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Abstract- In this paper, we introduce the notion of nonlinear and ngpasable multi-scale
representation. We show how it can be derived from nonlia@ar non-separable subdivision
schemes associated to a non-diagonal dilation matrix. \WWesf@n nonlinear multi-scale
decomposition where the dilation matrix is either the qumcor the hexagonal matrix. We
then detail the encoding and decoding algorithm of the sspr&tion and, in particular, how
the EZW (Embedded Zero-tree Wavelet) algorithm adapts an ¢bntext. Numerical
experiments on image compression conclude the paper.

Keywords- Nonlinear multi-scale representation, image compression

EDICS Category:TEC-MRS

. INTRODUCTION

Due to the hierarchical structure of visual informatione tmulti-scale representations are widely
applied in image processing [2][1][3]. Images are bidimenal complex objects made of homogeneous
regions separated by smooth singularities. It is then ahtarprocess them using techniques which are
intrinsically bidimensional and are adapted to the infaioracontained in an image. The multi-scale
representations based on the tensor product of waveles lzasenot well adapted to process efficiently
an image near the singularities. In order to have a bettatnrent of singularities, A. Harten in [5][6]
introduced a general framework to multi-scale data reptasiens. The idea is to associate to any function
v, a set of sequenceMv := (v%,d°, d*,d?,...), where the sequence := (v))ez« is the coarsest
approximation ofv and the sequencef := (di)kezd, with j > 0, are additional detail coefficients
which represent the fluctuations ofbetween two successive levels of resolution.

There exist many ways to build such nonlinear represemstiom most papers, the multi-scale structure
is associated to dyadic levels of resolution [5][2]. In [#e quincunx matrix is used to define the levels,
and then a multi-scale representation is proposed. In #&sept paper, we build multi-scale representations
either based on quincunx or hexagonal dilation matriceg. géneral philosophy of the approach, is to
predict at a fine level using only coarser levels and to mezegprediction errors as detail coefficients.
The approach we propose is therefore well adapted to preigesgansmission of data.

We first recall some definitions about nonlinear subdivisigerators in a non-separable framework

and we will explain how this entails the convergence of rasttile representations associated to such
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operators. We will then give applications to interpolatonylti-scale representations corresponding to
quincunx or hexagonal dilation matrices. In particular, widl study affine interpolatory scheme and
also interpolation using polynomial of total degree twoeThhole procedure from the encoding of the
representation, to the compression step and, finally, taléo®ding step will be detailed. In particular,
we will show how the EZW (embedded zero-tree wavelets) adismpbur context. Some illustrations on

image compression conclude the paper.

[I. NOTATIONS AND MULTI-RESOLUTION ANALYSIS DEFINITION
A. Notations

Let £(Z%) be the space of all sequences indexed@ByThe subspace of bounded sequences is denoted
by ¢>°(Z%) and ||u|y=(z«) is the supremum of|uy| : k € Z?}. We denote/’(Z) the subspace of all
sequences with finite support (i.e. the number of non-zenspoments of a sequence is finite). As usual,

let ¢7(Z%) be the Banach space of sequencesn Z¢ such that||u||s»z«) < oo, where

1

oy o= (Z |uk|p> for 1< p < s

kezd
For anyw € 7(Z%)* we will denote||w||s(z4)«, the supremum of thé’-norm of the components of
w. As in the discrete case, we denote b(R?) the space of all measurable functiofissuch that

£l e (rey < o0, Where

1l e ey := (/R ]f(m)]pdx> " for1<p< oo

and || f|| .~ (r«) is the essential supremum pf| on R%. A matrix M is called a dilation matrix if it has
integer entries and 'gl_?go M~" = 0. In the following, the invertible dilation matrix is alwaydenoted

by M andm stands for|det(M)|. Finally, for two positive quantitiesA and B depending on a set
of parameters, the relatiod < B implies the existence of a positive constdntindependent of the

parameters, such that < CB. Also A ~ B meansA < BandB < A.

B. Multi-Resolution Analysis

To begin with, letV be ad-dimensional Hilbertian space. From here ad, will denote a dilation

matrix. We recall the concept of multi-resolution analyassociated to the spagé

Definition 1. A multi-resolution analysis oV is a sequencéV}),cz« of closed subspaces embedded in

V satisfying the following properties:
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1) The subspaces are embeddgdc V.,

2) feVifandonlyif f(M.) € Vi

3) UjeaV; = V.

4) NjezVj = {0}

5) We assume the existence of a compactly supported fungtierl; such that the family of their

translates{¢(- — k) }rcz« forms a Riesz basis fdry.

From 1 C V4, it follows that the functionp, called scaling function, satisfies:

p(x) = Z gnp(Mx —n), with Zgn =m. (1)

nezd n

To build the approximation of a given functianat levelj, we adopt the biorthogonal point of view that
is we assume the existence oflaal function ¢ with compact support satisfying:

P(x) = Y hp(Mz — k), with Yy, =m, @
k

kezd

and such that the following duality property holds@(z — n), p(x — k) >= 4, 1, whered,, ,, denotes
the Kronecker symbol ang .,. > the Euclidean inner product. The approximation at levelan be
obtained by projection of on V; as follows:
v =Y vip(Miz —n) (3)
nezd
Wherevi =m/ <wv,p(MIx — k) >. Note that whenp is fixed, ¢ is a priori not unique which leads to

potentially differentv;.

I11. M ULTI-SCALE REPRESENTATIONUSING DILATION MATRIX M

Let (T9),—o,...; be the set of embedded grids witi = {M 7k, k € Z¢}, J corresponding to the

finest level of resolution. We now define tpeojectionand predictionoperators on these grids.

A. Projection and Prediction Operators

Let (I'Y)—o.... s be the multiresolution structure defined above and ther: (v{)cz« the data at the
finest levelJ. The valuev] is associated to the locatiaW/ ~/k on the gridT’. In order to build the
multi-scale representation of , we assume the existence of two discrete interscale opsrato

1) the projection ij_l operator acting from fine to coarse level.olf is an approximation of’ on

IV, we definev/—1 = Pj_lﬁj. This operator is always assumed to leear. In our context,@
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defined in (2) fixes the projection operator as follows:
vl = (m) T bt (4)
neri
2) the prediction Pf‘l operator acting from coarse to fine level. This operator asepd’ =
P!~'3=1 and may benonlinear
We further assume that these two operators satisfgdmsistencyroperty: the projection o/ on 71
coincides withv/—1, i.e.

o
Pl PIT =1 (5)
Note that the prediction erra¥ = v/ — ©7, is not arbitrary data of’. Indeed, from (5), one has

P;_lej = P;_lvj — P;_lf)] ="t =0,

Hence,e’ € Ker(P]?_l). It follows that we may write this error in a non-redundantywssing a basis of
Ker(ij_l). The coefficients of the errors in this kernel gives the deméfficientsd’—!. Consequently,
the dataw’ is completely equivalent t¢v’—!, d’~1). Iterating this process from the initial dated, we

obtain its nonlinear multi-scale representation

Mot = @°,d°, - d’7Y).

B. Interpolatory Multi-scale Representations
We now introduce interpolatory multi-scale representetidn that context, the data at levgls:

vi =o(Mk),

for any k in Z¢. From this, we directly obtain the form of the projection cqter (Pf_1)3
vi_l = o(M L) = v?wk

In that context, the principle of the multi-scale repreaéinh is based on the prediction 0i4k+€ for
e # 0 using the values of’~! on Pé_l. Knowing the prediction operatoiajj_l, we then replace the
value ofv),, ..,  # 0 by the error:e), , . = v}, . — (P/_ v/ pspe. The multi-scale representation

can then directly be written astv’ = (2°,d°,---,d’~1), whered’~! = {egwﬁe,s £0,k € Zd}.
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V. THEORETICAL RESULTS ONNONLINEAR MULTI-SCALE REPRESENTATIONS
A. Definition of the Prediction Operator

The definition of the multi-scale representation is relatedhat oijj_l, the prediction operator. In

the present paper, we allow the definition and the usquatsi-linearprediction operator defined by:

Definition 1. A quasi-linear prediction operator is a function which asistes to eachy € (>°(Z%) a

linear operatorS(w) defined by

(S(w)u)g == > ag—r(w)ur,

{124 ||k— M| o< K}

for anyu € ¢>°(Z%) where|| - || denote the sup norm i’ and
|lag—r(w)] <C V.

The constantdC and C are independent of the data.

Note that the recursive action of the quasi-linear pregiictbperatorSu := S(u)u on the initial data

u = u°, defines a nonlinear subdivision scheme:
uw =S =S T = = ST . S(u®)ul = STl
We assume that the general form of the prediction operatothfo given data’~! is then given by:

o = (PJ BT = (ST Zak (v
lezd

The consistency property imposes that (v’ 1) satisfies

Z ar—nrp(V D hi_pri = Moy (6)
kezd

In an interpolatory frameworkh = mdy o and (6) amounts ta s (v/ 1) = &y.0.

B. Definitions of Schemes for the Differences and of Jointt&deRadius

We say that the quasi-linear subdivision operafareproduces the constants when:

> ap—up(u) = 1Vk € Z% andvu € £(Z7).
pEZS

Then, the following result holds:
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Proposition 1. Let S be a quasi-linear prediction operator reproducing the ciamis and assume
uw/ = Su’~! defined in (6). Then there exists a local and bounded oper&iosuch thatVu/ :=

S1 (=)W ~L whereVaug = (ug, — Up_c,, -+ Up — Up—c, )-

ProoF Consider

Uppe, — U], = Yoo (e (W) = arp (W)
peV (k+e;) JV (k)

= > ag—np(w?u) 7t

peV (k+e;) UV (k)

where V(k) = {p, ||k — Mp|l~x < K}. Note that 3 ak—pp(u’~t) = 0, we then de-
peV (k+er) UV (k)
duce that, sinc V6, 5,n € V(k+e;) UV (k),8 € Z%1=1,---,d} (with Vjuy, = uy — ug—_.,) Spans
d

(07 NV; (uj_l) .. [7], ’LLj e uj = Z Z Z C _BJvluj_l, WheI’E(Ck) is
( p )pev(k+ HDUV (k) k+e; k G2 peV (ot UV () it P p
a finite sequence. Computing the differences for other timese;, we obtain the desired resuli.

C. Convergence Theorem for the Multi-scale Representation

In this section, we state a convergence result for the rsadile representation when the mathik is

isotropic which corresponds to the following definition:

Definition 2. We say that a matrid/ is isotropic if it is similar to the diagonal matrix didg, ..., 04),

i.e. there exists an invertible matrix such that
M = A~ tdiag(oy, ..., 0q)A,
with |o1| = ... = |og4| being the eigenvalues of matri¥ .

. . . 1 . -
For an isotropic matrix holdgr;| = ... = |o4| = ¢ = m4. Moreover, for any given norm iiR? there

exist constant€);, Cy such that for any integer and for anyv € R?
Cro" o] < [M™v]| < Co0™[v].

The convergence theorems we now state involve Besov spaetess briefly recall the definition of such

spaces. First consider the modulus of smoothness of dvderZ in L?(Z%) of a functionv, given by

wn(0,)e = sup ||Vl Lo (ra),
heZd:||hs<t
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where ||.|2 is the Euclidian norm and wher@ is the finite differences operator of ordéf in the

direction h:
N

V(@) =Y (=1)’Cho(x — Bh)
B=0

We now introduce the Besov spa@g(Rd). Let N be any integerN > s. Forp,q > 0 ands > 0, the
spaceB;vq(]Rd) contains functions € LP(R?) such that(2/*wy (v,277)s);50 € £4(Z?). The norm in
Bs (R?) is then given byj|v|

Bs  (R4) *= HUHLP(Rd) + ”(stwN(v,2_j)Lp)j20”€q(Zd). If we consider an
isotropic dilation matrix), we define fromw the setv; ,j > 0 converging tov following (3) and then

the nonlinear multi-scale representation. Then, we hagddlowing theorem:

Theorem 1. If the prediction operator reproduces the constants, themall 0 < s < 1, one has the

inequality
102l zey + (@7 N = ze))jz0lleszey S ol @y

PROOF First, we show that the consistency property implies ﬂhﬂﬂgm(zd) < |]ijHgm(Zd)d. We
recall that

Jo._ . J s J ji—1y,,J—1
e =y — U = vy, — E ap—p (v )y
k=M1l <K

Using (4), we write the prediction error in the form

i 1 i1 5 ;
e, = v,—m Z ap—mi(v’ ) Z hyp— a1V}

L|lk—Ml|| <K pillp— Ml <P
I ' ~Hh
= vl -m > vl > ap—ni (V') hp— i
pillk—plloo<K+P  L|k—Ml||<K
1
= E , b ( (o7 vlj,,

peF (k)
where F(k) = {p: ||[p — klloo < P+ K} is a finite set for any giver. Let us define, for each € 74,
a vectorbg(w) = (bgn(w))nerm). BY hypothesise’ = 0 if vi = k, since the prediction operator
reproduces the constants. Sin¢€Vd,—i),,cp) -l € Z%i = 1,---,d} spans the orthogonal to the

family (17 )ieF(k),i=1,--d,q.<1, DY denotinge;(w) the coordinates o (w) in this basis and after simple
computations we obtain that

d
Z Z ’L)levj.
eF(k) i=1
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This proves thaﬂengm(Zd) < HijHgm(Zd) since the sequenceis finitely supported. We get from this

that

00| gme 20y + (@ N7~ g (z4))j20llea@ay < 10 Nlen(zay + (@ 1V V|| e zayya) j20lleazay-— (7)

Then remark that|v0\|goo(zd) = [v()lle=ze)y < llvllz=(rey @and also, since the matrix is isotropic, we
can show that| V||« zaye < wi(v, Co7t) < wi(v,077t), the last inequality being a property of

~

the modulus of smoothness. Finally, replacing in equat®nwe get that:

[0l 2y + 1@ g z))j20llszey S N0l e M-

Note that the joint spectral radius is not involved in theabmequality but is of crucial importance
for the inverse theorem which we now state. We study the oaction process of a functiar., where
r stands for "reconstruction”, from its coefficient$” andd’". In the case of nonlinear representations, it
is still possible to study the reconstruction algorithmtué functionv, from its coefficients by iteratively

using the reconstruction step
VI =PIty 4ol = pithyisbr y paislr,
J J
In that context, the function,. is the limit (when it exists) ob; . defined by:

vjr(z) = Z vi’rcp(Mja: — k)
keZd

wherey was defined in (1). The following theorem gives a sufficiemditon for the limit function to

exist in Besov space:

Theorem 2. Let S be a quasi-linear prediction operator reproducing the camss. If poo(S1) < 0~ *°

for somes > 0 and if (v%7,d%",d%",...) are such that
109" (g (zay + 11(0*7 ||| goo (z4)) 520l g (z0) < 00,

and assume that) > o(z — k) = 1, where¢ satisfies (1), then the functianbelongs toBgO,q(Rd) and
kezd

HU”B;,q < ”vo|’5°°(Zd) + H(UsjHd.jHew(Zd))jEOHZq(Zd)-

The proof of the inverse theorem is much more involved andildeare available in [10]. Note that
the inverse theorem requires that the joint spectral radiuke difference operator be smaller than

We will design in the following sections examples of preintoperators that satisfy this property.
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D. Stability of Nonlinear Multi-scale representations

The stability of nonlinear multi-scale decomposition isoagly related to that of the associated

prediction operator. We recall the important notion of thabsity of quasi-linear prediction operator

[2]:

Definition 3. A quasi-linear prediction operator is stable if for everyw in (>°(Z%):
15(v) = S(w)lle= (ze) < Cllv = wllg= (z2)

whereC' depends in a non-decreasing way | 7).

The stability of the quasi-linear prediction operator isedial for the stability of the multi-scale
representatiooMv”’. We will tell when this property holds for the prediction optors we will consider,
but the study of the stability of the associated multi-secaf@esentation is beyond the scope of the present

article.

V. BIDIMENSIONAL INTERPOLATORY QUASI-LINEAR PREDICTION OPERATORS

The nonlinear representations we will study are esseyti@dised on edge non-oscillatory (ENO)
approach in an interpolatory framework. ENO methods coénsi£omputing a cost function denoted
by C7(k) that determines the best prediction operator among a grogptential ones. Each of these
prediction operators are associated to interpolation mmiyials on different stencils, the cost function
C7(k) being a function computed on the stencils. An arbitrarilyairohange at the round off level would
be sufficient to change the stencil chosen for the predictiod thus the prediction operator. For that
reason, the ENO scheme is not stable [10]. Such a drawbadkecavoided using weighted-ENO (WENO)
interpolation which provides a smooth transition betwessdjetion operators. The WENO formulation

is based on a convex combination of potential predictiorratoes given by the ENO method, that is:

m—1
Aj — Ajvr
Uy, 1= E o0y
r=0

m—1

with o, > 0and ) «, = 1. A possible form for the weights is given by. := —%— forr =0,...,m—1
r=0 Z: a;

wherea, := ﬁ whereC7(r) is the cost function of the corresponding rule. We will seegramples

that the WENO prediction is continuously dependent on tha.da
In the following, we build nonlinear multi-scale decomp@sis using the quincunx or the hexagonal

dilation matrix which are particular cases of isotropic rit&s. A similar approach using the quincunx
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matrix was proposed in [4] in a lifting scheme framework, will ®mphasize the differences with our

method when necessary. In one dimension and in a dyadicsscateework, the lifting scheme is made
of an update step at even locations and a prediction step cattamétions but, when one considers
interpolatory scheme to predict, as we will do, no updateigiired. Since we consider an interpolatory
scheme], = mdy and the consistency property leadsitg;, = d; 0. Consequently, we only defing,, .

whene is a non-zero coset vector af .

A. Nonlinear Affine Prediction Using the Quincunx Matrix

The quincunx matrix is defined by

whose coset vectors arg = (0,0)” ands; = (0,1)T. Note thatag o = 1 since the scheme is interpolatory
(this corresponds to{wk = vi_l) and since the nonlinear prediction operators reprodusedinstants we
shall have}_ axsi+ = 1 for all coset vectors. We consider prediction operators based on interpolation
% .
by polynomials of degree 1 (i.e.+ bz +cy) onIV~1, leading the following four potential stencils which
in turn entails the following prediction rules:
7,1 _ 1,41 j—1
’UJJ\/[IC-"-El - 5(1}‘]]6 + Ui—i—el—l-eg) (8)
25,2 j—1 i—1
vj]\/[k-‘r(;'l = %(Ui—i-el + U‘ny-‘reg) (9)
Now, as M2 = 21d, after double iteration these subdivision schemes coulddseciated with a limit

function of the kind:

U(z) =Y Y (ann)ap—i¥ (22 — p)
» &

where

ap if p=Mk

(arm)p = .

0 otherwise
and, therefore, we can draw a comparison between the diffeases in terms of limit functions. On
Figure 1.C, we display the limit function correspondinghe tseparable case (i¥(z) = ]2[ max(0,1—
|z;|)) where the predictions (8) and (9) are applied successivélite we display on FiZg:ulre 1. A (resp.
B), the limit function corresponding to prediction (8) (pe49)). To relate this to the general biorthogonal
framework of section Il, we shall say that the limit functioarresponding to the separable case is the

function ¢ and the other predictions define other limit functions that still orthogonal toz.
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Fig. 1. (A): the limit function associated with predictioB)((B): the limit function associated with prediction (9%): the
limit function corresponding to the separable case; (D)ag# (F): the corresponding contour plots.

We now pass on to ENO prediction, which consists in choosgigveen the two prediction rules (8)
and (9). In [4], the choice of stencils corresponds to:

1 i 1

_ : B - : - -
win (i, = 5085%, + et e, — 500+ vl )l).
The above cost function assumes that the true values atjerel known before prediction which is not

relevant in a progressive data transmission context. Taldtas, we define the cost function as follows:

. . i1 i—1 i—1 j—1
o (k) = mln(‘vi-{-el - vi—i—eg" ’U/Z: - v]+61+52’).

When the minimum ofC (k) corresponds to the first (resp. second) argument the pi@di(?) (resp.
(8)) is used. One motivation for the choice of such a costtfands the following argument: when an
edge intersect the cef)) ' delimited by the point\/ —7+1{k, k + €1,k + e,k + 1 + ea} Of the grid
-1, several cases may happen:
1) either the edge interseQY 71k, M3+ (k + e1 + ez)] and [M 7 (k +e1), M7 (k +e3)] in
which case no direction is favored.
2) or the edge interse@ 71k, M7 (k+e1+eq)] of [M 7T (k+e1), M~ (k+e5)], in which
case the prediction operator should favor the directiorctviis not intersected by the edge (this is

what the cost function does).
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When Qi_l is not intersected by an edge, the gain between choosingicewion or the other is very

small [4]. Therefore, we will only apply this procedure fdescil selection only when:
: -1 -1 j—1 -1 j—1 j—1
argmin (‘”k/ = Ve, | T 0 = O, Ve, — Vhe e
k/:k,k—l-el,k—el

J—1 J—1 J—1 J—1 J—1 J—1 _
Ve, = Vhpertes) TV = Uiege, | F 10, — Uk'+e2’> =1lor
: j—1 j—1 j—1 j—1 j—1 j—1
— (o — |+ 8 — ol + o, — o
k)/:k?7k'+627k‘—62
J—1 J—1 J—1 J—1 J—1 J—1 _
+’Uk"+61 - Uk"-i-E] +62‘ + ‘vk/ - Uk"-i-E] +62’ + ‘vk/'f‘@l -V '+ea ’) =1 (10)

which corresponds to the case where the average first orfferedices are locally maximum in the
vertical or horizontal direction. We will also test anothmssible choice to detect the cells where the

nonlinear prediction is potentially interesting which etfollowing:

, i1 -1
argmin (Jvl, " —w [)=1or
k/:k,k+€1+62,k)—61—62 k k +61+62
. i—1 i—1
argmin (]v{furel — vi,+62\) =1 (11)

k’:k,k—l—el—eg,k—el—i-eg
which corresponds to the case where the first order diff@®iace locally maximum is the direction of

prediction. When the cell does not satisfy this property,wike apply the linear prediction method.

As far as the WENO approach is concerned, no cost functiorésied since we have:

~j o ay j—1 j—1 az j—1 j—1
ke = 50 £ ag) Chrer T Uktes) T o oy Uk T Vhreates)
with
1 1
a; = — ——, a2 = — — . (12)
€+ ‘vi-i-@l B 1)%4—62‘ €+ ”Ui - vi—i—el—i-eg‘

The ENO and WENO prediction are such thgt(S1) < 1 since they satisfy the following property:

Proposition 2. « whenk = Mk, we can show that:

. . 1 .
71 —
103 hre, = Vaslli=(z2) < Ve 2|l o= (222

9 . -
[03ikre, = Vlli=zy < IV 2|00 (22
o« Whenk = MK’ + ¢;, we can show that:
. . 1 .
2 _
[3ikse, = Vanllie(z2) < Ve ? |l 1= (222

. . N
[0 ks, — Vhelli=z2) < IV 2] 1 22))2

The proof is available in Appendix B. The same result can wevshfor other differences on the grid

'/, which proves thap..(S;) < 1 and then enables us to apply Theorem 2.
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B. Nonlinear Affine Prediction Using the Hexagonal Dilatibtatrix

We now focus on the construction of nonlinear multi-scaleatepositions using as dilation matrix
the hexagonal matrix
M = ;
0 -2
with coset vectorgy = (0,0)7,e; = (1,0)7,e2 = (1, —1)T,e53 = (2, -1)T. We compute the prediction
of v7 for the different coset points using an affine interpolantha neighboring points associated to
values computed on the grid—!. To do so, we use the following four different stencils on tved

it
VIt = MUYk k4 e,k + e},
V32 = MYk k4 eg,k+ el +en},
Wg’l = M7 k4 e, k+e),k+e +ea},
W2 = M7tk k+e,k+e + e}
We determine to which stencils each pointIof belongs to, and we then define the prediction as its

barycentric coordinates. Note, first, that the predictiole rat Mk and Mk + ¢, is independent of the

choice of the stencil, and we always have:

. . 1 . 1 .
Joo gl J _ 2.1 j—1
Uik = Y ANdUpg. = 50+ S (13)

When one considers the prediction for the coset veetorV;! or V2 can be used to predict leading

respectively to:

. 1 . 1 . .
J1 _ 4,1 L -1 L -1
UMhkte: = gVk+er T Vktes T VR
. 1 . 1 . 1 .
J,2 _ 4 -1, - g-1 L, 01
v]\/[k+52 - 2vk + 4vk+62 + 4vk+el+eg' (14)

When one considers the prediction rules for the coset vegtol,' or W2 can be used leading to the

following two predictions:

. 1 . 1 1 .
g1 B | 2.1 2,1
UMIC+€3 - 4vk+62 + 4vk+el+eg + 2vk+el
. 1 . 1 . 1 .
Ji2 _ Z,J-1 2 -1 Z,0-1
UMk—i-Ea - 4Uk + 4vk+el + 2vk+61+82 (15)

when the stencil§¥;' and W7 are used respectively.
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This leads to four different linear prediction rules degagdn the choice for the prediction operator
for coset vector, andes. The corresponding limit functions are shown on Figure 2.réflate this to
the general biorthogonal framework of section II, the fimtty would be associated to the predictions
(14.1) and (15.1) while other prediction rules defines otimeit function that are still biorthogonal t¢.

The proposed nonlinear subdivision operator is such ghgtS;) < 1 since we have:

.........

svscse
svscssae

(E) (F) (G) (H)

Fig. 2. (A): the limit function associated to prediction®(1), (15.1); (B): the limit function associated to predios (14.1),
(15.2); (C): idem with the predictions (14.2), (15.1); (jem with prediction (14.2), (15.2) . The corresponding toon plots
are depicted on figures (E),(F),(G) and (H) respectively.

Proposition 3. The prediction defined by (13), (14), (15) satisfies:

. 3 .
HVvﬁw,ﬁ (1= (z2))> < ZHV’U] 1||(zoc(Z2))2

The proof is given in Appendix C.

The choice of stencil in the ENO method is determined by miimy a certain cost function, which is
different forey andes since these coset points belong to different stencils. Wecamsider the following
cost function to predict ats:

el ‘ - - - P .- - -
C}; (k) = mln(‘vi—i—el - vi—l—eg‘ + ‘vi—l—el - Ui ” ‘vi - vi—l—el—l—eg‘ + ’Ui+el+e2 - Ui+el ’)
When the minimum corresponds to the first (resp. secondnaegt) the stencil;,! (resp.V}?) is used.

Similarly, when one considers the predictionsat we will compute:

J,€3,1 — mi Jj—1 Jj—1 J—1 Jj—1 Jj—1 Jj—1 J—1 J—1
CH ’ (k) - mln(|vk)+€1 - Uk+€2| + |Uk)+€1+€2 - Uk+€2|7 |,Uk' - ,Uk'+€1| + |,Uk'+€1+62 - Uk) |)'
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When the minimum corresponds to the first (resp. secondnsegt) the stencilV}! (resp.W}?) is used.
The above cost function to determine which stencil to usé agiply only on ceIIsQ{;‘1 containing an
edge. Such cells are determined in the same way as in theuuirgase finding local maxima of first
order differences computed on the cell. When the hexagadladicsh matrix is used, to compute the cost
function in the direction of prediction as in the quincun)seadoes not make sense since the direction
of prediction does not exist strictly speaking. Therefdecompute edge cells we will only consider
formula (10).
As far as WENO prediction is concerned, we may write that:
Frpres = (4 pd=t 4 Ut (B Sy g
2 . a_%
2

; [0 « _
~j g 3\,J
UMk+es — (Z + Z)Uk—i—el +

2 2 2
-1 (91 | 93, -1 a1 -1
U G T ke T Ve
with

B 1
e+ |vi_1 -0

1
_ _ . (16)
€+ |v], o vl .

1

1 _ 1

ay = +| j—1 -1 |>a2
€ Uk+81 Uk—‘reg
1

J

S
€+ |Vite, = Uiy

T
k+ei+es

NN

a2 =

1@
82|

:-61 +ez |
The WENO predictions satisfy the following stability prape

Theorem 3. If a, are defined by (12) for quincunx matrix and (16) for hexagamalrix, the corre-

sponding WENO subdivision schemes are stable.

The proof is given in Appendix A.

C. Prediction Operators Using Higher Degree Polynomials

We now introduce prediction rules based on higher degregnpaiials. Prediction Operators build
using an affine interpolation suffers from the drawback that prediction inside a given cell does not
depend on neighboring cells. To consider higher degreenpatyals enables to build more sophisticated
prediction operators but results in spurious oscillatiolese to edges due to Gibbs phenomenon. In [8],
the PPH scheme is introduced and aims at limitating osicifiatclose to the edges. It is derived from

the one dimensional prediction operator defined as follows ayadic grid:

Vit Tk VROV oo 12, -1
2 4V2VU1;1+VV12?)]§3 |f V 'Uk V Uk:-l—l > 0
Vg1 HUi

2

,Uj
2k+1 .
otherwise
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1 1

where V2v] ! is the second order divided difference basedign}, o] ', =] . From this prediction
operator, one can derive a bidimensional prediction operasing a tensor product approach. The
convergence of the one dimensional subdivision scheme Wwasrsin [8] and also the stability in
[9]. The philosophy of the PPH approach is different fromtthh@ propose next in that the prediction
operator is neither quasi-linear nor non-separable. Euribre, the convergence of the bidimensional
scheme derived by tensor product remains an open issue.

In what follows, we consider polynomials of degr2éor prediction. These polynomials interpolates
on different stencils which we define below. The approach mwg@se next is valid both for the quincunx
and the hexagonal dilation matrices. The prediction rulesonsider are based on the following stencils

defined on7—1:

VP = M7tk k4 e, k+esk+er+ e k+ 2, k+ 2}
VE = M7k k+e,k+e),k+e +exk—ep,k+2e)
V3 = M7tk k+e,k+esk+el+ek+2e,k—es}
Vi = MUk ke ktenkder+enk—ek—es}. (17)

As in the affine case, to detect edge-cells, we check profEdly Then, we use nonlinear affine prediction

on edge-cells. Once we have dealt with edge-cells, we applydllowing strategy on remaining cells:

« If a cell has a edge-cell as neighboring cell in the vertigah@rizontal direction then the prediction
is made using stencil selection we describe below,

« otherwise, we apply the stendil! for the prediction.

Now, let us explain how we do stencil selection. For eachciitdri’, defined in (17), we consider the
triangles made of neighboring points inside that stendilisTcorresponds to 6 triangles. For instance
for stencil V!, the triangles are as followsM 71 {k k + e1,k + ea}, M7tk k + e1,k + e +
ea}, M=tk k+ e, k+ep +ex}, M Ik + e,k +ea,k+e1+eal, M Ik 4+ eq, k + 2e1, k +
e1+ex)}, M7tk +eo, k+e1 +ea, k+2e2}. The triangles are defined the same way for other stencils.
We compute a cost function on each triangle as the sum of teofider differences along its edges (for
instance, the cost function for the first triangletot is [v L —vi '+ vl . —vi L [+ i L —vi™'].
The cost functionC’(k) associated td’* is then the sum of the cost functions computed on all the
triangles that make up™. For the prediction, we then use the stencil with minimaltcos

In the case wher@/ is the quincunx matrix, the stencil§’ are used to prediat{vjkﬁ], e1 = (0,1)

while when M is the hexagonal matrix, the stencils are used to predj&t+€i, with e; = (1,0),e9 =
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(1,-1),e3 = (2,—1). To prove the convergence of such schemes would involve dhgpatation of all
the differences in the canonical directions. However, @heaoset point we have this time 4 potential
predictions, so it would be prohibitive to detail the conatdidn here. We are currently looking for a con-
cise proof of the conjecture that these nonlinear operaatisfy the condition on the joint spectral radius
(i.e. po(S1) < 1). Once the prediction operator is chosen, we implement thii-stale representation

Mu”. This is what we deal with next.

VI. MULTI-SCALE REPRESENTATION WHENM? = \Id

Note first that sincé/? = AId, the finest resolution level is considered even. L& = {z ,y 1171 2 =

kihg,y = kohy, hy =277"ho, N;j = 27 Ny whereN, is some integer antly = 1/Ny. SinceM? = \Id,
we obtain, fork, ky = 0,...,Nj/A = 1, zf, = 2] ~> andy{,, = y; > . The connections between the

levelsJ andJ — 1 or J —1 and.J — 2 are more elaborate.

A. Encoding and Decoding Algorithm

Let us detail the quincunx case, the hexagonal case can litewddathe same way. The following
encoding and decoding algorithms were originally proposefil1], but we recall it for the sake of
consistency.

We recall that the quincunx matrix satisfi#g® = 27d. For the first step, we have fés = 0, ..., Ny —1
(9, U,) = (ﬂfil_l,yg;l), k1 =0,..,N;/2 —1if ky even
(@1, 9) = (@7 7Y, ki =1,...,N;y/2 if ky odd,
and for the second
(@l L) = @75yl kike =0, Ny/2 - 1.

The following steps are performed similarly. Let us pN} := N,;/2(/=Li/2)) we considervfg'h,€2 =

v(mil,yi2), where if j is even0 < ky, ko < N; — 1 and if j is 0dd0 < ky < 2N; and1 < k; < N;. The

iacti ; =1 _ (pi i — TR G-l _ (P i —
projection operators are fgrevenvy ;= (P/_107 )k, k, = voy, 4, If ko is eveny; = (P/_107 )k, x, =
Upk, 1.k, If k2 is 0dd, and forj odd vy, ;. = (P;_1v7)k, k, = v}, o1, IN Particular, we obtain foy even

that the kernel of the linear operator of decimatidty, , readsKer(ij_l) = {v! € V7, vgkhb =
0,k even,v), =0,k odd}, and forj odd Ker(P!_,) = {v/ € VI, v ,, = 0}. Thus, if we
denote bye* the prediction error, we will need to keep whegris eveneg,ﬁ_lv,€2 for ko even,eékhkz

for k2 odd andei1 ak,—1 Whenj is odd. A reconstruction procedure for this discretizatiomiven by
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operatorS(v/—1) := S(vI~1)v/ ! that interpolates the datd—! at the grid points ofV~!. We consider
three different types of prediction rules: linear predioti ENO and WENO prediction. Let us remark
that in the algorithm given below we denaié= v/ \ v/~!, that is, for allj = 0,...,J, v/ = U{z:1 ok,

Then, encoding and decoding algorithms take the followimmgnt

Encoding Algorithm

Hexagonal Matrix

Quincunx Matrix forj=3-2,...,2;j=j-2
forj=32,...,2;j=j-2 for ki,ko =1,...,N;—1
for kiko =1, ... Nj ﬁil_,lzcg = vikl —3,4ky—3 ﬁil_,;kz—z = vikl—mkz—z
vifi = ngl—l,%z—l {)i:;’kg—l = ”Zk1—3,4k2—1' {’i:;kz = Uik1—1,4k2
”i;;kz = vgkl,Zkg end
end for ki, ko=1, .. . N1
eil_,il’)kg—2 = Uik1—1,4k2—2 — S(0772)ak, 1,4k, —2
eil_,:lak2—1 = vik1—3,4k2—1 — (V77 %) 4k, —8.4ka—1
for ki,ko=1, . . -Nj—l 6?;1_,:1’,132 = Uik1—1,4k2 — S(’Uj_2)4k1_174k2
eiié = ngl,zkz — S )op, 2k, end
end forkiy=1,... N;—1
for ko =1, ... ,Nj;k2:k2+2
e§k1—2,k2 = Uik1—2,k2 L R VI
forky =1, ... Nj_1 1k = Uk 100 — ST )tk 1,
for kg =1,...,Njiky = ko 42 o ses = Vs — SOk
ei] 2k — U%kl,kg — S0 )2k, e§k1—2,k2+1 = Uik1_37k2+1 — S ) 4= ks 41
eil,kzﬂ = U%kl—l,k2+1 = S k141 6§k1—1,k2+1 = vik1—3,k2+1 — S0 ) 4k, —8 ke 41
end eg’;kl,kg—i-l = Uikl,kzﬂ — ST 4y a1
end end
end end

end
The encoding algorithm leads to the following represeatatiMv’ = (v°,d°, ...,d’~"), where &’/

was defined at the end of section Ill. Making the same reagonite can encode the multiresolution
decomposition obtained with the hexagonal sampling matrix

Then, we concatenate matrices d°, ..., d’ ! in one matrixV’ of dimensionN* (that is, of the same
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dimension as’). To build V, we start by writing down matrix® in its left upper corner. Then, we
write down the matrixd! to the right of matrixv® and thend' below matrices:” andd® thus getting a
square matrix. We proceed in the same way (writing down maftito the right ofd’ — 2 if j is even
and below ifj is odd) until j = J. The result of this concatenation is represented on Figue) 3or
the Quincunx matrix and in Figure 3.(B). for the Hexagonaltnrathe subspace’ is represented by
D7).

vl D°

vl D i o’

Dl

Fig. 3. (A): quincunx matrix, (B): hexagonal matrix.

Therefore, we are led to encodle Let us notice that in general the prediction error is langben the
resolution is low. That is, the smallgr the larger the elements of sub-matidi¥. This naturally leads
us to build an EZW (Embedded zero-tree wavelet) encodertaddp our context.

The EZW (Embedded Zero-tree Wavelet) encoding algorithamigncoder specially developed to use
with wavelet transforms. It is based on progressive engpdime data is compressed in multiple passes
with increasing accuracy. The initial threshold is set todogial to7, = 2Ug:(max[V(kik))] \where
max |V (k1, k2)| means the maximum element of matfix The encoder scans next element, compares it
with threshold and gives 'p’, 'n’, 'z’ or 't as an output; ite absolute value is bigger than the threshold,
it outputs either 'p’, if the value is positive or 'n’, if it i:iegative, else it constructs a tree with the
considered element as the root. If it is a zero-tree (thahesyalues in the nodes are smaller or equal to

the root), the output is 't', otherwise it is 'z’ (isolated rp@. We encode an element only if we got ’p’
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or 'n’ as output. In this case, we put it in the so-called 'sulioate list' together with eithe?%, if it is
bigger thanTj or —% (for elements inferior to—%) and remove it fromV (replace it by0) so that it
will not be encoded again. After we have scanned all the aisneve divide the threshold by two
and start again the procedure till the threshold is not @ndtlan a fixed value.

Thereby, to apply an encoder based on the same principle sdficoder, we need to introduce a tree
structure for them. The trees are designed in such a way\bat element of the sub-matri®’ is a child
of some element of sub-matri®’~!, j = 1,...,2log, N; for quincunx matrix,j = 1,...,2log, Ny
for hexagonal matrix. That is, we get a binary tree for quimcmatrix and a quad-tree for hexagonal

matrix. The tree structures for quincunx and hexagonaktege illustrated on Figure 4.(A) and (B).

* * *

Ov°® [ID° +D' «D? Ov® OD° +D* *D?

Fig. 4. (A): Tree structure for quincunx matrix, (B): Treeusture for hexagonal matrix.

In order that the algorithm works correctly, it is necesstugt matrix V' be scanned in such a way
that sub-matrixD? is scanned befor®/+!, subspacé’ being itself scanned using the so-called Morton
scan. For each subspatd, we will denote bw{ (resp.sz) the number of lines (resp. columns) in the
matrix D7. The EZW decoding is realized exactly in the same way as fareless. We now write the

inverse operator’ = M0, d°, ...,d’ 1),

Decoding Algorithm
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Quincunx Matrix Hexagonal Matrix
forj=2,...,31j=j+2 forj=2,...,31j=j+2
for ki, ko =1, ... ,Nj_l for ki, ko =1, ... le—l
ﬁ%kll_l o1 = SV )2, 19k, 1 Dos Aky—3 = ”i;i
A%kll%z = eil_,kz + S(07)ak, 2k, U4k11—1 Aky—2 = /;1_,:1),1@2—2 + S (V) 4y 1 4k —2
end s k1 = eél_ékzq + S(0772) 4, —3, 4k —1

7j—1 j—1 j—2
1)4161—1 4]€2 ek1,3k2 + S(v )4k1_174k2

end
for k=1, ... ,N;_1 for k=1, ... ,N;_1
for ky=1, N],kg—k2+2 for ko=1 Nj,kg—k‘g-l-Q
U%kl,kz = ekl ko + S(Uj_l)Zkl k2 Uikl—Lkz = 63]@1_1,]@2 + S(vj_ )4k1—1,k2
U%Iﬁ—l,l@ = eil,kz—i-l + S0 ok, —1 k11 ”ikl,kQ = e%kl,kg + S (07 ) 4k,
end Uikl ke = eékl ke TS g, g,
end U4k1 3hotl — 63k1—2 PRI 1 (O PO S
”4k1_2 kot = €3k1_1 PR =1 O PO
Uler o1 = e3k1,k2+1 + ST gy oyt
end
end

VIlI. NUMERICAL APPLICATIONS

In this section, we study the improvement brought abouteilly the use of nonlinear affine instead of
linear affine interpolant or by using nonlinear quadratigipolant instead of a linear one. In particular,
we will put forward the importance of dealing nonlinearlythvthe finest scales especially for geometric
images. We carry out the study both for the quincunx and hexalgdilation matrix. We also investigate

the importance of the degree of the interpolation polynbiiderms of compression results.

A. Interpolation using Affine Polynomials

We investigated the improvement brought about the use afeaffonlinear prediction schemes instead
of linear ones on natural images of Figure 5. In particulag, imvestigated the importance of nonlinear
prediction at fine scales. To do so, we considered nonlinesdigtion Whenle, the first dimension of
D7 in the matrixV, is aboveT} and linear prediction elsewhere. FoR36 x 256 image and when the

quincunx matrix is used/; = 64 means that we predict nonlinearly the last finest four sutepaNe
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made the simulation fdf; = 32,64, 128 for the 256 x 256 images of Lena (Figure 5.(A)) and of peppers
(Figure 5.(B)). We also implemented the WENO prediction hoelt

The results we depict on Figure 6 (A) and (B) corresponds ¢éoptrediction rules (8) and (9). The
cells on which we shall predict nonlinearly either corresg®to the cells where the average first order
differences are locally maximum in the vertical or the hontal directions (; on Figure 6 (A) and
(B), corresponding to rule (10) or the first order differen@@e locally maximum in the direction of
prediction (> on Figure 6 (A) and (B), corresponding to rule (11)).

When the quincunx matrix is used, a significant compressi@in ¢¢ observed when the nonlinear
method is used especially at high compression rate (sead~gJA) and (B)). A more careful look
shows that one shall predict non linearly a larger numbercafes when the image is geometric such
as the image of Lena while the number of scales predictedmearly are less importance for natural
images such as the image of Lena. Furthermore, we noticédvtien one uses the rule (11) instead of
(10) to determine the points where the prediction is noalinthe gain in compression is significant for
both images and even more for the image of peppers.

The results on WENO prediction are displayed on Figure 6 (@) @). For both images, the effect
of using the WENO method is to make the prediction operatosai to the linear model which has the
consequence that the compression gain over the linear risighificantly less important than when the
ENO method is used. WENO method are important to constrabtesmulti-scale representation. We are
currently looking for a different way to define the weightsasto preserve compression performance.

Now, if we switch on to the Hexagonal dilation matrix, theuks are displayed on Figure (7).(C), we
notice that the nonlinear prediction does not bring any oupment in terms of compression results (
note that due to the greater down-sampling we considéred 16 or 64 which respectively corresponds
to the last four subspaces are predicted nonlinearly or tdylast 2). Our insight into these results is
that the compression performance is relatedhite= | det(M)|. Indeed, with the hexagonal matrix the
sampling factor is too important and too much informatiofoi between each scale for the prediction to
be efficient. Another possible direction for future resbarould be the optimization of the cost function

that determines the stencil to use.

B. The Quadratic Prediction

We investigated the improvement brought about nonlineadratic prediction instead of linear quadratic
prediction. The improvement in terms of compression rapessentially at intermediate compression

rate as shown on Figure 7 (A) and (B) whereas with the affindigtien the gain was more important at
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Fig. 5. (A): a256 x 256 Lena image, (B): 256 x 256 peppers image

PSNR (dB)

ub + ENOC,T=64 |4
.+ ENOC,T =128

025 03 035 04 Gos o1 o015 02 025 03
rate (bpp) ate (bpp)

(4) (B)

PSNR(dB)
»

— Linear 4

WENOC,T, =32 18-

-~ WENO.C,.T, =64 | 4

- -WENO,C T =128
a WENO.C,T, =32

+ WENO.C,T=64 | |

+ WENO,C,T =128 1k

/" [— Linear
WENO,C, T,=32

PSNR (dB)

- - WENOC,T=64 |]
- -WENO.C,T =128
o WENO.C,T,=32

WENOC,T,=64 |1
+ WENO,C,T =128

05 06 07 08 09 1 605 01 015 02 025 03
rate (bpp) rate (bpp)

(©) (D)

Fig. 6. (A): linear prediction (solid line) and ENO predimi for varyingTi using eitherC; or C> to compute cells of interest
for Lena image and when the quincunx matrix is used, (B):idemfor the image of peppers (C): linear prediction (solitke)i
and WENO predictions for varyin@: using eitherC; or C> to compute cells of interest for Lena image and when the quixc

matrix is used, (D): the same as (C) but for peppers image

high compression rate. We notice again that it is less inaporto predict nonlinearly more scales with

the image of Lena than with the image of peppers for which fiegps crucial to predict a sufficient
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number of scales to get better results than in the linear sseFigure 7 (B)) .

Finally, when one uses the hexagonal matrix, Figure 7 (Dyshbat to use higher degree polynomial
does not bring any improvement in terms of compression tesli terms of perspective, future work
should involve the definition of a cost function to determimich stencil to use that shall depend on
the matrix M. To conclude the results section, we obtain significant awpment when the quincunx
matrix is used while the hexagonal dilation matrix does re@ns a good choice in our framework. We

are currently trying to understand why the dilation matriays such an important role.

PSNR (dB)
b

inear (deg 2)
ENO (deg 2).C,, T,=32
- - ENO (deg 2).C, T, =64
- -ENO (deg2),C,T =128 | |

— Linear (deg 2)
ENO (deg 2), T, =32 2l

- - ENO (deg2).T, =64 7

- - -ENO (deg2), T,= 128

04 05 06 07 08 09 1 025 03 035 04 045 05 055 06
rate (bpp)

(4)

PSNR (dB)

— Linear (Lena)
ENO(Lena).C, T, =16
- - -ENO(Lena).C, T,= 64
— Linear(Peppers) 4
- - ENO(Peppers).C, T, =16

——ENO(Peppers).C,.T,=64 | o

01 02

PSNR (dB)

" [~ Linear Lena (deg 2)

ENO Lena (deg 2), C,, T,= 16
- - ENOLLena (deg 2), C,, T,= 64

—— Linear Peppers (deg 2)
- - ~ENO Peppers (deg 2), C,, T, =16

—ENO Peppers (deg ), C,, T, = 64

0.4
rate (bpp)

(D)

05 06 07 08

Fig. 7.
T, varies for Lena image and when the quincunx matrix is usedt, itBm but for the image of peppers, (C): Affine linear

(A): The quadratic linear prediction (solid line) ésmpared to the nonlinear quadratic prediction when thaevaf

prediction (solid line) is compared to the nonlinear affind prediction when the value df; varies for both the image of
Lena and the image of peppers and when the hexagonal maubseis ,(D): Same computations as in (C) except that we use

quadratic polynomial

VIIl. CONCLUSION

In this paper, we have presented the theory of nonlinear aneseparable multi-scale representation.
We have first emphasized the relation between nonlineaiqiea operators and multi-scale representa-
tions. We have then shown that the convergence of the maltisepresentation is related to some property

of the joint spectral radius of the first order differencemgper computed from the prediction operator. We
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have then built some bidimensional nonlinear multi-scafgesentations based on interpolatory prediction
operators. These were built using either the quincunx ohth@gonal matrix as dilation matrix and were
either affine predictors or based on polynomials of degre@o2show the pertinence of the approach
we have proposed an application to image compression. Toodave have first explained how the
embedded-zero-tree wavelet (EZW) algorithm adapts in amtext. The compression results show a
clear improvement brought about ENO methods when the goincuatrix is used both with affine or
guadratic predictors. However, when the WENO predictionsied, the compression results is very close
to the linear one, which let us think that future work shouldolve a deeper study of the weights in
the WENO method. When the hexagonal matrix is used, we didnastage to obtain similar results as
with the quincunx case ; we believe that a the down-samphotpf (symbolized in our context by the
determinant of the matrix) is the key point, but this stilleds further study. In terms of perspectives,
we also are currently investigating potential extensioroof approach to non-interpolatory prediction

operators.

APPENDIXA
PROOF :Let v, & € £°(Z?). By the definition of WENO prediction we have that
lak—ni(v) = ap—nii(0) g z2) < [|S(v) = S(0)[p z2) < a1 = aa| + |a2 — agl,

whereay, a1, as, o are the weights of the stencils forand o respectively. Foi = 1,2 it holds that

~ a; aq
i — | = | - =
a1 +as a;+as
a; — a; . 1 1
< ]+ a - —
ai + az ay+az ai+as
e A
a; — a; = —|a1 — a as — a
= a1 + as % % a1 + ay 1 1 2 2
1 2
< |a1—|—a |2z:|aZ a,
=1
2 - . .
then, |[S(v) — S(0)|lgee(z2) < ﬁ > la; — a;|. By simple computations we obtain that; — a;| =
1 1 |bi—b| )
& — ol < e

From the definition ob; we have that; < ||v|y~(z2) and|b; — bi| < ||v — 0||gee(z2y @nd it follows that

_ 1 1 2
ar+ a2 = g5+ o > ] g Therefore,

~ v — 0| goo (22

and||S(v) = S@)lle=(zs) < L= (o — 5]l z2).

~
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APPENDIXB
Let us consider first that = Mk’ and then we compute (notice that = es):

i\l R e

-1 -1
UNhte, — MK = kT Vkteites )

Vp = §(ka’+el+eg — Ui

j—2 j—2
= 5(2};6/—1—62 —'U'ny, )

. 1 . . . . .
J Jj—1 Jj—1 Jj—1 Jj—1 Jj—1 Jj—2
ka+e Ve T 5(”Mk/+el + UMk’—l—eg) — Vpgr = 9 (UM(k’—ez)+e2 + UMk’—l—eg) = Vg

we then have to consider the different prediction rules IferalueSz;M;/ J)+e, aNd v{vj,j,JreZ. If the

rule (8) is used in both cases, we have:

j j 1(1—2 j—2 }( j—2 -2

Jj—2 Jj—2
UMk+e:r — YME T )

Uk—l—el - Uk ) + Z(Uk+el+e2 - Uk+el ‘
If the prediction rule (9) is used in each case, we have:

il j Loj—2  j-2 -2 -2 -2 -2 -2 -2

UNkter ~ VME T Z(”k—eﬁel Up_e,) + Z(”k—ez —v, )+ Z(vk—i-el —v, )+ Z(Uk-i-ez —v, )

If prediction (8) is used fomfw_( , and prediction (9) fon)Mk/ we may write:

—ez)tes +e2’

it j Lojo o2 1(j—2 j—2

i—2 )
UMkte, — UMk = 5(%+el_% )JFZ A L)

Vk—e, — Uk )+ Z(Uk+e2 — Uk

If prediction (9) is used to predlaﬂ !

1 (k/—es) s, @Nd prediction (8) fon? .,

tey? we may write:

i1 P P R j—2

UMkter — Mk = Z(Uk—e2+el —Upie,) Tt Z(”i;il - ”i_2) + Z(vi—l_—il—l—eg - ”iﬁzl)

From the above equality, we can deduce that when ME':
J 1 j—2
V374, = Vhpllew@y < IV g 22y
[03F e, = Vhpllie(zzy S IV 72 oo 22
Now, let us consider the case whére= Mk’ + ¢;. If prediction (8) is used we may write:

, 1 , .
J,1 J (1 Jj—1 _ i1
UMkte: — YME T 5 (Urk s T Vb (ktea)rea) ~ UM bes)

1 .
Jj—1 Jj—1
= 2(UM(k’+e2)+eg Uk te,)
This corresponds to the same situation as that previoustliest, and similar computation leads to:

03 e, = Vil @y < (VO30 (222
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If prediction (9) is used, we may write:

. . 1 . . .
7,2 J _ Jj—2 j—2 j—1
UMk)-‘r&l - ka‘ - i(vk) +62 + Uk/+61+62) - UM]C/+€1
.. . .| .
If prediction (8) is used to prediat,,, . , then we have:
j:2 O A o B o
UMk+e, — YME = 5(% fes ~ Uk )
while when prediction (9) is used, we get:
7,2 J I P j—2
UMk+e, — VMK = 5( Wtertes ~ Ukites)”

From this, we deduce that:

A7

. 1 .
Vite, — Ve @) < IV 72| (e 222,

-2
This ends the proof.

APPENDIXC

PrROOF for the sake of simplicity, we will pu¥/; for V...

« If we useV;! and W} for prediction, then we have the following behavior for thiffedences:

1) I = Mk, Vvl = iViol ™" Vovl, = —3Vavl L + 1Vl L

) 1= Mk +en, Vv, = V0l Vardyey,, = —3Vard sl + 3Vt

3 1= Mb 423, Vitde, = 1Vl + 1903, Vv, = bty + 490l

9 L= Mk +eg, Vivippe, = 1V100 + 1V Vol = “3V2Ube b, +

%vlvi—l_—il—l—ez

« When the stencil$/? and W} are used for the prediction, we obtain:

1) 1= Mk, Vit = §9000 Vvl = ~bVadh + 190

2) I =Mk + e, Vlvg\/[k—i-al = %Vlvilil V2vg\/1k+al = _%Vﬂ’i;iﬁez + %Vlvi;il-i-ez

3) = Mk+€2’ vlv%/[k—l—@ = %Vﬂ)i_l—l—%vlvz:—;—l—eg V2U{\4k+52 = _%V?Ui;—;_‘_%vlvi;;—l—eg

4 1= Mhet o, Vivdgyo, = 19007 1900 Vs, = —bValy + 400,
« When the stencild/! and W} are used for the prediction

1) I = Mk, Vvl = iViul ™" Vavl, = —3Vaui L + vl

2) U= Mk +en Vivyy e, = 3V, Vol = =3 Vol +1V10%5,

3) 1= Mk+ea, Vivhye, = 1V10l e, + V10, Vvl = 1V1005e, +1Vi0]

_ J _ 1 J—1 J _ 1 Jj—1 1 J—1
4) = MEk+ €3 vlka+53 = §V1Uk+el+62 vvak—i—ag = —EVQU]H_@ + Zvlkarel
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« When the stencil$)* and W} are used for the prediction

1) I = Mk, Vvl = iVio] ™" Vavl, = —3Vaul ! + vl ]

2) I =Mk + e, Vl’“g\/lkﬁl = %Vlvi;; VZ’“?V[H& = _%vzvi:—;ﬁ-ez + %vlvi;iﬁ-ez

3) | = Mk+eo, Vlv{vmﬁz = %Vlvi;ig_‘_%vlvi;iﬁ-eg V2Ugv1k+ez = —%V2v£;i2+iV1vﬁli1+52
4) l=Mk+ e3, nguk%g = %vlvilil V2vg\4k+€3 = _%V2vi:—il+62 + %Vlvi—_i-i1+e2

To complete the proof of the contractivity, we also have tmpate

”?\/1k+ag+e2 - ”?\7/111@%2 = %Vzvi:; - ivlvila
Ghtisestes = Wire, = V200, = V10T A e,
and also,
Ugwk—i-sl—i-el - v%/[k+€1 = %Vlvi:—il'
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