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Université d’Evry - Val d’Essonne, Boulevard F. Mitterrand,
F-91025 Evry Cedex
e-mail: francis.hirsch@univ-evry.fr

(2) Institut Elie Cartan,
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General introduction

I.1 Our general program
This work consists of two parts A and B which both have the same purpose,
i.e.: to construct a large class of martingales (Mt, t ≥ 0) which satisfy the
two additional properties:

(a) (Mt, t ≥ 0) enjoys the Brownian scaling property:

∀c > 0, (Mc2t, t ≥ 0)
(law)
= (cMt, t ≥ 0)

(b) (Mt, t ≥ 0) is (inhomogeneous) Markovian.

The paper by Madan and Yor [MY02] developed three quite different
methods to achieve this aim. In the following Parts A and B, we further
develop two different Skorokhod embedding methods for the same pur-
pose. In the end, the family of laws µ ∼ M1 which are reached in Part
A is notably bigger than in [MY02], while the method in Part B allows
to reach any centered probability measure µ (with finite moment of order 1).

I.2 General facts about Skorokhod embeddings
For ease of the reader, we recall briefly the following facts:

• Consider a real valued, integrable and centered random variable
X . Realizing a Skorokhod embedding of X into the Brownian motion B,
consists in constructing a stopping time τ such that:

(Sk1) Bτ
(law)
= X

(Sk2) (Bu∧τ , u ≥ 0) is a uniformly integrable martingale.

There are many ways to realize such a Skorokhod embedding. J. Oblój
([Obl04]) numbered twenty one methods scattered in the literature. These
methods separate (at least) in two kinds:

- the time τ is a stopping time relative to the natural filtration of the
Brownian motion B;

- the time τ is a stopping time relative to an enlargement of the nat-
ural filtration of the Brownian motion, by addition of extra random
variables, independent of B.

In the second case, the stopping time τ is called a randomized stopping time.
We call the corresponding embedding a randomized Skorokhod embedding.

• Suppose that, for every t ≥ 0, there exists a stopping time τt sat-
isfying (Sk1) and (Sk2) with

√
tX replacing X. If the family of stopping
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times (τt , t ≥ 0) is a.s. increasing, then the process (Bτt , t ≥ 0) is a
martingale and, for every fixed t ≥ 0 and for every c > 0,

Bτ
c2t

(law)
= c

√
tX

(law)
= cBτt ,

which, a priori, is a weaker property than the scaling property (a).
Nevertheless, the process (Bτt , t ≥ 0) appears to be a good candidate to

satisfy (a), (b) and Bτ1
(law)
= X.

• Part A consists in using the Azéma-Yor algorithm, which yields a
Skorokhod embedding of the first kind, whereas Part B hinges on a Sko-
rokhod embedding of the second kind, both in order to obtain martingales
(Bτt , t ≥ 0) which satisfy (a) and (b).
Of course at the beginning of each part, we shall give more details,
pertaining to the corresponding embedding, so that Parts A and B may be
read independently.

I.3 Examples of such martingales
The most famous examples of martingales satisfying (a) and (b) are, with-
out any contest, Brownian motion (Bt, t ≥ 0) and the Azéma martingale
(ξt := sgn(Bt)

√
t− gt, t ≥ 0) where gt := sup{s ≤ t;Bs = 0}.

The study of the latter martingale (ξt, t ≥ 0), originally discovered by
Azéma [Azé85], was then developed by Emery [Éme89, Éme96], Azéma-Yor
[AY89], Meyer [Mey89a]. In particular, M. Emery established that Azéma
martingale enjoys the Chaotic Representation Property (CRP). This dis-
covery and subsequent studies were quite spectacular because, until then,
it was commonly believed that the only two martingales which enjoy the
CRP were Brownian motion and the compensated Poisson process. In fact,
it turns out that a number of other martingales enjoying the CRP, together
with (a) and (b), could be constructed, and were the subject of studies by
P.A Meyer [Mey89b], M. Emery [Éme96], M. Yor [Yor97, Chapter 15]. The
structure equation concept played quite an important role there. However,
we shall not go further into this topic, which lies outside the scope of the
present paper.

I.4 Relations with peacocks
Since X is an integrable and centered r.v., the process (

√
tX, t ≥ 0)

is increasing in the convex order (see [HPRY]). We call it a peacock.
It is known from Kellerer [Kel72] that to any peacock (Πt, t ≥ 0), one
can associate a (Markovian) martingale (Mt, t ≥ 0) such that, for any

fixed t ≥ 0, Mt
(law)
= Πt, i.e.: (Mt, t ≥ 0) and (Πt, t ≥ 0) have the same

one-dimensional marginals. Given a peacock, it is generally difficult to
exhibit an associated martingale. However, in the particular case Πt =

√
tX

which we consider here, the process (Bτt , t ≥ 0) presented above provides
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us with an associated martingale.

I.5 A warning
It may be tempting to think that the whole distribution of a martingale
(Mt, t ≥ 0) which satisfies (a) (and (b)) is determined by the law of M1.
This is quite far from being the case, as a number of recent papers shows;
the interested reader may look at Albin [Alb08], Oleszkiewicz [Ole08],
Hamza-Klebaner [HK07]... We thank David Baker [Bak09] and David
Hobson [Hob09] for pointing out, independently, these papers to us.

Part A

Construction via the Skorokhod

embedding of Azéma-Yor

A.1 Introduction

A.1.1 Program

The methodology developed in this part is AYUS (=Azéma-Yor Under Scal-
ing), following the terminology in [MY02]. Precisely, given a r.v. X with
probability law µ, we shall use the Azéma-Yor embedding algorithm simul-
taneously for all distributions µt indexed by t ≥ 0 where:

∀t ≥ 0, µt ∼
√
tX. (A.1.1)

More precisely, if (Bt, t ≥ 0) denotes a Brownian motion and (St :=
sup
u≤t

Bu, t ≥ 0), we seek probability measures µ such that the family of stop-

ping times:
Tµt := inf{u ≥ 0;Su ≥ ψµt(Bu)}

where

ψµt(x) =
1

µt([x,+∞[)

∫

[x,+∞[
yµt(dy)

increases, or equivalently, the family of functions
(
ψµt(x) =

√
tψµ

(
x√
t

))
t≥0

increases (pointwise in x). (Since µ = µ1, we write ψµ for ψµ1). This
program was already started in Madan-Yor, who came up with the (easy to
prove) necessary and sufficient condition on µ:

a 7−→ Dµ(a) :=
a

ψµ(a)
is increasing on R+. (M ·Y )

Our main contribution in this Part A is to look for nice, easy to verify, suffi-
cient conditions on µ which ensure that (M·Y ) is satisfied. Such a condition
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has been given in [MY02] (Theorems 4 and 5). In the following part A:
- We discuss further this result of Theorem 4 by giving equivalent conditions
for it; this study has a strong likeness with (but differs from) Karamata’s
representation theorem for slowly varying functions (see, e.g. Bingham-
Goldie-Teugels [BGT89, Chapter 1, Theorems 1.3.1 and 1.4.1])
- Moreover, we also find different sufficient conditions for (M ·Y ) to be sat-
isfied.
With the help of either of these conditions, it turns out that many subprob-
abilities µ on R+ satisfy (M ·Y ); in particular, all beta and gamma laws
satisfy (M ·Y ).

A.1.2 A forefather

A forefather of the present paper is Meziane-Yen-Yor [MYY09], where a
martingale (Mt, t ≥ 0) which enjoys (a) and (b) and is distributed at time
1 as ε

√
g with ε a Bernoulli r.v. and g an independent arcsine r.v. was

constructed with the same method. Thus, the martingale (Mt, t ≥ 0) has the
same one-dimensional marginals as Azéma’s martingale (ξt, t ≥ 0) presented
in I.3 although the laws of M and ξ differ. Likewise in [MY02], Madan and
Yor construct a purely discontinuous martingale (Nt, t ≥ 0) which enjoys
(a) and (b) and has the same one-dimensional marginals as a Brownian
motion (Bt, t ≥ 0).

A.1.3 Plan

The remainder of this part is organised as follows: Sections A.2 to A.4
deal with the case of measures µ with support in ] −∞, 1], 1 belonging to
the support of µ, while Section A.5 deals with a generic measure µ whose
support is R. More precisely:
• First, Section A.2 consists in recalling the Azéma-Yor algorithm and the
Madan-Yor condition (M ·Y ), and then presenting a number of important
quantities associated with µ, whether or not (M ·Y ) is satisfied. Elementary
relations between these quantities are established, which will ease up our
discussion later on.

• Section A.3: when (M ·Y ) is satisfied, it is clear that there exists a sub-
probability νµ on ]0, 1[ such that:

Dµ(a) = νµ(]0, a[), a ∈ [0, 1]. (A.1.2)

We obtain relations between quantities relative to µ and νµ.
In particular:

- In Subsection A.3.2, we establish a one-to-one correspondence between
two sets of probabilities µ and ν.
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- Subsection A.3.3 consists in the study in the particular case of (M ·Y )
when:

a

ψµ(a)
=

1

Z

∫ +∞

0
(1− e−ax)ρ(dx)

for certain positive measures ρ, where Z =

∫ +∞

0
(1 − e−x)ρ(dx) is the nor-

malizing constant which makes: Dµ(a) =
a

ψµ(a)
a distribution function on

[0, 1].
- Subsection A.3.4 gives another formulation of this correspondence.

• Section A.4 consists in the presentation of a number of conditions
(S0)− (S5) and subconditions (S′

i) which suffice for the validity of (M ·Y ).

• Section A.5 tackles the case of a measure µ whose support is R, and gives
a sufficient condition for the existence of a probability νµ which satisfies
(A.1.2).

• Finally, in Section A.6, many particular laws µ are illustrated in the form
of graphs. We also give an example where (M ·Y ) is not satisfied, which,
given the preceding studies, seems to be rather the exception than the rule.

A.2 General overview of this method

A.2.1 The Azéma-Yor algorithm for Skorokhod embedding

We start by briefly recalling the Azéma-Yor algorithm for Skorokhod em-
bedding. Let µ be a probability on R such that:

∫ +∞

−∞
|x|µ(dx) <∞ and

∫ +∞

−∞
xµ(dx) = 0. (A.2.1)

We define its Hardy-Littlewood function ψµ by:

ψµ(x) =
1

µ([x,+∞[)

∫

[x,+∞[
yµ(dy).

In the case where there exists x ≥ 0 such that µ([x,+∞[) = 0, we set
α = inf{x ≥ 0;µ([x,+∞[) = 0} and ψµ(x) = α for x ≥ α. Let (Bt, t ≥ 0) be
a standard Brownian motion. Azéma-Yor [AY79] introduced the stopping
time:

Tµ := inf{t ≥ 0;St ≥ ψµ(Bt)}
where St := sup

s≤t
Bs and showed:
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Theorem A.2.1 (Azéma-Yor, [AY79]).
1) (Bt∧Tµ , t ≥ 0) is a uniformly integrable martingale.
2) The law of BTµ is µ: BTµ ∼ µ.

To prove Theorem A.2.1, Azéma-Yor make use of the martingales:

(
ϕ(St)(St −Bt) +

∫ +∞

St

dxϕ(x), t ≥ 0

)

for any ϕ ∈ L1(R+, dx). Rogers [Rog81] shows how to derive Theorem A.2.1
from excursion theory, while Jeulin-Yor [JY81] develop a number of results

about the laws of

∫ Tµ

0
h(Bs)ds for a generic function h.

A.2.2 A result of Madan-Yor

Madan-Yor [MY02] have exploited this construction to find martingales
(Xt, t ≥ 0) which satisfy (a) and (b). More precisely:

Proposition A.2.2.
Let X be an integrable and centered r.v. with law µ. Let, for every t ≥ 0,
X̃t :=

√
tX. Denote by µt the law of X̃t and by ψt (= ψµt) the Hardy-

Littlewood function associated to µt:

ψt(x) =
1

µt([x,+∞[)

∫

[x,+∞[
yµt(dy) =

√
tψ1

(
x√
t

)

and by T
(µ)
t the Azéma-Yor stopping time (which we shall also denote Tψt):

T
(µ)
t := inf{u ≥ 0;Su ≥ ψt(Bu)} (A.2.2)

(Theorem A.2.1 asserts that B
T

(µ)
t

∼ µt). We assume furthermore:

t 7−→ T
(µ)
t is a.s. increasing (I)

Then:
1) The process

(
X

(µ)
t := B

T
(µ)
t

, t ≥ 0
)

is a martingale, and an (inhomoge-

neous) Markov process.

2) The process
(
X

(µ)
t , t ≥ 0

)
enjoys the Brownian scaling property, i.e for

every c > 0: (
X

(µ)
c2t
, t ≥ 0

)
(law)
=

(
cX

(µ)
t , t ≥ 0

)

In particular,
(
X

(µ)
t := B

T
(µ)
t

, t ≥ 0
)
is a martingale associated to the pea-

cock (
√
tX, t ≥ 0) (see Introduction).
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Proof of Proposition A.2.2
Point 1) is clear. See in particular [MY02] where the infinitesimal generator

of (X
(µ)
t , t ≥ 0) is computed. It is therefore sufficient to prove Point 2). Let

c > 0 be fixed.
i) From the scaling property of Brownian motion:

(Sc2t, Bc2t, t ≥ 0)
(law)
= (cSt, cBt, t ≥ 0) ,

and the definition (A.2.2) of Tψt , we deduce that:

(
BTψt , t ≥ 0

)
(law)
=

(
cBT

ψ
(c)
t

, t ≥ 0

)
(A.2.3)

with ψ
(c)
t (x) :=

1

c
ψt(cx).

ii) An elementary computation yields:

ψt(x) =
√
tψ

(
x√
t

)
(A.2.4)

with ψ := ψ1 = ψµ. We obtain from (A.2.4) that:

ψ
(c)
c2t

(x) =
1

c
ψc2t(cx) =

√
tψ

(
x√
t

)
= ψt(x). (A.2.5)

Finally, gathering i) and ii), it holds:

(
X

(µ)
c2t

:= BTψ
c2t
, t ≥ 0

)
(law)
=

(
cBT

ψ
(c)

c2t

, t ≥ 0

)
(from (A.2.3))

(law)
=

(
cBTψt = cX

(µ)
t , t ≥ 0

)
(from (A.2.5))

A.2.2.1 Examples

In the paper [MYY09] which is a forefather of the present paper, the follow-
ing examples were studied in details:

i) The dam-drawdown example:

µt(dx) =
1

t
exp

(
−1

t
(x+ t)

)
1[−t,+∞[(x)dx

which yields to the stopping time Tt := inf{u ≥ 0;Su−Bu = t}. Recall
that from Lévy’s theorem, (Su − Bu, u ≥ 0) is a reflected Brownian
motion.
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ii) The “BES(3)-Pitman” example:

µt(dx) =
1

2t
1[−t,t](x)dx

which corresponds to the stopping time Tt := inf{u ≥ 0; 2Su−Bu = t}.
Recall that from Pitman’s Theorem, (2Su − Bu, u ≥ 0) is distributed
as a Bessel process of dimension 3 started from 0.

iii) The Azéma-Yor “fan”, which is a generalization of the two previous
examples:

µ(α)(dx) =
α

t

(
α− (1− α)x

t

) 2α−1
1−α

1[−t, αt1−α ]
(x)dx, (0 < α < 1)

which yields to the stopping time T
(α)
t := inf{u ≥ 0;Su = α(Bu + t)}.

Example i) is obtained by letting α→ 1−.

A.2.2.2 The (M ·Y ) condition

Proposition A.2.2 highlights the importance of condition (I) (see Proposition
A.2.2 above) for our search of martingales satisfying conditions (a) and (b).
We now wish to be able to read “directly” from the measure µ whether (I)
is satisfied or not. The answer to this question is presented in the following
Lemma

Lemma A.2.3 (Madan-Yor [MY02], Lemma 3).
Let X ∼ µ satisfy (A.2.1). We define:

Dµ(x) :=
xµ(x)∫

[x,+∞[ yµ(dy)
with µ(x) := P(X ≥ x) =

∫

[x,+∞[
µ(dy)

Then (I) is satisfied if and only if :

x 7−→ Dµ(x) is increasing on R+. (M ·Y )

Proof of Lemma A.2.3
Condition (I) is equivalent to the increase, for any given x ∈ R, of the

function t 7−→ ψt(x). From (A.2.4), ψt(x) =
√
tψ

(
x√
t

)
, hence, if x ≤ 0,

since ψ is a positive and increasing function, t 7−→ ψt(x) is increasing. For

x > 0, we set at =
x√
t
; thus:

ψt(x) =
√
tψ

(
x√
t

)
= x

ψ(at)

at
,
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and, t 7−→ at being a decreasing function of t, condition (I) is equivalent to

the increase of the function a 7−→ a

ψ(a)
= Dµ(a).

A remarkable feature of this result is that (I) only depends on the restriction
of µ to R+. This is inherited from the asymmetric character of the Azéma-
Yor construction in which R+, via (Su, u ≥ 0) plays a special role.
Now, let µ̃ be a probability on R satisfying (A.2.1). Since our aim is to
obtain conditions equivalent to (M ·Y ), i.e.:

x 7−→ Dµ̃(x) :=
x
∫
[x,+∞[ µ̃(dy)∫

[x,+∞[ yµ̃(dy)
increases on R+, (A.2.6)

it suffices to study Dµ̃ on R+. Clearly, this function (on R+) depends only
on the restriction of µ̃ to R+, which we denote by µ. Observe that (M ·Y )
remains unchanged if we replace µ by λµ where λ is a positive constant.
Besides, we shall restrict our study to the case where µ̃ is carried by ]−∞, k],
i.e. where µ = µ̃|R+

is a subprobability on [0, k]. To simplify further, but
without loss of generality, we shall take k = 1 and assume that 1 belongs to
the support of µ. In Section A.5, we shall study briefly the case where µ is
a measure whose support is R+.

A.2.3 Notation

In this Subsection, we present some notation which shall be in force through-
out the remainder of the paper. Let µ be a positive measure on [0, 1], with
finite total mass, and whose support contains 1. We denote by µ and µ,
respectively its tail and its double tail functions:

µ(x) =

∫

[x,1]
µ(dy) = µ([x, 1]) and µ(x) =

∫ 1

x
µ(y)dy.

Note that µ is left-continuous, µ is continuous, and µ and µ are both de-
creasing functions. Furthermore, it is not difficult to see that a function
Λ : [0, 1] −→ R+ is the double tail function of a positive finite measure on
[0, 1] if and only if Λ is a convex function on [0, 1], left-differentiable at 1,
right-differentiable at 0, and satisfying Λ(1) = 0.
We also define the tails ratio uµ associated to µ:

uµ(x) = µ(x)/µ(x), x ∈ [0, 1[.

Here is now a lemma of general interest which bears upon positive measures:

Lemma A.2.4 (Pierre [Pie80] or Revuz-Yor [RY99], Chapter VI Lemma
5.1).
1) For every x ∈ [0, 1[:

µ(x) = µ(0)uµ(x) exp

(
−
∫ x

0
uµ(y)dy

)
(A.2.7)
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and uµ is left-continuous.
2) Let v : [0, 1[−→ R+ be a left-continuous function such that, for all x ∈
[0, 1[:

µ(x) = µ(0)v(x) exp

(
−
∫ x

0
v(y)dy

)

Then, v = uµ.

Proof of Lemma A.2.4
1) We first prove Point 1). For x ∈ [0, 1[, we have:

−
∫ x

0

µ(y)

µ(y)
dy =

∫ x

0

dµ(y)

µ(y)
=
[
log µ(y)

]x
0
= log µ(x)− log µ(0),

hence,

µ(0)uµ(x) exp

(
−
∫ x

0
uµ(y)dy

)
= µ(0)

µ(x)

µ(x)
exp

(
log

µ(x)

µ(0)

)
= µ(x).

2) We now prove Point 2). Let Uµ(x) :=
∫ x
0 uµ(y)dy and V (x) :=

∫ x
0 v(y)dy.

Relation (A.2.7) implies:

uµ(x) exp (−Uµ(x)) = v(x) exp (−V (x)) , i.e.

(exp (−Uµ(x)))′ = (exp (−V (x)))′ , hence

exp (−Uµ(x)) = exp (−V (x)) + c.

(The above derivatives actually denote left-derivatives). Now, since, Uµ(0) =
V (0) = 0, we obtain c = 0 and Uµ = V . Then, differentiating, and using
the fact that uµ and v are left-continuous, we obtain: uµ = v.

Remark A.2.5.
Since µ is a decreasing function, we see, by differentiating (A.2.7), that the
function uµ satisfies:

- if µ is differentiable, then so is uµ and u′µ ≤ u2µ,
- more generally, the distribution on]0, 1[: u2µ−u′µ, is a positive measure.

Note that if µ(dx) = h(x)dx, then:

u2µ − u′µ =
(
µ/µ

)2 −
(
µ2 − hµ
µ
2

)
= h/µ ≥ 0.

By (A.2.7), we have, for any x ∈ [0, 1[,

µ(x) = µ(0) exp

(
−
∫ x

0
uµ(y)dy

)
.

Since µ(0) =

∫

[0,1]
yµ(dy) > 0 and µ(1) = 0, we obtain:

∀x < 1,

∫ x

0
uµ(y)dy <∞ and

∫ 1−

uµ(y)dy = +∞ (A.2.8)
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As in Subsection A.2.1, we now define the Hardy-Littlewood function ψµ
associated to µ:




ψµ(a) =

1

µ([a, 1])

∫

[a,1]
yµ(dy) , a ∈ [0, 1[

ψµ(1) = 1

and the Madan-Yor function associated to µ:

Dµ(a) =
a

ψµ(a)
, a ∈ [0, 1].

In particular, Dµ(1) = 1 and Dµ(0) = 0. Note that, integrating by parts:

µ(a) =

∫ 1

a
(y − a)µ(dy) = µ(a) (ψµ(a)− a) ,

hence, uµ(a) =
1

ψµ(a)− a
and, consequently:

Dµ(a) =
a

ψµ(a)− a+ a
=

a

(1/uµ(a)) + a
=

auµ(a)

auµ(a) + 1
. (A.2.9)

We sum up all the previous notation in a Table, for future references:

A finite positive measure on [0, 1]
µ(dx) whose support contains 1.

µ(a) = µ([a, 1]) Tail function associated to µ

µ(a) =

∫ 1

a
µ(x)dx Double tail function associated to µ

uµ(a) = µ(a)/µ(a) =
1

ψµ(a)− a
Tails ratio function associated to µ

ψµ(a) =
1

µ(a)

∫

[a,1]
xµ(dx) Hardy-Littlewood function associated to µ

Dµ(a) =
a

ψµ(a)
=

auµ(a)

auµ(a) + 1
Madan-Yor function associated to µ

A.3 Some conditions which are equivalent to (M·Y )

A.3.1 A condition which is equivalent to (M ·Y )

Let µ denote a positive measure on [0, 1], with finite total mass, and whose
support contains 1. We now study the condition (M ·Y ) in more details.
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A.3.1.1 Elementary properties of Dµ

i) From the obvious inequalities, for x ∈ [0, 1]:

xµ(x) = x

∫

[x,1]
µ(dy) ≤

∫

[x,1]
yµ(dy) ≤

∫

[x,1]
µ(dy) = µ(x)

we deduce that ψµ and Dµ are left-continuous on ]0, 1], and for every x ∈
[0, 1],

x ≤ ψµ(x) ≤ 1 and x ≤ Dµ(x) ≤ 1. (A.3.1)

ii) We now assume that µ admits a density h; then:

- if h is continuous at 0, then: D′
µ(0

+) = µ(0)/µ(0),

- if h is continuous at 1, and h(1) > 0, then: D′
µ(1

−) =
1

2
,

- if h admits, in a neighbourhood of 1, the equivalent:

h(1 − x) =
x→0

Cxα + o(xα), with C,α > 0 then: D′
µ(1

−) =
1

2 + α
.

These three properties are consequences of the following formula, which
holds at every point where h is continuous:

D′
µ(x)

Dµ(x)
=

1

x
− h(x)1 −Dµ(x)

µ(x)
.

A.3.1.2 A condition which is equivalent to (M ·Y )

Theorem A.3.1. Let µ be a finite positive measure on [0, 1] whose support
contains 1, and uµ its tails ratio. The following assertions are equivalent:

i) Dµ is increasing on [0, 1], i.e. (M ·Y ) holds.

ii) There exists a probability measure νµ on ]0, 1[ such that:

∀a ∈ [0, 1], Dµ(a) = νµ(]0, a[). (A.3.2)

iii) a −→ auµ(a) is an increasing function on [0, 1[.

Proof of Theorem A.3.1
Of course, the equivalence between i) and ii) holds, since Dµ(0) = 0 and
Dµ(1) = 1. As for the equivalence between i) and iii), it follows from
(A.2.9):

Dµ(a) =
auµ(a)

auµ(a) + 1
.
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Remark A.3.2.
1) The probability measure νµ defined via (A.3.2) enjoys some particular
properties. Indeed, from (A.3.2), it satisfies

νµ(]0, a[)

a
=
Dµ(a)

a
=

1

ψµ(a)
.

Thus, since the function ψµ is increasing on [0, 1], the function a 7−→
νµ(]0, a[)

a
is decreasing on [0, 1], and lim

a→0+

νµ(]0, a[)

a
=

1

ψµ(0)
.

2) From (A.2.9), we have νµ(]0, a[) = Dµ(a) =
auµ(a)

auµ(a) + 1
, hence, for every

a ∈]0, 1[:
uµ(a) =

νµ(]0, a[)

aνµ([a, 1[)
,

and, in particular, νµ([a, 1[) > 0. Thus, with the help of (A.2.8), νµ neces-
sarily satisfies the relation:

∫ 1− da

νµ([a, 1[)
= +∞.

3) The function Dµ is characterized by its values on ]0, 1[ (since Dµ(0) = 0
and Dµ(1) = 1). Hence, Dµ only depends on the values of ψµ on ]0, 1[, and
therefore, Dµ only depends on the restriction of µ to ]0, 1]. The value of
µ({0}) is irrelevant for the (M ·Y ) condition.

A.3.2 Characterizing the measures νµ

Theorem A.3.1 invites to ask for the following question: given a probability
measure ν on ]0, 1[, under which conditions on ν does there exists a positive
measure µ on [0, 1] with finite total mass1 such that µ satisfies (M ·Y ) ?
In particular, are the conditions given in Point 1) and 2) of the previous
Remark A.3.2 sufficient ? In the following Theorem, we answer this question
in the affirmative.

Notation. We adopt the following notation:
• P1 denotes the set of all probabilities µ on [0, 1], whose support contains
1, and which satisfy (M ·Y ).
• P0

1 = {µ ∈ P1;µ({0}) = 0}.
• P ′

1 denotes the set of all probabilities ν on ]0, 1[ such that:

i) ν([a, 1[) > 0 for every a ∈]0, 1[,
1Note that since Dµ remains unchanged if we replace µ by a multiple of µ, µ can always

be chosen to be a probability.
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ii) a 7−→ ν(]0, a[)

a
is a decreasing function on ]0, 1] such that

cν := lim
a→0+

ν(]0, a[)

a
<∞,

iii)

∫ 1− da

ν([a, 1[)
= +∞.

• We define a map Γ on P1 as follows: if µ ∈ P1, then Γ(µ) is the measure
ν on ]0, 1[ such that

Dµ(a) = ν(]0, a[), a ∈ [0, 1].

In other words, Γ(µ) = νµ defined by (A.3.2).
With the help of the above notation, we can state:

Theorem A.3.3.
1) Γ(P0

1 ) = Γ(P1) = P ′
1.

2) If µ ∈ P1 and µ0 ∈ P0
1 , then

Γ(µ) = Γ(µ0) if and only if µ = µ({0})δ0 + (1− µ({0}))µ0

(where δ0 denotes the Dirac measure at 0).
As a consequence of 1) and 2), Γ induces a bijection between P0

1 and P ′
1.

Proof of Theorem A.3.3
a) Remark A.3.2 entails that:

Γ(P0
1 ) ⊂ Γ(P1) ⊂ P ′

1.

b) We now prove P ′
1 ⊂ Γ(P0

1 ). Let ν ∈ P ′
1. We define u(ν) by:





u(ν)(x) :=
ν(]0, x[)

x(1− ν(]0, x[)) for x ∈]0, 1[,

u(ν)(0) := cν = lim
x→0+

u(ν)(x),

and we set, for x ∈ [0, 1[:

m(x) =
1

cν
u(ν)(x) exp

(
−
∫ x

0
u(ν)(y)dy

)
. (A.3.3)

We remark that m is left-continuous on ]0, 1[, right-continuous at 0 and
m(0) = 1. To prove thatm is decreasing on [0, 1[, it suffices to show thatm is
decreasing on ]0, 1[ or, equivalently (see Remark A.2.5), that the distribution

on ]0, 1[:
(
u(ν)

)2 −
(
u(ν)

)′
, is a positive measure.

Now, from the definition of u(ν), and setting:

ν(a) := ν(]0, a[),
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we need to prove that (on ]0, 1[):

ν2(a)da ≥ a(1− ν(a))dν(a)− ν(a)(1 − ν(a))da+ aν(a)dν(a)

⇐⇒ ν2(a)da ≥ adν(a)− ν(a)
(
1− ν(a)

)
da

⇐⇒ 0 ≥ adν(a)− ν(a)da

⇐⇒ 0 ≥ d
(
ν(a)

a

)
.

The latter is ensured by Property ii) in the definition of P ′
1. Hence, there

exists a probability µ on [0, 1] such that

µ(x) = m(x), x ∈ [0, 1[.

In particular, since m is right-continuous at 0, µ({0}) = 0. Using Property
iii) in the definition of P ′

1, we obtain from (A.3.3), by integration:

µ(0) =
1

cν
.

Therefore, by Lemma A.2.4, u(ν) = uµ, or:

uµ(a) =
ν(]0, a[)

a(1− ν(]0, a[)) , a ∈]0, 1[.

Consequently,

Dµ(a) =
auµ(a)

auµ(a) + 1
= ν(]0, a[), a ∈]0, 1[,

and hence, µ ∈ P0
1 and Γ(µ) = ν.

c) We now prove Point 2). Suppose first that µ ∈ P1, µ0 ∈ P0
1 and Γ(µ) =

Γ(µ0). We then have:

uµ(a) = uµ0(a), a ∈]0, 1[.

By Lemma A.2.4, this entails that there exists λ > 0 such that:

µ(x) = λµ0(x), x ∈]0, 1[

and therefore, by differentiation, the restriction of µ to ]0, 1] is equal to
λµ0. Consequently, µ = µ({0})δ0 + λµ0 and, since µ is a probability, λ =
1− µ({0}).
Conversely, suppose that µ = µ({0})δ0 + (1− µ({0}))µ0. Since 1 belongs to
the support of µ, µ({0}) < 1. Therefore, ψµ(x) = ψµ0(x) for x ∈]0, 1], and
hence, Dµ(a) = Dµ0(a) for a ∈]0, 1], which entails Γ(µ) = Γ(µ0).
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Example A.3.4. If ν is a measure which admits a continuous density
g which is decreasing on ]0, 1[, and strictly positive in a neighbourhood
of 1, then ν ∈ P ′

1. For example, let us take for β ≥ 2α > 0, g(x) =
β − 2αx

β − α 1]0,1[(x). Then, ν(]0, x[) =
βx− αx2
β − α , and some easy computations

show that:

µ(x) =
β − αx
β

(
1− x

)
α

β − 2α
(
1− αx

β − α

)− β − α
β − 2α .

In particular, letting α tend to 0, we obtain: ∀x ∈ [0, 1], µ(x) = 1, i.e. the
correspondence:

ν(dx) = 1]0,1[(x)dx ←→ µ(dx) = δ1(dx)

where δ1 denotes the Dirac measure at 1.

A.3.3 Examples of elements of P ′
1

To a positive measure ρ on ]0,+∞[ such that
∫ +∞
0 yρ(dy) <∞, we associate

the measure:

ν(]0, a[) =
1

Z

∫ +∞

0
(1− e−ay)ρ(dy)

where Z :=

∫ +∞

0
(1 − e−y)ρ(dy) is such that ν(]0, 1[) = 1. Clearly,

a 7−→ ν(]0, a[)

a
=

1

Z

∫ +∞

0
e−auρ(u)du, where ρ(u) = ρ(]u,+∞[),

is decreasing and cν =
1

Z

∫ +∞

0
yρ(dy) < ∞. Furthermore,

lim
a→1−

ν([a, 1[)

1− a =
1

Z

∫ +∞

0
ye−yρ(dy) > 0, hence

∫ 1 da

ν([a, 1[)
= +∞,

and Theorem A.3.3 applies.

We now give some examples:

i) For ρ(dx) = e−λxdx (λ > 0), we obtain: ν(]0, a[) =
(λ+ 1)a

λ+ a
(a ∈

[0, 1]) and

µ(a) =
1

1− a exp

(
−
∫ a

0

λ+ 1

λ

dx

1− x

)
= (1− a)1/λ

ii) For ρ(dx) = P(Γ ∈ dx) where Γ is a positive r.v. with finite expecta-
tion, we obtain

ν(]0, a[) = P

(
e

Γ
≤ a

∣∣ e
Γ
≤ 1
)
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where e is a standard exponential r.v.independent from Γ. In this case,
we also note that:

1

ψµ(a)
=
ν(]0, a[)

a
= K

∫ +∞

0
e−axP(Γ > x)dx

= KE

[∫ Γ

0
e−axdx

]
=
K

a
E
[
1− e−aΓ

]

where K = 1/E
[
1− e−Γ

]
. Consequently, the Madan-Yor function

Dµ(a) =
a

ψµ(a)
= KE

[
1− e−aΓ

]

is the Lévy exponent of a compound Poisson process.

iii) For ρ(dx) =
e−λx

x
dx, we obtain: ν(]0, a[) =

log(1 + a)

log(2)
.

A.3.4 Another presentation of Theorem A.3.1

In the previous Subsection, we have parameterized the measure µ by its tail

function µ(x) :=

∫

[x,1]
µ(dy) and its tails ratio uµ (cf. Lemma A.2.4). Here

is another parametrization of µ which provides an equivalent statement to
that of Theorem A.3.3.

Theorem A.3.5. Let µ be a finite positive measure on [0, 1] whose support
contains 1. Then, µ satisfies (M ·Y ) (i.e. Dµ is increasing on [0, 1]) if and
only if there exists a fonction αµ :]0, 1[−→ R+ such that:

i) αµ is an increasing left-continuous function on ]0, 1[,

ii)
(
α2
µ(x) + αµ(x)

)
dx− xdαµ(x) is a positive measure on ]0, 1[,

iii) lim
x→0+

αµ(x)

x
<∞, and

∫ 1−

αµ(x)dx = +∞

and such that:

µ(x) = µ(0) exp

(
−
∫ x

0

αµ(y)

y
dy

)
. (A.3.4)

Properties i), ii) and iii) are equivalent to the fact that the measure ν,
defined on ]0, 1[ by

ν(]0, x[) =
αµ(x)

αµ(x) + 1

belongs to P ′
1. By Theorem A.3.3, this is equivalent to the existence of

µ ∈ P1 such that Γ(µ) = ν, which, in turn, is equivalent to

uµ(x) =
αµ(x)

x
, x ∈]0, 1[,

and, finally, is equivalent to (A.3.4).
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A.4 Some sufficient conditions for (M ·Y )

Throughout this Section, we consider a positive finite measure µ on R+

which admits a density, denoted by h. Our aim is to give some sufficient
conditions on h which ensure that (M ·Y ) holds. We start with a general
lemma which takes up Madan-Yor condition as given in [MY02, Theorem 4]
(this is Condition iii) below):

Proposition A.4.1. Let h be a strictly positive function of C1 class on ]0, l[
(0 < l ≤ +∞). The three following conditions are equivalent:

i) For every c ∈]0, 1[, a 7−→ h(a)

h(ac)
is a decreasing function.

ii) The function ε(y) := −yh
′(y)

h(y)
is increasing.

iii) h(a) = e−V (a) where a 7−→ aV ′(a) is an increasing function.

We denote this condition by (S0).
Moreover, V and ε are related by, for any a, b ∈]0, l[:

V (a)− V (b) =

∫ a

b
dy
ε(y)

y
,

so that:

h(a) = h(b) exp

(
−
∫ a

b

ε(y)

y
dy

)
.

Remark A.4.2. Here are some general observations about condition (S0):

- if both h1 and h2 satisfy condition (S0), then so does h1h2.

- if h satisfies condition (S0), then, for every α ∈ R and β ≥ 0, so does
a 7−→ aαh(aβ).

- As an example, we note that the Laplace transform h(a) = E
[
e−aX

]

of a positive self-decomposable r.v. X satisfies condition i). Indeed,
by definition, for every c ∈ [0, 1], there exists a positive r.v. X(c)

independent from X such that:

X
(law)
= cX +X(c).

Taking Laplace transforms of both sides, we obtain:

h(a) := E
[
e−aX

]
= E

[
e−acX

]
E

[
e−aX

(c)
]
,

which can be rewritten:

h(a)

h(ac)
= E

[
e−aX

(c)
]
.

19



- We note that in Theorem 5 of Madan-Yor [MY02], the second and
third observations above are used jointly, as the authors remark that

the function: k(a) := E

[
e−a

2X
]

= h(a2) for X positive and self-

decomposable satisfies (S0).

Proof of Proposition A.4.1
1) We prove that i)⇐⇒ ii)
The implication ii) =⇒ i) is clear. Indeed, for c ∈]0, 1[, we write:

h(a)

h(ac)
= exp

(
−
∫ a

ac

ε(y)

y
dy

)
= exp

(
−
∫ 1

c

ε(ax)

x
dx

)
(A.4.1)

which is a decreasing function of a since ε is increasing and 0 < c < 1.
We now prove that i) =⇒ ii). From (A.4.1), we know that for every c ∈]0, 1[,
a 7−→

∫ a

ac

ε(x)

x
dx is an increasing function. Therefore, by differentiation,

∀a ∈]0, l[, ∀c ∈]0, 1[, ε(a)− ε(ac) ≥ 0

which proves that ε is an increasing function.
2) We prove that ii)⇐⇒ iii)

From the two representations of h, we deduce that V (a) =

∫ a

b

ε(y)

y
dy −

lnh(b), which gives, by differentiation:

aV ′(a) = ε(a). (A.4.2)

This ends the proof of Proposition A.4.1.

In the following, we shall once again restrict our attention to probabilities
µ on [0, 1], and shall assume that they admit a density h which is strictly
positive in a neighborhood of 1 (so that 1 belongs to the support of µ). We
now give a first set of sufficient conditions (including (S0)) which encompass
most of the examples we shall deal with in the next Section.

Theorem A.4.3. We assume that the density h of µ is continuous on ]0, 1[.
Then, the following conditions imply (M ·Y ):

(S0) h is strictly positive on ]0, 1[ and satisfies condition i) of Proposition
A.4.1.

(S1) for every a ∈]0, 1[

µ(a) :=

∫ 1

a
h(x)dx ≥ a(1− a)h(a).

(S′
1) the function a 7−→ a2h(a) is increasing on ]0, 1[.
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(S2) the function a 7−→ log(aµ(a)) is concave on ]0, 1[ and
lim
a→1−

(1− a)h(a) = 0.

Proof of Theorem A.4.3
1) We first prove: (S0) =⇒ (M ·Y )
We write for a > 0:

1

Dµ(a)
=

∫ 1
a yh(y)dy

aµ(a)
=

[−yµ(y)]1a +
∫ 1
a µ(y)dy

aµ(a)
= 1 +

∫ 1/a

1

µ(ax)

µ(a)
dx.

Clearly, (M ·Y ) is implied by the property: for all x > 1, a 7−→ µ(ax)

µ(a)
is a

decreasing function on
]
0, 1x

[
. Differentiating with respect to a, we obtain:

∂

∂a

(
µ(ax)

µ(a)

)
=
−xh(ax)µ(a) + h(a)µ(ax)

(µ(a))2
.

We then rewrite the numerator as:

h(a)

∫ 1

ax
h(y)dy − xh(ax)

∫ 1

a
h(u)du

=xh(a)

∫ 1/x

a
h(ux)du − xh(ax)

∫ 1

a
h(u)du

=xh(a)

∫ 1/x

a
h(u)

(
h(ux)

h(u)
− h(ax)

h(a)

)
du− xh(ax)

∫ 1

1/x
h(u)du ≤ 0

from assertion i) of Proposition A.4.1, since for x > 1, the function

u 7−→ h(ux)

h(u)
=

h(ux)

h
(
ux 1

x

) is decreasing.

2) We now prove: (S1) =⇒ (M ·Y )

We must prove that under (S1), the function Dµ(a) :=
aµ(a)

∫ 1
a xh(x)dx

is

increasing. Elementary computations lead, for a ∈]0, 1[, to:

D′
µ(a)

Dµ(a)
=

1

a
− h(a)1 −Dµ(a)

µ(a)
. (A.4.3)

From (S1) and (A.3.1):

0 ≤ h(a)

µ(a)
(1−Dµ(a)) ≤

1

a(1− a) (1− a) =
1

a
.

Hence, from (A.4.3):
D′
µ(a)

Dµ(a)
≥ 1

a
− 1

a
= 0.
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3) We then prove: (S′
1) =⇒ (S1), hence (M ·Y ) holds

We have, for a > 0:

µ(a) :=

∫ 1

a
h(x)dx =

∫ 1

a

x2h(x)

x2
dx

≥ a2h(a)
∫ 1

a

1

x2
dx (since x 7−→ x2h(x) is increasing.)

= a2h(a)

(
1

a
− 1

)
= ah(a)(1 − a).

4) We finally prove: (S2) =⇒ (M ·Y )
We set θ(a) = log(aµ(a)). Since

∫ 1

a
th(t)dt = aµ(a) +

∫ 1

a
µ(t)dt

by integration by parts, we have, for a ∈]0, 1[,

Dµ(a) =
eθ(a)

eθ(a) +
∫ 1
a

1
t e
θ(t)dt

.

Therefore, we must prove that the function a 7−→ e−θ(a)
∫ 1

a

1

t
eθ(t)dt is de-

creasing. Differentiating this function, we need to prove:

l(a) := θ′(a)
∫ 1

a

1

t
eθ(t)dt+

1

a
eθ(a) ≥ 0.

Now, since lim
a→1−

θ(a) = −∞, an integration by parts gives:

l(a) =

∫ 1

a

1

t
eθ(t)(θ′(a)− θ′(t)) +

∫ 1

a

1

t2
eθ(t)dt,

and, θ′ being a decreasing function, this last expression shows that l is also
a decreasing function. Therefore, it remains to prove that:

lim
a→1−

µ(a)− ah(a)
µ(a)

∫ 1

a
µ(t)dt ≥ 0

or

lim
a→1−

h(a)

µ(a)

∫ 1

a
µ(t)dt = 0.

Since

∫ 1

a
µ(t)dt ≤ (1 − a)µ(a), the result follows from the assumption

lim
a→1−

(1− a)h(a) = 0.

Here are now some alternative conditions which ensure that (M ·Y ) is sat-
isfied:
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Proposition A.4.4. We assume that µ admits a density h of C1 class on
]0, 1[ which is strictly positive in a neighbourhood of 1. The following con-
ditions imply (M ·Y ):

(S3) a 7−→ a3h′(a) is increasing on ]0, 1[.

(S4) a 7−→ a3h′(a) is decreasing on ]0, 1[.

(S′
4) h is decreasing and concave.

(Clearly, (S′
4) implies (S4)).

(S5) h is a decreasing function and a 7−→ ah(a)

1− a is increasing on ]0, 1[.

(S′
5) 0 ≥ h′(x) ≥ −4h(x). (In particular, h is decreasing)

Proof of Proposition A.4.4
1) We first prove: (S3) =⇒ (S′

1)

We denote ℓ := lim
a→0+

a3h′(a) ≥ −∞. If ℓ < 0, then, there exists A > 0 and

ε ∈]0, 1[ such that for x ∈]0, ε[, h′(x) ≤ − A
x3

. This implies:

h(ε)− h(x) ≤ A

2

(
1

ε2
− 1

x2

)
i.e. h(x) ≥ C +

A

2x2
,

which contradicts the fact that
∫ 1
0 h(x)dx < ∞. Therefore ℓ ≥ 0, h is

positive and increasing and h(0+) := lim
x→0+

h(x) exists. We then write:

a2h(a) = a2
(
h(0+) +

∫ a

0
h′(x)dx

)
= a2h(0+) + a3

∫ 1

0
h′(ay)dy

= a2h(0+) +

∫ 1

0

dy

y3
(ay)3h′(ay),

which implies that a 7−→ a2h(a) is increasing as the sum of two increasing
functions.

2) We now prove: (S4) =⇒ (M ·Y )

We set µ̂(a) :=

∫

[a,1]
xµ(dx). Thus: Dµ(a) :=

aµ(a)

µ̂(a)
and, differentiation

shows that D′
µ(a) ≥ 0 is equivalent to:

γ(a) := µ(a)µ̂(a) + a2h(a)µ(a)− ah(a)µ̂(a) ≥ 0 a ∈]0, 1] (A.4.4)

We shall prove that, under (S4), γ(1
−) = 0, γ′(1−) = 0 and that γ

is convex, which will of course imply that γ ≥ 0 on ]0, 1]. We denote
ℓ := lim

a→1−
a3h′(a) ≥ −∞. Observe first that h(1−) is finite. Indeed, if
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ℓ is finite, then h′(1−) exists, and so does h(1−), while if ℓ = −∞, then
lim
a→1−

h′(a) = −∞, hence h is decreasing in the neighborhood of 1 and h

being positive, h(1−) also exists. Therefore, letting a → 1 in (A.4.4), we
obtain that γ(1−) = 0. Now differentiating (A.4.4), we obtain:

γ′(a) = −2h(a)µ̂(a) + ah(a)µ(a) + ah′(a)(aµ(a)− µ̂(a)),

and to prove that γ′(1−) = 0, we need to show, since µ̂(a) − aµ(a) = µ(a),
that:

lim
a→1−

h′(a)
∫ 1

a
µ(t)dt = 0.

If h′(1−) is finite, this property is clearly satisfied. Otherwise lim
a→1−

h′(a) =

−∞. In this case, we write for a in the neighborhood of 1:

0 ≤ −h′(a)
∫ 1

a
µ(t)dt ≤ −h′(a)(1 − a)µ(a),

and it is sufficient to prove that:

lim
a→1−

(1− a)h′(a) = 0. (A.4.5)

Now, since x 7−→ x3h′(x) is decreasing:

h(1−)− h(a) =
∫ 1

a
h′(x)dx ≤ a3h′(a)

[
− 1

2x2

]1

a

=
a(1 + a)

2
h′(a)(1 − a) ≤ 0

and (A.4.5) follows by passing to the limit as a→ 1.
Finally, denote by ϕ the decreasing continuous function: a 7−→ a3h′(a).
Then:

γ′(a) = −ϕ(a)µ(a)
a2
− h(a)

(
µ(a) + µ̂(a)

)
.

Consequently, γ′ is a continuous function with locally finite variation, and
we obtain by differentiation:

dγ′(a) = −µ(a)
a2

dϕ(a) + h(a) (ah(a) + µ(a)) da.

Hence, dγ′ is a positive measure on ]0, 1[, which entails that γ is convex on
]0, 1[.

3) We then prove: (S5) =⇒ (M ·Y )
From (A.4.4), to prove that Dµ is increasing, we need to show that:

ρ(a) :=
µ(a)µ̂(a)

ah(a)
+ aµ(a)− µ̂(a) ≥ 0.
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Under (S5), h is decreasing and hence, for a ∈]0, 1[,

µ(a) ≤ h(a)(1 − a). (A.4.6)

Consequently, lim
a→1

ρ(a) = 0, and it is now sufficient to see that ρ′(a) ≤ 0 on

]0, 1[.

ρ′(a) = −µ(a)µ̂(a)
a2h2(a)

(
h(a) + ah′(a)

)
− µ̂(a)

a

hence, the assertion ρ′(a) ≤ 0 on ]0, 1[ is equivalent to:

− 1

ah(a)
− h′(a)
h2(a)

≤ 1

µ(a)
. (A.4.7)

But, under (S5), a 7−→
ah(a)

1− a is increasing, and therefore we have, for

a ∈]0, 1[,
1

a(1− a) +
h′(a)
h(a)

≥ 0. (A.4.8)

Then, using (A.4.6) and (A.4.8), we obtain:

− 1

ah(a)
− h′(a)
h2(a)

≤ − 1

ah(a)
+

1

a(1− a)h(a)

=
1

ah(a)

(
1

1− a − 1

)
=

1

h(a)(1 − a) ≤
1

µ(a)

which gives (A.4.7).

4) We finally prove: (S′
5) =⇒ (S5)

We must prove that a 7−→ ah(a)

1− a is increasing. Differentiating, we obtain:

(
ah(a)

1− a

)′
=

h(a)

1− a

(
1

a(1− a) +
h′(a)
h(a)

)
=

h(a)

1− a

(
1

a(1− a) −
∣∣∣∣
h′(a)
h(a)

∣∣∣∣
)

≥ h(a)

1− a

(
1

a(1− a) − 4

)
≥ 0

since, for a ∈ [0, 1], a(1− a) ≤ 1
4 .

Remark A.4.5. We observe that there exist some implications between
these conditions. In particular:
• (S′

1) =⇒ (S2). Indeed, note first that since (S′
1) implies (S1), the relation

µ(a) ≥ a(1 − a)h(a) holds, and implies lim
a→1−

(1 − a)h(a) = 0. Then, for
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a ∈]0, 1[, condition (S′
1) is equivalent to 2h(a) + ah′(a) ≥ 0 and we can

write:

−
(
log

(
a

∫ 1

a
h(x)dx

))′′
=

1

a2
+
h′(a)µ(a) + h2(a)

µ2(a)
(A.4.9)

=
h(a)

aµ(a)

(
µ(a)

ah(a)
+
ah′(a)
h(a)

+
ah(a)

µ(a)

)

≥ h(a)

aµ(a)

(
ah′(a)
h(a)

+ 2

)
(since for x ≥ 0, x+

1

x
≥ 2)

=
1

aµ(a)

(
ah′(a) + 2h(a)

)
≥ 0.

This is condition (S2), i.e. a 7−→ log(aµ(a)) is a concave function.

• (S′
4) implies both (S0) and (S5).

- (S0) is satisfied since the function y −→ yh′(y)
h(y)

is clearly decreasing.

- To prove that (S5) is satisfied, we write:

h(1)−h(a) =
∫ 1

a
h′(x)dx =

∫ 1

a

x2h′(x)
x2

dx ≤ a2h′(a)
∫ 1

a

dx

x2
= ah′(a)(1−a),

hence:
h(a)

1− a + ah′(a) ≥ h(1)

1− a ≥ 0.

We sum up the implications between these different conditions in the
following diagram:

(S′
4)

�� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�� "*
MM

MM
MM

MM
MM

MM
(S′

5)

��

Proposition A.4.4 (S3)

��

(S4) (S5)

Theorem A.4.3 (S′
1)

"*
MM

MM
MM

MM
MM

MM

t| qq
qq

qq
qq

qqq
q

(S1) (S2) (S0)

Remark A.4.6.
Let h be a decreasing function with bounded derivative h′. Then, for large
enough c, the measure µ(c)(dx) := (h(x)+c)dx satisfies condition (S′

5), hence
(M ·Y ). Indeed, for h(c)(x) = h(x) + c, we have:

∣∣∣∣
h(c)′(x)

h(c)(x)

∣∣∣∣ =
|h′(x)|
h(x) + c

−−−−→
c→+∞

0
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This convergence being uniform, for large enough c, we obtain:

sup
x∈[0,1]

∣∣∣∣
h(c)′(x)

h(c)(x)

∣∣∣∣ ≤ 4.

A.5 Case where the support of µ is R+

In this Section, we assume that µ(dx) = h(x)dx is a positive measure whose
density h is strictly positive a.e. on R+. The following theorem gives suf-
ficient conditions on h for the function Dµ to be increasing and converging
to 1 when a tends to +∞.

Theorem A.5.1.
We assume that µ admits a density h on R+ which satisfies (S0) (see Propo-
sition A.4.1).
1) Then, there exists ρ > 2 (possibly +∞) such that:

∀ c ∈]0, 1[, lim
a→+∞

h(a)

h(ac)
= cρ. (A.5.1)

Furthermore:
ρ = lim

a→+∞
ε(a) = lim

a→+∞
aV ′(a).

2) Dµ is an increasing function which converges towards ℓ with:

- if ρ < +∞, then ℓ =
ρ− 2

ρ− 1

- if ρ = +∞, then ℓ = 1.

In particular, if ρ = +∞, then, there exists a probability measure νµ such
that:

Dµ(a) = νµ(]0, a[), a ≥ 0.

Remark A.5.2.
- Point 1) of Theorem A.5.1 casts a new light on Proposition A.4.1. Indeed,
from (A.5.1), we see that h is a regularly varying function in the sense of
Karamata, and Proposition A.4.1 looks like a version of Karamata’s repre-
sentation Theorem (see [BGT89, Chapter 1, Theorems 1.3.1 and 1.4.1]).

- The property that the function a 7−→ h(a)

h(ac)
is decreasing is not necessary

to obtain the limit of Dµ, see [BGT89, Theorem 8.1.4].

Proof of Theorem A.5.1
1) We first prove Point 1)
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We assume that h satisfies (S0) on R+. Therefore the decreasing limit

γc := lim
a→+∞

h(a)

h(ac)
exists and belongs to [0, 1]. Then, for all c, d ∈]0, 1[:

γcd = lim
a→+∞

h(a)

h(acd)
= lim

a→+∞
h(a)

h(ac)

h(ac)

h(acd)
= γcγd.

This implies that γc = cρ with ρ ∈ R+. Now, let η(a) =

∫ +∞

a
yh(y)dy. For

A > 1, we have

η(a) =

∫ +∞

a
yh(y)dy = a2

∫ +∞

1
zh(az)dz ≥ a2

∫ A

1
z
h(az)

h(z)
h(z)dz

≥ a2h(aA)
h(A)

∫ A

1
zh(z)dz

−−−−−→
A→+∞

a2−ρ
∫ +∞

1
zh(z)dz.

Letting a tend to +∞, we obtain, since η(a) −−−−→
a→+∞

0, that necessarily

ρ > 2. Then, passing to the limit in (A.4.1), we obtain:

cρ = exp

(
−
∫ 1

c

ε(+∞)

y
dy

)
, i.e. ε(+∞) = ρ.

The last equality is a direct consequence of (A.4.2).

2) We now prove that Dµ is increasing and converges towards ℓ

As in Theorem A.2.3, we denote µ(a) =

∫ +∞

a
h(y)dy. Then:

1

Dµ(a)
=

[−yµ(y)]+∞
a +

∫ +∞
a µ(y)dy

aµ(a)
= 1 +

∫ +∞

1

µ(ax)

µ(a)
dx. (A.5.2)

Now, the proof of the increase of Dµ is exactly the same as that of the
implication S0 =⇒ (M ·Y ) (see Theorem A.4.3). Then, Dµ being bounded
by 1, it converges towards a limit ℓ, and it remains to identify ℓ. We write,
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for x > 1:

µ(a)

µ(ax)
=

∫ +∞

a
h(y)dy

∫ +∞

ax
h(y)dy

=

∫ +∞

1
h(au)du

∫ +∞

x
h(au)du

=

∫ x

1
h(au)du

∫ +∞

x
h(au)du

+ 1

=

∫ x

1

h(axux)

h(ax)
du

∫ +∞

x

h(au)

h
(
auxu

)du
+ 1 −−−−→

a→+∞

∫ x

1

(x
u

)ρ
du

∫ +∞

x

(x
u

)ρ
du

+ 1

from (A.5.1). Now, we must discuss different cases:

− if ρ = +∞, then lim
a→+∞

µ(a)

µ(ax)
= +∞, and plugging this limit into (A.5.2),

we obtain ℓ = 1.
− if ρ < +∞, we obtain:

lim
a→+∞

µ(a)

µ(ax)
=

1

x1−ρ
.

Plugging this into (A.5.2), we obtain:

1

ℓ
= 1 +

∫ +∞

1

dx

xρ−1
= 1− 1

2− ρ =
1− ρ
2− ρ.

Remark A.5.3.
More generally, for p ≥ 1, there is the equivalence:

∫ +∞
yph(y)dy <∞⇐⇒ ρ > p+ 1.

The implication =⇒ can be proven in exactly the same way as Point 1).
Conversely, since ε(y) tends to ρ when y tends to +∞, there exists A > 0
and θ > 0 such that: ∀y ≥ A, ε(y) ≥ p+ 1 + θ. Then applying Proposition
A.4.1, we obtain:

h(a) = h(A) exp

(
−
∫ a

A

ε(y)

y
dy

)
≤ h(A) exp

(
−(p+ 1 + θ)

∫ a

A

dy

y

)

= h(A)

(
A

a

)p+1+θ

.

We note in particular that µ admits moments of all orders if and only if
ρ = +∞.
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A.6 Examples

We take µ(dx) = h(x)dx and give some examples of functions h which enjoy
the (M ·Y ) property. For some of them, we draw the graphs of h, Dµ, uµ

and a 7−→ νµ(]0, a[)

a
.

A.6.1 Beta densities h(x) = xα(1− x)β1]0,1[(x) (α, β > −1)
i) For −1 < β ≤ 0 (and α > −1), the function x 7−→ x2h(x) is increasing,
hence from (S′

1), condition (M ·Y ) holds.
ii) For β ≥ 0:

h(a)

h(ac)
=

1

cα

(
1− a(1− c)

1− ac

)β

which, for 0 < c < 1, is a decreasing function of a, hence condition (S0) is
satisfied and (M ·Y ) also holds in that case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
α=0.5, β=−0.5

uµ(a) 

h(a) 

Dµ(a) 

νµ(]0,a[)/a 

Figure 1: Graphs for h(x) =

√
x

(1− x)1[0,1[(x)

A.6.2 Further examples

− The function h(x) =
xα

(1 + x2)β
1[0,1](x) (α > −1, β ∈ R) satisfies (M ·Y ).

Indeed, for β ≤ 0, x 7−→ x2h(x) is an increasing function on [0, 1], hence
condition (S′

1) holds, while, for β ≥ 0, condition (S0) is satisfied.

− The function h(x) =
xα

(1− x2)β 1[0,1](x) (α > −1, β < 1) satisfies (M ·Y ).
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As in the previous example, for 0 ≤ β ≤ 1, the function x 7−→ x2h(x) is
increasing on [0, 1], and for β ≤ 0, this results from condition (S0).

A.6.3 h(x) = | cos(πx)|m1[0,1](x) (m ∈ R+)

We check that this example satisfies condition (S1). Indeed, for a ≥ 1
2 ,

a 7−→ h(a) is increasing, hence:

∫ 1

a
| cos(πx)|mdx ≥ | cos(πa)|m(1− a) ≥ a| cos(πa)|m(1− a).

For a ≤ 1
2 we write by symmetry:

∫ 1

a
| cos(πx)|mdx =

∫ 1−a

0
| cos(πx)|mdx

≥
∫ a

0
| cos(πx)|mdx

≥ a| cos(πa)|m ≥ a| cos(πa)|m(1− a).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
m=1.5

uµ(a) 

νµ(]0,a[)/a 
h(a) 

Dµ(a) 

Figure 2: Graphs for h(x) = | cos(πx)|3/21[0,1](x)

Remark A.6.1. More generally, every function which is symmetric with
respect to the axis x = 1

2 , and is first decreasing and then increasing, satisfies
condition (S1).

A.6.4 h(x) = xαe−x
λ

1]0,1](x) (α > −1, λ ∈ R)

This is a direct consequence of (S0).
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α=−0.5, λ=1 

uµ(a) 
h(a) 

νµ(]0,a[)/a 

Dµ(a) 

Figure 3: Graphs for h(x) =
e−x√
x
1]0,1](x)

A.6.5 An example where (M ·Y ) is not satisfied

Let µ be the measure with density h defined by:

h(x) = c1[0,p[(x) + e1[p,1](x) (c, e ≥ 0, p ∈]0, 1[).

For a < p, it holds:

Dµ(a) :=
2a (c(p − a) + e(1− p))
c(p2 − a2) + e(1− p2)

Dµ is C∞ on [0, p[, and, for a < p, we have:

D′
µ(a) = 2

c2p(p− a)2 + e2(1− p)2(1 + p) + ec(1 − p)
(
(p− a)2 + p2 + p− 2a

)

(c(p2 − a2) + e(1− p2))2

and

D′
µ(p

−) = 2
e2(1− p)2

(
1 + p

(
1− c

e

))

e2(1− p2)2 = 2
1 + p

(
1− c

e

)

(1 + p)2
.

Therefore, it is clear that, for
c

e
large enough, D′

µ(p
−) < 0, hence Dµ is not

increasing on [0, 1]. Note that, if e ≥ c (h is increasing), then D′
µ ≥ 0 (see

condition (S′
1)), and that Dµ is increasing if and only if D′

µ(p
−) ≥ 0, i.e.

c

e
≤ 1 +

1

p
.
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0.9

1
p=0.5, e=1

c=10 
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D
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(a
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Figure 4: Graph of Dµ for h(x) = c1[0,1/2[(x) + 1[1/2,1](x)
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c=6, e=1

h(a) 
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νµ(]0,a[)/a 

Dµ(a) 

Figure 5: Graphs for h(x) = 61[0,1/2[(x) + 1[1/2,1](x)

A.6.6 A situation where neither condition (Si)i=0...5 is satis-

fied, but (M ·Y ) is

Let h be a function such that, for a ∈ [1/2, 1], D′
µ(a) > 0. We define h on

[0, 1/2] such that
∫ 1/2
0 h(x)dx < ε and sup

x∈[0,1/2]
h(x) ≤ η. Then, for ε > 0 and

η ≥ 0 small enough, the measure µ(dx) = h(x)dx satisfies (M·Y ) and h may
be chosen in such a way that none of the preceding conditions is satisfied.
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Figure 6: Graphs for h satisfying neither condition (Si)i=0...5
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Part B

Construction of randomized

Skorokhod embeddings

B.1 Introduction

In this Part B, our aim is still to construct martingales satisfying the prop-
erties (a) and (b), this time by a (seemingly) new Skorokhod embedding
method, in the spirit of the original Skorokhod method, and of the so-called
Hall method (see [Obl04] for comments and references; we also thank J.
Oblój [Obl09] for writing a short informal draft about this method).
Our method of randomized Skorokhod embedding will ensure directly that
the family of stopping times (τt , t ≥ 0) is increasing.
Here is the content of this Part B:

• In Section B.2, we consider a real valued, integrable and centered ran-
dom variable X . We prove that there exist an R+-valued random
variable V and an R

∗
−-valued random variable W , with V and W in-

dependent and independent of (Bu , u ≥ 0), such that, denoting:

τ = inf{u ≥ 0 ; Bu = V or Bu =W} ,

Property (Sk1) is satisfied by this randomized stopping time τ , i.e:

Bτ
(law)
= X . To prove this result we use, as an essential tool, the

Schauder-Tychonoff fixed point theorem.

• In Section B.3, we prove that the stopping time τ defined in Section
B.2 satisfies (Sk2), i.e: the martingale Bτ := (Bt∧τ , u ≥ 0) is
uniformly integrable. Moreover, for every p ≥ 1, we state conditions
ensuring that Bτ is a martingale belonging to the space Hp consisting
of all martingales (Mt, t ≥ 0) such that sup

t≥0
|Mt| ∈ Lp.

• In Section B.4, we follow the method presented in the general intro-
duction, and construct an increasing family of randomized stopping
times (τt , t ≥ 0) , such that (Bτt , t ≥ 0) is a martingale satisfying
properties (a) and (b).
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B.2 Randomized Skorokhod embedding

B.2.1 Notation

We denote by R+ (resp. R
∗
− ) the interval [0,+∞[ (resp. ] −∞, 0[ ),

and by M+ (resp. M− ) the set of positive finite measures on R+ (resp.
R
∗
− ), equipped with the weak topology:

σ(M+ , C0(R+)) (resp. σ(M− , C0(R∗
−)) )

where C0(R+) (resp. C0(R∗
−) ) denotes the space of continuous functions

on R+ (resp. R
∗
− ) tending to 0 at +∞ (resp. at 0 and at −∞).

B = (Bu , u ≥ 0) denotes a standard Brownian motion started from 0.
In the sequel we consider a real valued, integrable, centered random variable
X, the law of which we denote by µ . The restrictions of µ to R+ and R

∗
−

are denoted respectively by µ+ and µ− .

B.2.2 Existence of a randomized stopping time

This subsection is devoted to the proof of the following Skorokhod embed-
ding method.

Theorem B.2.1.

i) There exist an R+-valued random variable V and an R
∗
−-valued random

variable W , V and W being independent and independent of (Bu , u ≥
0), such that, setting

τ = inf{u ≥ 0 ; Bu = V or Bu =W} ,

one has: Bτ
(law)
= X .

ii) Denoting by γ+ (resp. γ− ) the law of V (resp. W ), then:

µ+ ≤ γ+ ≪ µ+ and µ− ≤ γ− ≪ µ− .

Moreover,
E[V ∧ (−W )] ≤ E[|X|] ≤ 2E[V ∧ (−W )] (B.2.1)

and, for every p > 1,

1

2
E
[
(V ∧ (−W ))

(
V p−1 + (−W )p−1

)]

≤ E[|X|p] ≤ E
[
(V ∧ (−W ))

(
V p−1 + (−W )p−1

)]
(B.2.2)

Proof of Theorem B.2.1
In the following, we exclude the case µ = δ0, the Dirac measure at 0. Oth-
erwise, it suffices to set: V = 0 . Then, i) is satisfied since τ = 0 , and ii)
is also satisfied except the property γ− ≪ µ− (since µ− = 0).
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1. We first recall the following classical result: Let b < 0 ≤ a and

Tb,a = inf{u ≥ 0 ; Bu = a or Bu = b} .

Then,

P (BTb,a = a) =
−b
a− b and P (BTb,a = b) =

a

a− b .

2. Let V and W be respectively an R+-valued random variable and an
R
∗
−-valued random variable, V andW being independent and indepen-

dent of B, and let τ , γ+, γ− be defined as in the statement of the the-

orem. As a direct consequence of Point 1, we obtain that Bτ
(law)
= X

if and only if:

µ+(dv) =

(∫

R
∗

−

−w
v − w γ−(dw)

)
γ+(dv) on R+ (B.2.3)

µ−(dw) =

(∫

R+

v

v − w γ+(dv)

)
γ−(dw) on R

∗
− (B.2.4)

As γ+ and γ− are probabilities, the above equations entail:

γ+(dv) = µ+(dv) +

(∫

R
∗

−

v

v − w γ−(dw)

)
γ+(dv) on R+ (B.2.5)

γ−(dw) = µ−(dw) +

(∫

R+

−w
v −w γ+(dv)

)
γ−(dw) on R

∗
− (B.2.6)

To prove Point i) of the theorem, we shall now solve this system of
equations (B.2.5) and (B.2.6) by a fixed point method, and then we
shall verify that the solution thus obtained is a pair of probabilities,
which will entail (B.2.3) and (B.2.4).

3. We now introduce some further notation. If (a, b) ∈ M+ ×M− and
ε > 0, we set

a(ε) =

∫
1]0,ε[(v) a(dv) and b(ε) =

∫
1]−ε,0[(w) b(dw) .

We also set: m+ =
∫
µ+(dv), m− =

∫
µ−(dw). We note that, since

µ is centered and is not the Dirac measure at 0, then m+ > 0 and
m− > 0. We then define:

ρ(ε) := 4 sup
(
µ+(ε)m

−1
+ , µ−(ε)m

−1
−
)

and

Θ := {(a, b) ∈ M+ ×M− ; a ≥ µ+, b ≥ µ−,
∫
a(dv) +

∫
b(dw) ≤ 2

and for every ε ≤ ε0, a(ε) ≤ ρ(ε) and b(ε) ≤ ρ(ε)}
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where ε0 will be defined subsequently.
Finally, we define Γ = (Γ+,Γ−) :M+ ×M− −→M+ ×M− by:

Γ+(a, b)(dv) = µ+(dv) +

(∫

R
∗

−

v

v −w b(dw)

)
a(dv)

Γ−(a, b)(dw) = µ−(dw) +

(∫

R+

−w
v − w a(dv)

)
b(dw)

Lemma B.2.1. Θ is a convex compact subset ofM+×M− (equipped
with the product of the weak topologies), and Γ(Θ) ⊂ Θ .

Proof of Lemma B.2.1
The first part is clear. Suppose that (a, b) ∈ Θ. By definition of Γ, we
have:

Γ+(a, b) ≥ µ+ , Γ−(a, b) ≥ µ−
and
∫

Γ+(a, b)(dv) +

∫
Γ−(a, b)(dw) = 1 +

(∫
a(dv)

)(∫
b(dw)

)

(B.2.7)
Consequently,

∫
Γ+(a, b)(dv) +

∫
Γ−(a, b)(dw) ≤ 2

and
∫

Γ+(a, b)(dv) ≤ 2−m− ,

∫
Γ−(a, b)(dw) ≤ 2−m+ (B.2.8)

On the other hand,

Γ+(a, b)(ε) = µ+(ε) +

∫
1]0,ε[(v) a(dv)

∫
1]−v,0](w)

v

v − w b(dw)

+

∫
1]0,ε[(v) a(dv)

∫
1]−∞,−v](w)

v

v − w b(dw) .

Since
v

v − w ≤ 1, and
v

v − w ≤ 1/2 if w ≤ −v, taking into account

(B.2.8) we obtain:

Γ+(a, b)(ε) ≤ µ+(ε) + a(ε) b(ε) + a(ε)
(
1− m+

2

)
.

Hence,

Γ+(a, b)(ε) ≤ ρ2(ε) + ρ(ε)
(
1− m+

2

)
+ µ+(ε) .
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In order to deduce from the preceding that: Γ+(a, b)(ε) ≤ ρ(ε), it
suffices to prove:

ρ2(ε)− m+

2
ρ(ε) + µ+(ε) ≤ 0

or

ρ(ε) ∈
[
1

4
(m+ −

√
m2

+ − 16µ+(ε)),
1

4
(m+ +

√
m2

+ − 16µ+(ε))

]
,

which is satisfied for ε ≤ ε0 for some choice of ε0, by definition of ρ.
The proof of Γ−(a, b)(ε) ≤ ρ(ε) is similar.

Lemma B.2.2. The restriction of the map Γ to Θ is continuous.

Proof of Lemma B.2.2
We first prove the continuity of Γ+. For ε > 0, we denote by hε a
continuous function on R

∗
− satisfying:

hε(w) = 0 for − ε < w < 0 , hε(w) = 1 for w < −2 ε

and, for every w < 0, 0 ≤ hε(w) ≤ 1. We set: Γε+(a, b) = Γ+(a, hε b).
Then, Γε+(a, b) ≤ Γ+(a, b) and

0 ≤
∫

Γ+(a, b)(dv) −
∫

Γε+(a, b)(dv) ≤ 2 ρ(2 ε) ,

which tends to 0 as ε tends to 0. Therefore, by uniform approximation,
it suffices to prove the continuity of the map Γε+.

Let (an, bn) be a sequence in Θ, weakly converging to (a, b), and let
ϕ ∈ C0(R+). It is easy to see that the set:

{
v ϕ(v)

v − • hε(•) ; v ≥ 0

}

is relatively compact in the Banach space C0(R∗
−) . Consequently,

lim
n→∞

∫
v ϕ(v)

v − w hε(w) bn(dw) =

∫
v ϕ(v)

v − w hε(w) b(dw) (B.2.9)

uniformly with respect to v. Since
∣∣∣∣
∫
v ϕ(v)

v − w hε(w) bn(dw)

∣∣∣∣ ≤ 2 |ϕ(v)| , (B.2.10)

then {∫
v ϕ(v)

v − w hε(w) bn(dw) ; n ≥ 0

}
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is relatively compact in the Banach space C0(R+) . Therefore,

lim
n→∞

∫
ϕ(v) Γε+(an, bp)(dv) =

∫
ϕ(v) Γε+(a, bp)(dv)

uniformly with respect to p, and, by (B.2.9) and (B.2.10):

lim
n→∞

∫
ϕ(v) Γε+(a, bn)(dv) =

∫
ϕ(v) Γε+(a, b)(dv) .

Finally,

lim
n→∞

∫
ϕ(v) Γε+(an, bn)(dv) =

∫
ϕ(v) Γε+(a, b)(dv) ,

which proves the desired result.

The proof of the continuity of Γ− is similar, but simpler since it does
not need an approximation procedure.

As a consequence of Lemma B.2.1 and Lemma B.2.2, we may apply
the Schauder-Tychonoff fixed point theorem (see, for instance, [DS88,
Theorem V.10.5]), which yields the existence of a pair (γ+, γ−) ∈ Θ
satisfying (B.2.5) and (B.2.6). We set

α+ =

∫
γ+(dv) , α− =

∫
γ−(dw)

and we shall now prove that α+ = α− = 1.

4. By (B.2.7) applied to (a, b) = (γ+, γ−), we obtain:

α+ + α− = 1 + α+ α−

and therefore, α+ = 1 or α− = 1. Suppose, for instance, α+ = 1. Since
α+ + α− ≤ 2, then α− ≤ 1. We now suppose α− < 1. By (B.2.5),
γ+ ≤ µ+ + α− γ+ , and hence, γ+ ≤ (1− α−)−1 µ+ . Consequently,

∫
v γ+(dv) ≤ (1− α−)

−1

∫
v µ+(dv) <∞ .

We deduce from (B.2.5) and (B.2.6) that, for every r > 0,

∫ ∞

0
v γ+(dv) +

∫ 0

−r
w γ−(dw)

= ε1(r) + ε2(r) +

∫ ∞

0
γ+(dv)

∫ 0

−r
γ−(dw)(v + w) (B.2.11)
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with

ε1(r) =

∫ +∞

−r
xµ(dx) and

ε2(r) =

∫ ∞

0
γ+(dv)

∫ −r

−∞
γ−(dw)

v2

v − w .

Since X is centered, lim
r→+∞

ε1(r) = 0 . On the other hand,

ε2(r) ≤
(∫

v γ+(dv)

)(∫ −r

−∞
γ−(dw)

)

and therefore, lim
r→+∞

ε2(r) = 0 . Since α+ = 1 , we deduce from

(B.2.11):
(∫

v γ+(dv)

)(
1−

∫ 0

−r
γ−(dw)

)
= ε1(r) + ε2(r) .

Since µ is not the Dirac measure at 0, then γ+(]0,+∞[) > 0 . There-
fore, letting r tend to ∞, we obtain α− = 1, which contradicts the
assumption α− < 1. Thus, α− = 1 and α+ = 1.

5. We now prove point ii). We have already seen: γ+ ≥ µ+ and
γ− ≥ µ− . The property: γ+ ≪ µ+ follows directly from (B.2.3).
More precisely, the Radon-Nikodym density of γ+ with respect to µ+
is given by: (∫

R
∗

−

−w
v − w γ−(dw)

)−1

,

which is well defined since γ− is a probability and
−w
v − w is > 0 for

w < 0 and v ≥ 0. On the other hand, since µ is not the Dirac measure
at 0, then γ+(]0,+∞[) > 0 . By (B.2.4), this easily entails the
property: γ− ≪ µ− , the Radon-Nikodym density of γ− with respect
to µ− being given by:

(∫

R+

v

v − w γ+(dv)

)−1

.

On the other hand, we have for v ≥ 0 and w < 0,

1

2
(v ∧ (−w)) ≤ −vw

v −w ≤ v ∧ (−w) (B.2.12)

Moreover, we deduce from (B.2.3) and (B.2.4)

E [|X|p] =
∫ ∫ −vw

v − w
(
vp−1 + (−w)p−1

)
γ+(dv)γ−(dw) (B.2.13)

for every p ≥ 1. Then, (B.2.1) and (B.2.2) in Theorem B.2.1 follow
directly from (B.2.12) and (B.2.13).
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We have obtained a theorem of existence, thanks to the application of
the Schauder-Tychonoff fixed point theorem, which, of course, says nothing
about the uniqueness of the pair (γ+, γ−) of probabilities satisfying the con-
ditions (B.2.3) and (B.2.4). However, the following theorem states that this
uniqueness holds.

Theorem B.2.3. Assume µ 6= δ0. Then the laws of the r.v.’s V and W
satisfying Point i) in Theorem B.2.1 are uniquely determined by µ.

Proof of Theorem B.2.3
Consider

(
γ
(j)
+ , γ

(j)
−
)
, j = 1, 2, two pairs of probabilities in M+ × M+

satisfying (B.2.3) and (B.2.4). We set, for j = 1, 2, v ≥ 0 and w < 0,

a(j)(v) =

∫

R
∗

−

−w
v −wγ

(j)
− (dw), (B.2.14)

b(j)(w) =

∫

R+

v

v − wγ
(j)
+ (dv). (B.2.15)

By (B.2.3) and (B.2.4), we have:

γ
(j)
+ =

1

a(j)
µ+ and γ

(j)
− =

1

b(j)
µ− (B.2.16)

On the other hand, the following obvious equality holds:
∫ ∫

R+×R
∗

−

v − w
v − w

(
γ
(1)
+ (dv) + γ

(2)
+ (dv)

) (
γ
(1)
− (dw) + γ

(2)
− (dw)

)
= 4

(B.2.17)
Therefore, developing (B.2.17) and using (B.2.14), (B.2.15) and (B.2.16), we
obtain:
∫

R+

(
a(1)(v) + a(2)(v)

)( 1

a(1)(v)
+

1

a(2)(v)

)
µ+(dv)

+

∫

R
∗

−

(
b(1)(w) + b(2)(w)

)( 1

b(1)(w)
+

1

b(2)(w)

)
µ−(dw) = 4 (B.2.18)

Now, for x > 0, x+
1

x
≥ 2, and x+

1

x
= 2 if and only if x = 1. Therefore,

(
a(1)(v) + a(2)(v)

)( 1

a(1)(v)
+

1

a(2)(v)

)
≥ 4

and
(
a(1)(v) + a(2)(v)

)( 1

a(1)(v)
+

1

a(2)(v)

)
= 4 if and only if a(1)(v) =

a(2)(v), and similarly with b(1)(w) and b(2)(w). Since µ is a probability, we
deduce from (B.2.18) and the preceding that:

a(1)(v) = a(2)(v) µ+-a.s. and b(1)(w) = b(2)(w) µ−-a.s.
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We then deduce from (B.2.16):

γ
(1)
+ = γ

(2)
+ and γ

(1)
− = γ

(2)
− ,

which is the desired result.
.

B.2.2.1 Remark

We have:

∀v ≥ 0, ∀w < 0,
−w
v − w ≥

1

(v ∨ 1)

−w
1−w .

Therefore, by (B.2.3), for p > 1:

E[V p−1] ≤
(∫ −w

1− w γ−(dw)

)−1 ∫
(v ∨ 1) vp−1 µ+(dv) ,

and similarly for E[(−W )p−1] . Consequently,

E[|X|p] <∞ =⇒ E[V p−1] <∞ and E[(−W )p−1] <∞ .

However, the converse generally does not hold (see Example B.2.3.3 below),
but it holds if p ≥ 2 (see Remark B.3.0.7).

B.2.2.2 Remark

If we no longer require the independence of the two r.v.’s V and W , then,
easy computations show that Theorem B.2.1 is still satisfied upon taking for
the law of the couple (V,W ):

2 (E[|X|])−1 (v −w) dµ+(v)dµ−(w). (B.2.19)

This explicit formula, which results at once from [Bre68, 13.3, Problem 2],
appears in [Hal68]. The results stated in the following Sections B.3 and B.4
remain valid with the law of the couple (V,W ) given by (B.2.19), except that,
in Theorem B.3.2, one must take care of replacing E[V ]E[−W ] by E[−VW ].
Thus the difference between our embedding method and the one which relies
on the Breiman-Hall formula is that we impose the independence of V and
W . We then have the uniqueness of the laws of V and W (Theorem B.2.3)
but no general explicit formula.

B.2.3 Some examples

In this subsection, we develop some explicit examples. We keep the previous
notation. For x ∈ R, δx denotes the Dirac measure at x.
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B.2.3.1

Let 0 < α < 1 and x > 0. We define µ+ = α δx and we take for µ− any
measure inM− such that

∫
µ−(dw) = 1− α and

∫
wµ−(dw) = −αx .

Then, the unique pair of probabilities (γ+, γ−) satisfying (B.2.3) and (B.2.4)
is given by:

γ+ = δx and γ−(dw) =
(
1− w

x

)
µ−(dw) .

B.2.3.2

Let 0 < α < 1 and 0 < x < y. We consider a symmetric measure µ such
that:

µ+ =
1

2
(α δx + (1− α) δy) .

By an easy computation, we obtain that the unique pair of probabilities
(γ+, γ−) satisfying (B.2.3) and (B.2.4) is given by:

γ+ =
y −

√
(1− α) y2 + αx2

y − x δx +
−x+

√
(1− α) y2 + αx2

y − x δy

and γ−(dw) = γ+(−dw) .

B.2.3.3

Let 0 < α < 1 and 0 < β < 1 such that α+ β > 1. We define µ by:

µ+(dv) =
sinαπ

π

vα−1

(1 + vβ) (1 + 2vα cosαπ + v2α)
dv

and

µ−(dw) =
sin βπ

π

(−w)β−1

(1 + (−w)α) (1 + 2(−w)β cos βπ + (−w)2β) dw .

Then, the unique pair of probabilities (γ+, γ−) satisfying (B.2.3) and (B.2.4)
is given by:

γ+(dv) =
sinαπ

π

vα−1

1 + 2vα cosαπ + v2α
dv = (1 + vβ)µ+(dv)

and

γ−(dw) =
sin βπ

π

(−w)β−1

1 + 2(−w)β cos βπ + (−w)2β dw = (1 + (−w)α)µ−(dw) .
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This follows from the classical formula, which gives the Laplace transform of
the resolvent of index 1 of a stable subordinator of index α (see Chaumont-
Yor [CY03, Exercise 4.2.1]):

1

1 + vα
=

sinαπ

π

∫ +∞

0

wα

(v + w) (1 + 2wα cosαπ +w2α)
dw .

We note that, in this example, if p > 1, the condition: E[|X|p] < ∞ is
satisfied if and only if p < α + β , whereas the conditions: E[V p−1] < ∞
and E[(−W )p−1] < ∞ are satisfied if and only if p < 1 + α ∧ β . Now,
α+ β < 1 + α ∧ β since α ∨ β < 1 . This illustrates Remark B.2.2.1.

B.2.3.4

We now consider a symmetric measure µ such that:

µ+(dv) =
2

π
(1 + v2)−2 (1 +

2

π
v log v) dv .

By an easy computation, we obtain that the unique pair of probabilities
(γ+, γ−) satisfying (B.2.3) and (B.2.4) is given by:

γ+(dv) =
2

π
(1 + v2)−1 dv

and γ−(dw) = γ+(−dw) .

B.2.3.5

Let µ be a symmetric measure such that:

µ+(dv) =
1

π

(
1√

v (1− v)
− 1√

1− v2

)
1]0,1[(v) dv .

Then, the unique pair of probabilities (γ+, γ−) satisfying (B.2.3) and (B.2.4)
is given by:

γ+(dv) =
1

π

1√
v (1− v)

1]0,1[(v) dv

and γ−(dw) = γ+(−dw) . Thus, γ+ is the Arcsine law.
This follows from the formula:

1

π

∫ 1

0

w

v + w

1√
w (1− w)

dw = 1−
√

v

1 + v
,

which can be found in [BFRY06, (1.18) and (1.23)].
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B.3 Uniform integrability

In this section, we consider again an integrable, centered, real-valued r.v. X,
and we keep the notation of Theorem B.2.1. We shall study the properties
of uniform integrability of the martingale: Bτ := (Bu∧τ , u ≥ 0).

Theorem B.3.1. The martingale Bτ is uniformly integrable. Moreover, if
E[φ(X)] <∞ where φ : R→ R+ is defined by φ(x) = |x| log+(|x|), then, the
martingale Bτ belongs to H1, i.e. E

[
sup
u≥0
|Bτ

u|
]
<∞.

Proof of Theorem B.3.1

1. We first prove that Bτ is bounded in L1. We denote by EW,V the ex-
pectation with respect to the law of (W,V ), and by EB the expectation
with respect to the law of Brownian motion B.

sup
u≥0

E [|Bτ
u|] = lim

u→+∞
↑ E [|Bτ

u|]

= lim
u→+∞

↑ EW,V
[
EB

[
|Bu∧TW,V |

]]

= EW,V

[
lim

u→+∞
↑ EB

[
|Bu∧TW,V |

]]

= EW,V

[
EB

[
|BTW,V |

]]

(by the dominated convergence theorem,

since |Bu∧TW,V | ≤ V ∨ (−W ))

= E [|Bτ |] = E[|X|].

2. We have:

λP

(
sup
u≥0
|Bτ

u| ≥ λ
)

= EW,V

[
λPB

(
sup
u≥0
|Bu∧TW,V | ≥ λ

)]
. (B.3.1)

Now, since sup
u≥0
|Bu∧TW,V | ≤ V ∨ (−W ),

λPB

(
sup
u≥0
|Bu∧TW,V | ≥ λ

)
−−−−→
λ→+∞

0,

and from Doob’s maximal inequality and Point 1.:

λPB

(
sup
u≥0
|Bu∧TW,V | ≥ λ

)
≤ sup

u≥0
EB

[
|Bu∧TW,V |

]
= EB

[
|BTW,V |

]
,

which is PW,V integrable. Therefore, applying the dominated conver-
gence theorem to the right hand side of (B.3.1), we obtain:

λP

(
sup
u≥0
|Bτ

u| ≥ λ
)
−−−−→
λ→+∞

0.
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Since Bτ is bounded in L1, this proves, from Azéma-Gundy-Yor
[AGY80, Théorème 1], the uniform integrability of Bτ .

3. We now suppose that E[φ(X)] <∞. Applying the previous computa-
tion of Point 1. to the submartingale (φ(Bτ

u), u ≥ 0) (φ is convex), we
obtain

sup
u≥0

E [φ(Bτ
u)] = lim

u→+∞
↑ E [φ(Bτ

u)] = E [φ(Bτ )]

= E [φ(X)] <∞. (B.3.2)

Note that, under the hypothesis E [φ(X)] < ∞, (B.3.2) gives another
proof of the fact that Bτ is a uniformly integrable martingale ([Mey66,
Chapitre 2, Théorème T22]).
On the other hand, from Doob’s L logL inequality [RY99, p.55],

E

[
sup
u≥0
|Bτ

u|
]
≤ e

e− 1

(
1 + sup

u≥0
E [φ(Bτ

u)]

)
=

e

e− 1
(1 + E [φ(X)]) <∞

from (B.3.2). Therefore, Bτ belongs to H1. Actually, the martingale
Bτ belongs to the L logL class (cf. [RY99, Exercise 1.16]).

B.3.0.6 Remark

By Azéma-Gundy-Yor [AGY80, Théorème 1], we also deduce from the above
Points 1. and 2. that:

lim
λ→+∞

λP
(√
τ ≥ λ

)
= 0.

We now complete Theorem B.3.1 when the r.v. X admits moments of
order p > 1. We start with p = 2.

Theorem B.3.2. The following properties are equivalent:

i) E[V ] <∞ and E[−W ] <∞.

ii) E[X2] <∞.

iii) E[τ ] <∞.

iv) The martingale Bτ is in H2.

Moreover, if these properties are satisfied, then

E[X2] = E[V ]E[−W ] = E[τ ].

47



Proof of Theorem B.3.2
We deduce from (B.2.3) and (B.2.4) by addition:

E[X2] = E[V ]E[−W ] .

This entails the equivalence of properties i) and ii) .
On the other hand, if b ≥ 0 and a < 0, the martingale(
B2
u∧Ta,b − (u ∧ Ta,b), u ≥ 0

)
is uniformly integrable and hence, E[Ta,b] =

E

[
B2
Ta,b

]
= −ab. Consequently,

E[τ ] = E[TW,V ] = −E[WV ] = E[V ]E[−W ].

This shows that properties i) and iii) are equivalent.

By Doob’s L2 inequality,

E

[(
sup
u≥0
|Bτ

u|
)2
]
≤ 4 sup

u≥0
E

[
(Bτ

u)
2
]
= 4E[τ ]

Hence, iii) =⇒ iv). The converse follows from:

E [u ∧ τ ] = E

[
(Bτ

u)
2
]
≤ E

[(
sup
u≥0
|Bτ

u|
)2
]
,

upon letting u tend to +∞. Therefore:

E[τ ] ≤ E

[(
sup
u≥0
|Bτ

u|
)2
]
≤ 4E[τ ].

We now replace the L2 space by Lp for p > 1.

Theorem B.3.3. Let p > 1. The following properties are equivalent:

i) E[(V ∧ (−W ))(V p−1 + (−W )p−1)] <∞ .

ii) E[|X|p] <∞.

iii) E[τp/2] <∞.

iv) The martingale Bτ is in Hp.

Proof of Theorem B.3.3

1. By (B.2.2), properties i) and ii) are equivalent.

48



2. We now prove that ii) is equivalent to iii). We fix p > 1. Applying
Doob’s and the Burkholder-Davis-Gundy inequalities to the bounded
martingale

(
Bu∧Ta,b , u ≥ 0

)
, we obtain that there exist constants c and

C (depending only on p) such that, for every a < 0 and b ≥ 0,

cE
[
(Ta,b)

p/2
]
≤ E

[
|BTa,b |p

]
≤ CE

[
(Ta,b)

p/2
]
.

Hence, we obtain, since τ = TW,V ,

cE
[
τp/2

]
≤ E[|X|p] ≤ CE

[
τp/2

]

which entails ii) ⇐⇒ iii).

3. Finally, iii) ⇐⇒ iv) is a direct consequence of the Burkholder-Davis-
Gundy inequalities.

B.3.0.7 Remark

If p ≥ 2, the property E [|X|p] < ∞ is equivalent to: E[V p−1] < ∞ and
E[(−W )p−1] <∞. This is proven in Theorem B.3.2 for p = 2.
Now, suppose p > 2. We saw in Remark B.2.2.1 that:

E[|X|p] <∞ =⇒ E[V p−1] <∞ and E[(−W )p−1] <∞.

Conversely, suppose E[V p−1] < ∞ and E[(−W )p−1] < ∞. In particular,
E[V ] <∞ and E[(−W )] <∞. We deduce from (B.2.3) and (B.2.4):

E[|X|p] ≤ E[−W ] E[V p−1] + E[V ] E[(−W )p−1]

which entails E[|X|p] <∞.

B.4 Construction of self-similar martingales

In this Section, we consider a real valued, centered, random variable X .
Let V , W , be as in Theorem B.2.1. We set:

τt = inf{u ≥ 0 ; Bu =
√
t V or Bu =

√
t W} .

Theorem B.4.1.

i) The process (Bτt , t ≥ 0) is a left-continuous martingale such that,

for every fixed t, Bτt
(law)
=
√
tX .
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ii) For any c > 0,

(Bτ
c2t

, t ≥ 0)
(law)
= (cBτt , t ≥ 0) .

iii) The process (Bτt , t ≥ 0) is an inhomogeneous Markov process.

In particular, (Bτt , t ≥ 0) is a martingale associated to the peacock (
√
tX, t ≥

0) (see I.4 in the General Introduction).

Proof of Theorem B.4.1

1. By the definition of times τt and the continuity of B, one easily sees
that the process (τt , t ≥ 0) is a left-continuous increasing process.
As a consequence, (Bτt , t ≥ 0) is a left-continuous process.

2. Since, for a given t ≥ 0, (Mu := Bu∧τt , u ≥ 0) is a uniformly
integrable martingale, and for s < t, τs ≤ τt, then (Bτt , t ≥ 0) is a
martingale.

Let, for c > 0, (B
(c)
t := cBc−2t , t ≥ 0) , and denote by (τ

(c)
t ) the

family of stopping times associated with the Brownian motion B(c) .
In other words,

τ
(c)
t = inf{u ≥ 0 ; B(c)

u =
√
t V or B(c)

u =
√
t W} .

We easily obtain, for every t ≥ 0, τ
(c)
t = c2 τc−2t

and then, B
(c)

τ
(c)

c2t

= c Bτt , which proves point iii) since

(B
(c)
t , t ≥ 0)

(law)
= (Bt , t ≥ 0). Moreover, since Bτ1

(law)
= X ,

we also have, for every t ≥ 0, Bτt
(law)
=
√
tX .

3. We now consider the Brownian motion B as a strong Markov process
in R. We may define τ̃t by:

τ̃t = inf{u ≥ 0 ; Bu 6∈]
√
t W,

√
t V [} .

(Note that τ̃t = τt under P0, whereas, if x 6= 0, then τ̃t 6= τt under Px.)
For s < t, we have with the usual notation about time translation
operators (θu),

τ̃t = τ̃s + τ̃t ◦ θτ̃s
and consequently: Bτ̃t = Bτ̃t ◦ θτ̃s , which entails, for f a bounded
Borel function,

E[f(Bτ̃t) | Fτ̃s ] = EBτ̃s
[f(Bτ̃t)] ,
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which proves point ii). More precisely, the transition semi group:
(Ps,t , 0 ≤ s < t) is given by:

Ps,tf(x) =

E

[(
f(
√
t V )

x−
√
tW√

t (V −W )
+ f(
√
tW )

−x+
√
t V√

t (V −W )

)
1]
√
tW,

√
t V [(x)

]

+f(x)P
(
x 6∈]
√
tW,
√
t V [

)
.

Thus, (Ps,t , 0 ≤ s < t) is a transition semi group of a very special
kind since, actually, Ps,t does not depend on s ∈ [0, t[.
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