’ as an output; if the absolute value is bigger than the threshold,

it outputs either ’p’, if the value is positive or ’n’, if it isnegative, else it constructs a tree with the

considered element as the root. If it is a zero-tree (that is,the values in the nodes are smaller or equal to

the root), the output is ’t’, otherwise it is ’z’ (isolated zero). We encode an element only if we got ’p’
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or ’n’ as output. In this case, we put it in the so-called ’subordinate list’ together with either3T0

!2 , if it is

bigger thanT0 or −3T0

2 (for elements inferior to−T0

2 ) and remove it fromV (replace it by0) so that it

will not be encoded again. After we have scanned all the elements, we divide the thresholdT0 by two

and start again the procedure till the threshold is not smaller than a fixed value.

Thereby, to apply an encoder based on the same principle as EZW encoder, we need to introduce a tree

structure for them. The trees are designed in such a way that every element of the sub-matrixDj is a child

of some element of sub-matrixDj−1, j = 1, . . . , 2 log2 NJ for quincunx matrix,j = 1, . . . , 2 log4 NJ

for hexagonal matrix. That is, we get a binary tree for quincunx matrix and a quad-tree for hexagonal

matrix. The tree structures for quincunx and hexagonal trees are illustrated on Figure 4.(A) and (B).

*

+

*

*

**

*

+ +

* * *

+ +

* *

+

* * *

+ +

* *

+ *V 0 D 0 D1 D
2

++ +

++

+ + + +

+++

+ +

+

* * * *

* * * *

* * * *

* * * *

* * * *

* * * * * * * *

* * * * * * *

+

+

* * ** * * * *

*

* * * * * * * *

V 
0

D0 + D1
* D

2

Fig. 4. (A): Tree structure for quincunx matrix, (B): Tree structure for hexagonal matrix.

In order that the algorithm works correctly, it is necessarythat matrixV be scanned in such a way

that sub-matrixDj is scanned beforeDj+1, subspaceDj being itself scanned using the so-called Morton

scan. For each subspaceDj , we will denote byT j
1 (resp.T j

2 ) the number of lines (resp. columns) in the

matrix Dj. The EZW decoding is realized exactly in the same way as for wavelets. We now write the

inverse operatorvJ = M−1(v0, d0, ..., dJ−1).

Decoding Algorithm
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Quincunx Matrix

for j = 2, . . . , J-1; j = j + 2

for k1, k2 = 1, . . . ,Nj−1

v̂j−1
2k1−1,2k2−1 = S(vj−2)2k1−1,2k2−1

v̂j−1
2k1,2k2

= ej−1
k1,k2

+ S(vj−2)2k1,2k2

end

for k1=1, . . . ,Nj−1

for k2=1, . . . ,Nj ; k2 = k2 + 2

vj2k1,k2
= ejk1,k2

+ S(vj−1)2k1,k2

vj2k1−1,k2
= ejk1,k2+1 + S(vj−1)2k1−1,k2+1

end

end

Hexagonal Matrix

for j = 2, . . . , J-1; j = j + 2

for k1, k2 = 1, . . . ,Nj−1

v̂j−1
4k1−3,4k2−3 = vj−2

k1,k2

v̂j−1
4k1−1,4k2−2 = ej−1

k1,3k2−2 + S(vj−2)4k1−1,4k2−2

v̂j−1
4k1−3,4k2−1 = ej−1

k1,3k2−1 + S(vj−2)4k1−3,4k2−1

v̂j−1
4k1−1,4k2

= ej−1
k1,3k2

+ S(vj−2)4k1−1,4k2

end

for k1=1, . . . ,Nj−1

for k2=1, . . . ,Nj; k2 = k2 + 2

vj4k1−1,k2
= ej3k1−1,k2

+ S(vj−1)4k1−1,k2

vj4k1,k2
= ej3k1,k2

+ S(vj−1)4k1,k2

vj4k1,k2
= ej3k1,k2

+ S(vj−1)4k1,k2

vj4k1−3,k2+1 = ej3k1−2,k2+1 + S(vj−1)4k1−3,k2+1

vj4k1−2,k2+1 = ej3k1−1,k2+1 + S(vj−1)4k1−2,k2+1

vj4k1,k2+1 = ej3k1,k2+1 + S(vj−1)4k1,k2+1

end

end

VII. N UMERICAL APPLICATIONS

In this section, we study the improvement brought about either by the use of nonlinear affine instead of

linear affine interpolant or by using nonlinear quadratic interpolant instead of a linear one. In particular,

we will put forward the importance of dealing nonlinearly with the finest scales especially for geometric

images. We carry out the study both for the quincunx and hexagonal dilation matrix. We also investigate

the importance of the degree of the interpolation polynomial in terms of compression results.

A. Interpolation using Affine Polynomials

We investigated the improvement brought about the use of affine nonlinear prediction schemes instead

of linear ones on natural images of Figure 5. In particular, we investigated the importance of nonlinear

prediction at fine scales. To do so, we considered nonlinear prediction whenT j
1 , the first dimension of

Dj in the matrixV , is aboveT1 and linear prediction elsewhere. For a256 × 256 image and when the

quincunx matrix is used,T1 = 64 means that we predict nonlinearly the last finest four subspaces. We
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made the simulation forT1 = 32, 64, 128 for the256×256 images of Lena (Figure 5.(A)) and of peppers

(Figure 5.(B)). We also implemented the WENO prediction method.

The results we depict on Figure 6 (A) and (B) corresponds to the prediction rules (8) and (9). The

cells on which we shall predict nonlinearly either corresponds to the cells where the average first order

differences are locally maximum in the vertical or the horizontal directions (C1 on Figure 6 (A) and

(B), corresponding to rule (10) or the first order differences are locally maximum in the direction of

prediction (C2 on Figure 6 (A) and (B), corresponding to rule (11)).

When the quincunx matrix is used, a significant compression gain is observed when the nonlinear

method is used especially at high compression rate (see Figure 6 (A) and (B)). A more careful look

shows that one shall predict non linearly a larger number of scales when the image is geometric such

as the image of Lena while the number of scales predicted nonlinearly are less importance for natural

images such as the image of Lena. Furthermore, we noticed that when one uses the rule (11) instead of

(10) to determine the points where the prediction is nonlinear, the gain in compression is significant for

both images and even more for the image of peppers.

The results on WENO prediction are displayed on Figure 6 (C) and (D). For both images, the effect

of using the WENO method is to make the prediction operator closer to the linear model which has the

consequence that the compression gain over the linear modelis significantly less important than when the

ENO method is used. WENO method are important to construct stable multi-scale representation. We are

currently looking for a different way to define the weights soas to preserve compression performance.

Now, if we switch on to the Hexagonal dilation matrix, the results are displayed on Figure (7).(C), we

notice that the nonlinear prediction does not bring any improvement in terms of compression results (

note that due to the greater down-sampling we consideredT1 = 16 or 64 which respectively corresponds

to the last four subspaces are predicted nonlinearly or onlythe last 2). Our insight into these results is

that the compression performance is related tom = |det(M)|. Indeed, with the hexagonal matrix the

sampling factor is too important and too much information islost between each scale for the prediction to

be efficient. Another possible direction for future research would be the optimization of the cost function

that determines the stencil to use.

B. The Quadratic Prediction

We investigated the improvement brought about nonlinear quadratic prediction instead of linear quadratic

prediction. The improvement in terms of compression rate occur essentially at intermediate compression

rate as shown on Figure 7 (A) and (B) whereas with the affine prediction the gain was more important at
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Fig. 5. (A): a256× 256 Lena image, (B): a256× 256 peppers image
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Fig. 6. (A): linear prediction (solid line) and ENO prediction for varyingT1 using eitherC1 or C2 to compute cells of interest

for Lena image and when the quincunx matrix is used, (B):idembut for the image of peppers (C): linear prediction (solid line)

and WENO predictions for varyingT1 using eitherC1 or C2 to compute cells of interest for Lena image and when the quincunx

matrix is used, (D): the same as (C) but for peppers image

high compression rate. We notice again that it is less important to predict nonlinearly more scales with

the image of Lena than with the image of peppers for which it appears crucial to predict a sufficient

March 25, 2010 DRAFT



25

number of scales to get better results than in the linear case(see Figure 7 (B)) .

Finally, when one uses the hexagonal matrix, Figure 7 (D) shows that to use higher degree polynomial

does not bring any improvement in terms of compression results. In terms of perspective, future work

should involve the definition of a cost function to determinewhich stencil to use that shall depend on

the matrixM . To conclude the results section, we obtain significant improvement when the quincunx

matrix is used while the hexagonal dilation matrix does not seem a good choice in our framework. We

are currently trying to understand why the dilation matrix plays such an important role.
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Fig. 7. (A): The quadratic linear prediction (solid line) iscompared to the nonlinear quadratic prediction when the value of

T1 varies for Lena image and when the quincunx matrix is used, (B): idem but for the image of peppers, (C): Affine linear

prediction (solid line) is compared to the nonlinear affine ENO prediction when the value ofT1 varies for both the image of

Lena and the image of peppers and when the hexagonal matrix isused ,(D): Same computations as in (C) except that we use

quadratic polynomial

VIII. C ONCLUSION

In this paper, we have presented the theory of nonlinear and non-separable multi-scale representation.

We have first emphasized the relation between nonlinear prediction operators and multi-scale representa-

tions. We have then shown that the convergence of the multiscale representation is related to some property

of the joint spectral radius of the first order difference operator computed from the prediction operator. We
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have then built some bidimensional nonlinear multi-scale representations based on interpolatory prediction

operators. These were built using either the quincunx or thehexagonal matrix as dilation matrix and were

either affine predictors or based on polynomials of degree 2.To show the pertinence of the approach

we have proposed an application to image compression. To do so, we have first explained how the

embedded-zero-tree wavelet (EZW) algorithm adapts in our context. The compression results show a

clear improvement brought about ENO methods when the quincunx matrix is used both with affine or

quadratic predictors. However, when the WENO prediction isused, the compression results is very close

to the linear one, which let us think that future work should involve a deeper study of the weights in

the WENO method. When the hexagonal matrix is used, we did notmanage to obtain similar results as

with the quincunx case ; we believe that a the down-sampling factor (symbolized in our context by the

determinant of the matrix) is the key point, but this still needs further study. In terms of perspectives,

we also are currently investigating potential extension ofour approach to non-interpolatory prediction

operators.

APPENDIX A

PROOF :Let v, ṽ ∈ ℓ∞(Z2). By the definition of WENO prediction we have that

‖ak−Ml(v)− ak−Ml(ṽ)‖ℓ∞(Z2) ≤ ‖S(v) − S(ṽ)‖ℓ∞(Z2) ≤ |α1 − α̃1|+ |α2 − α̃2|,

whereα1, α̃1, α2, α̃2 are the weights of the stencils forv and ṽ respectively. Fori = 1, 2 it holds that

|αi − α̃i| = |
ai

a1 + a2
−

ãi
ã1 + ã2

|

≤ |
ai − ãi
a1 + a2

|+ |ãi(
1

a1 + a2
−

1

ã1 + ã2
)|

≤ |
1

a1 + a2
|(|ai − ãi|+

ãi
ã1 + ã2

|a1 − ã1 + a2 − ã2|

≤ |
1

a1 + a2
|2

2
∑

i=1

|ai − ãi|,

then, ‖S(v) − S(ṽ)‖ℓ∞(Z2) ≤ 4
a1+a2

2
∑

i=1
|ai − ãi|. By simple computations we obtain that:|ai − ãi| =

| 1
ǫ+bi

− 1
ǫ+b̃i

| ≤ |bi−b̃i|
ǫ2 .

From the definition ofbi we have thatbi <
∼ ‖v‖ℓ∞(Z2) and |bi − b̃i| ≤ ‖v− ṽ‖ℓ∞(Z2) and it follows that

a1 + a2 =
1

ǫ+b1
+ 1

ǫ+b1
≥ 2

ǫ+‖v‖ℓ∞(Z2)
. Therefore,

∑

i

|ai − ãi| <
∼

‖v − ṽ‖ℓ∞(Z2)

ǫ2

and‖S(v) − S(ṽ)‖ℓ∞(Z2) <
∼

ǫ+‖v‖ℓ∞

ǫ2 ‖v − ṽ‖ℓ∞(Z2).
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APPENDIX B

Let us consider first thatk = Mk′ and then we compute (notice thatε1 = e2):

vj,1Mk+ε1
− vjMk =

1

2
(vj−1

k + vj−1
k+e1+e2

)− vj−1
k =

1

2
(vj−1

Mk′+e1+e2
− vj−1

Mk′)

=
1

2
(vj−2

k′+e2
− vj−2

k′ )

vj,2Mk+ε1
− vjMk =

1

2
(vj−1

Mk′+e1
+ vj−1

Mk′+e2
)− vj−1

Mk′ =
1

2
(vj−1

M(k′−e2)+e2
+ vj−1

Mk′+e2
)− vj−2

k′

we then have to consider the different prediction rules for the valuesvj−1
M(k′−e2)+e2

andvj−1
Mk′+e2

. If the

rule (8) is used in both cases, we have:

vj,1Mk+ε1
− vjMk =

1

4
(vj−2

k−e2
− vj−2

k ) +
1

2
(vj−2

k+e1
− vj−2

k ) +
1

4
(vj−2

k+e1+e2
− vj−2

k+e1
).

If the prediction rule (9) is used in each case, we have:

vj,1Mk+ε1
− vjMk =

1

4
(vj−2

k−e2+e1
− vj−2

k−e2
) +

1

4
(vj−2

k−e2
− vj−2

k ) +
1

4
(vj−2

k+e1
− vj−2

k ) +
1

4
(vj−2

k+e2
− vj−2

k ).

If prediction (8) is used forvj−1
M(k′−e2)+e2

and prediction (9) forvj−1
Mk′+e2

, we may write:

vj,1Mk+ε1
− vjMk =

1

2
(vj−2

k+e1
− vj−2

k ) +
1

4
(vj−2

k−e2
− vj−2

k ) +
1

4
(vj−2

k+e2
− vj−2

k ).

If prediction (9) is used to predictvj−1
M(k′−e2)+e2

and prediction (8) forvj−1
Mk′+e2

, we may write:

vj,1Mk+ε1
− vjMk =

1

4
(vj−2

k−e2+e1
− vj−2

k+e1
) +

1

4
(vj−2

k+e1
− vj−2

k ) +
1

4
(vj−2

k+e1+e2
− vj−2

k+e1
)

From the above equality, we can deduce that whenk = Mk′:

‖vj,1M.+ε1
− vjM.‖ℓ∞(Z2) ≤

1

2
‖∇vj−2‖(l∞(Z2))2

‖vj,2M.+ε1
− vjM.‖ℓ∞(Z2) ≤ ‖∇vj−2‖(l∞(Z2))2

Now, let us consider the case wherek = Mk′ + ε1. If prediction (8) is used we may write:

vj,1Mk+ε1
− vjMk =

1

2
(vj−1

Mk′+e2
+ vj−1

M(k′+e2)+e2
)− vj−1

Mk′+e2
)

=
1

2
(vj−1

M(k′+e2)+e2
− vj−1

Mk′+e2
)

This corresponds to the same situation as that previously studied, and similar computation leads to:

‖vj,1M.+ε1
− vjM.‖ℓ∞(Z2) ≤ ‖∇vj−2‖(ℓ∞(Z2))2
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If prediction (9) is used, we may write:

vj,2Mk+ε1
− vjMk =

1

2
(vj−2

k′+e2
+ vj−2

k′+e1+e2
)− vj−1

Mk′+ε1

If prediction (8) is used to predictvj−1
Mk′+ε1

, then we have:

vj,2Mk+ε1
− vjMk =

1

2
(vj−2

k′+e2
− vj−2

k′ ),

while when prediction (9) is used, we get:

vj,2Mk+ε1
− vjMk =

1

2
(vj−2

k′+e1+e2
− vj−2

k′+e2
).

From this, we deduce that:

‖vj,2M.+ε1
− vjM.‖ℓ∞(Z2) ≤

1

2
‖∇vj−2‖(ℓ∞(Z2))2 ,

This ends the proof.

APPENDIX C

PROOF: for the sake of simplicity, we will put∇i for ∇ei .

• If we useV 1
k andW 1

k for prediction, then we have the following behavior for the differences:

1) l = Mk, ∇1v
j
Mk = 1

2∇1v
j−1
k ∇2v

j
Mk = −1

2∇2v
j−1
k+e2

+ 1
4∇1v

j−1
k+e2

2) l = Mk + ε1, ∇1v
j
Mk+ε1

= 1
2∇1v

j−1
k+e1

∇2v
j
Mk+ε1

= −1
2∇2v

j−1
k+e2

+ 1
4∇1v

j−1
k+e1

3) l = Mk + ε2, ∇1v
j
Mk+ε2

= 1
4∇1v

j−1
k+e1

+ 1
4∇1v

j−1
k+e2

∇2v
j
Mk+ε2

= −1
2∇2v

j−1
k+e2

+ 1
4∇1v

j−1
k+e1

4) l = Mk + ε3, ∇1v
j
Mk+ε3

= 1
4∇1v

j−1
k+e1

+ 1
4∇1v

j−1
k+e1+e2

∇2v
j
Mk+ε3

= −1
2∇2v

j−1
k+e1+e2

+

1
4∇1v

j−1
k+e1+e2

• When the stencilsV 2
k andW 2

k are used for the prediction, we obtain:

1) l = Mk, ∇1v
j
Mk = 1

2∇1v
j−1
k ∇2v

j
Mk = −1

2∇2v
j−1
k+e2

+ 1
4∇1v

j−1
k+e2

2) l = Mk + ε1, ∇1v
j
Mk+ε1

= 1
2∇1v

j−1
k+e1

∇2v
j
Mk+ε1

= −1
2∇2v

j−1
k+e1+e2

+ 1
4∇1v

j−1
k+e1+e2

3) l = Mk+ε2, ∇1v
j
Mk+ε2

= 1
4∇1v

j−1
k +1

4∇1v
j−1
k+e1+e2

∇2v
j
Mk+ε2

= −1
2∇2v

j−1
k+e2

+1
4∇1v

j−1
k+e1+e2

4) l = Mk+ε3, ∇1v
j
Mk+ε3

= 1
4∇1v

j−1
k+e1

+ 1
4∇1v

j−1
k+e1+e2

∇2v
j
Mk+ε3

= −1
2∇2v

j−1
k+e2

+ 1
4∇1v

j−1
k+e1

• When the stencilsV 1
k andW 2

k are used for the prediction

1) l = Mk, ∇1v
j
Mk = 1

2∇1v
j−1
k ∇2v

j
Mk = −1

2∇2v
j−1
k+e2

+ 1
4∇1v

j−1
k

2) l = Mk + ε1, ∇1v
j
Mk+ε1

= 1
2∇1v

j−1
k+e1

∇2v
j
Mk+ε1

= −1
2∇2v

j−1
k+e2

+ 1
4∇1v

j−1
k+e1

3) l = Mk + ε2, ∇1v
j
Mk+ε2

= 1
4∇1v

j−1
k+e1

+ 1
4∇1v

j−1
k+e2

∇2v
j
Mk+ε2

= 1
4∇1v

j−1
k+e1

+ 1
4∇1v

j−1
k

4) l = Mk + ε3 ∇1v
j
Mk+ε3

= 1
2∇1v

j−1
k+e1+e2

∇2v
j
Mk+ε3

= −1
2∇2v

j−1
k+e2

+ 1
4∇1v

j−1
k+e1
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• When the stencilsV k
2 andW k

1 are used for the prediction

1) l = Mk, ∇1v
j
Mk = 1

2∇1v
j−1
k ∇2v

j
Mk = −1

2∇2v
j−1
k+e2

+ 1
4∇1v

j−1
k+e2

2) l = Mk + ε1, ∇1v
j
Mk+ε1

= 1
2∇1v

j−1
k+e1

∇2v
j
Mk+ε1

= −1
2∇2v

j−1
k+e1+e2

+ 1
4∇1v

j−1
k+e1+e2

3) l = Mk+ε2, ∇1v
j
Mk+ε2

= 1
4∇1v

j−1
k+e2

+1
4∇1v

j−1
k+e1+e2

∇2v
j
Mk+ε2

= −1
2∇2v

j−1
k+e2

+1
4∇1v

j−1
k+e1+e2

4) l = Mk + ε3, ∇1v
j
Mk+ε3

= 1
2∇1v

j−1
k+e1

∇2v
j
Mk+ε3

= −1
2∇2v

j−1
k+e1+e2

+ 1
4∇1v

j−1
k+e1+e2

To complete the proof of the contractivity, we also have to compute

vjMk+ε2+e2
− vj,1Mk+ε2

=
1

2
∇2v

j−1
k+e2

−
1

4
∇1v

j−1
k+e1

vjMk+ε2+e2
− vj,2Mk+ε2

=
1

2
∇2v

j−1
k+e2

−
1

4
∇1v

j−1
k+e1+e2

and also,

vjMk+ε1+e1
− vjMk+ε1

=
1

2
∇1v

j−1
k+e1

.
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