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With the help of two Skorokhod embeddings, we construct martingales which enjoy the Brownian scaling property and the (inhomogeneous) Markov property. The second method necessitates randomization, but allows to reach any law with finite moment of order 1, centered, as the distribution of such a martingale at unit time. The first method does not necessitate randomization, but an additional restriction on the distribution at unit time is needed.

General introduction

I.1 Our general program

This work consists of two parts A and B which both have the same purpose, i.e.: to construct a large class of martingales (M t , t ≥ 0) which satisfy the two additional properties:

(a) (M t , t ≥ 0) enjoys the Brownian scaling property:

∀c > 0, (M c 2 t , t ≥ 0) (law) = (cM t , t ≥ 0) (b) (M t , t ≥ 0) is (inhomogeneous) Markovian.
The paper by Madan and Yor [START_REF] Madan | Making Markov martingales meet marginals: with explicit constructions[END_REF] developed three quite different methods to achieve this aim. In the following Parts A and B, we further develop two different Skorokhod embedding methods for the same purpose. In the end, the family of laws µ ∼ M 1 which are reached in Part A is notably bigger than in [START_REF] Madan | Making Markov martingales meet marginals: with explicit constructions[END_REF], while the method in Part B allows to reach any centered probability measure µ (with finite moment of order 1).

I.2 General facts about Skorokhod embeddings

For ease of the reader, we recall briefly the following facts:

• Consider a real valued, integrable and centered random variable X . Realizing a Skorokhod embedding of X into the Brownian motion B, consists in constructing a stopping time τ such that:

(Sk1) B τ (law) = X (Sk2) (B u∧τ , u ≥ 0) is a uniformly integrable martingale.
There are many ways to realize such a Skorokhod embedding. J. Oblój ([Obl04]) numbered twenty one methods scattered in the literature. These methods separate (at least) in two kinds:

-the time τ is a stopping time relative to the natural filtration of the Brownian motion B;

-the time τ is a stopping time relative to an enlargement of the natural filtration of the Brownian motion, by addition of extra random variables, independent of B.

In the second case, the stopping time τ is called a randomized stopping time.

We call the corresponding embedding a randomized Skorokhod embedding.

• Suppose that, for every t ≥ 0, there exists a stopping time τ t satisfying (Sk1) and (Sk2) with √ t X replacing X. If the family of stopping times (τ t , t ≥ 0) is a.s. increasing, then the process (B τt , t ≥ 0) is a martingale and, for every fixed t ≥ 0 and for every c > 0,

B τ c 2 t (law) = c √ t X (law) = c B τt ,
which, a priori, is a weaker property than the scaling property (a).

Nevertheless, the process (B τt , t ≥ 0) appears to be a good candidate to satisfy (a), (b) and B τ 1

(law)
= X.

• Part A consists in using the Azéma-Yor algorithm, which yields a Skorokhod embedding of the first kind, whereas Part B hinges on a Skorokhod embedding of the second kind, both in order to obtain martingales (B τt , t ≥ 0) which satisfy (a) and (b).

Of course at the beginning of each part, we shall give more details, pertaining to the corresponding embedding, so that Parts A and B may be read independently.

I.3 Examples of such martingales

The most famous examples of martingales satisfying (a) and (b) are, without any contest, Brownian motion (B t , t ≥ 0) and the Azéma martingale (ξ t := sgn(B t ) √ t -g t , t ≥ 0) where g t := sup{s ≤ t; B s = 0}.

The study of the latter martingale (ξ t , t ≥ 0), originally discovered by Azéma [START_REF] Azéma | Sur les fermés aléatoires[END_REF], was then developed by Emery [ Éme89, Éme96], Azéma-Yor [START_REF] Azéma | Étude d'une martingale remarquable[END_REF], Meyer [START_REF] Meyer | Construction de solutions d' "équations de structure[END_REF]. In particular, M. Emery established that Azéma martingale enjoys the Chaotic Representation Property (CRP). This discovery and subsequent studies were quite spectacular because, until then, it was commonly believed that the only two martingales which enjoy the CRP were Brownian motion and the compensated Poisson process. In fact, it turns out that a number of other martingales enjoying the CRP, together with (a) and (b), could be constructed, and were the subject of studies by P.A Meyer [START_REF] Meyer | Équations de structure des martingales et probabilités quantiques[END_REF], M. Emery [ Éme96], M. Yor [START_REF] Yor | Some aspects of Brownian motion. Part II: Some recent martingale problems[END_REF]Chapter 15]. The structure equation concept played quite an important role there. However, we shall not go further into this topic, which lies outside the scope of the present paper.

I.4 Relations with peacocks

Since X is an integrable and centered r.v., the process ( √ tX, t ≥ 0) is increasing in the convex order (see [HPRY]). We call it a peacock. It is known from Kellerer [Kel72] that to any peacock (Π t , t ≥ 0), one can associate a (Markovian) martingale (M t , t ≥ 0) such that, for any fixed t ≥ 0, M t (law) = Π t , i.e.: (M t , t ≥ 0) and (Π t , t ≥ 0) have the same one-dimensional marginals. Given a peacock, it is generally difficult to exhibit an associated martingale. However, in the particular case Π t = √ tX which we consider here, the process (B τt , t ≥ 0) presented above provides us with an associated martingale.

I.5 A warning

It may be tempting to think that the whole distribution of a martingale (M t , t ≥ 0) which satisfies (a) (and (b)) is determined by the law of M 1 . This is quite far from being the case, as a number of recent papers shows; the interested reader may look at Albin [START_REF] Albin | A continuous non-Brownian motion martingale with Brownian motion marginal distributions[END_REF], Oleszkiewicz [START_REF] Oleszkiewicz | On fake Brownian motions[END_REF], Hamza-Klebaner [START_REF] Hamza | A family of non-Gaussian martingales with Gaussian marginals[END_REF]... We thank David Baker [Bak09] and David Hobson [Hob09] for pointing out, independently, these papers to us. The methodology developed in this part is AYUS (=Azéma-Yor Under Scaling), following the terminology in [START_REF] Madan | Making Markov martingales meet marginals: with explicit constructions[END_REF]. Precisely, given a r.v. X with probability law µ, we shall use the Azéma-Yor embedding algorithm simultaneously for all distributions µ t indexed by t ≥ 0 where: ∀t ≥ 0, µ t ∼ √ tX.

(A.1.1)

More precisely, if (B t , t ≥ 0) denotes a Brownian motion and (S t := sup u≤t B u , t ≥ 0), we seek probability measures µ such that the family of stopping times:

T µt := inf{u ≥ 0; S u ≥ ψ µt (B u )} where ψ µt (x) = 1 µ t ([x, +∞[) [x,+∞[ yµ t (dy)
increases, or equivalently, the family of functions

ψ µt (x) = √ tψ µ x √ t t≥0
increases (pointwise in x). (Since µ = µ 1 , we write ψ µ for ψ µ 1 ). This program was already started in Madan-Yor, who came up with the (easy to prove) necessary and sufficient condition on µ:

a -→ D µ (a) := a ψ µ (a) is increasing on R + . (M •Y )
Our main contribution in this Part A is to look for nice, easy to verify, sufficient conditions on µ which ensure that (M•Y ) is satisfied. Such a condition has been given in [START_REF] Madan | Making Markov martingales meet marginals: with explicit constructions[END_REF] (Theorems 4 and 5). In the following part A:

-We discuss further this result of Theorem 4 by giving equivalent conditions for it; this study has a strong likeness with (but differs from) Karamata's representation theorem for slowly varying functions (see, e.g. Bingham-Goldie-Teugels [BGT89, Chapter 1, Theorems 1.3.1 and 1.4.1]) -Moreover, we also find different sufficient conditions for (M •Y ) to be satisfied.

With the help of either of these conditions, it turns out that many subprobabilities µ on R + satisfy (M • Y ); in particular, all beta and gamma laws satisfy (M •Y ).

A.1.2 A forefather

A forefather of the present paper is Meziane-Yen-Yor [START_REF] Meziane | Some examples of Skorokhod embeddings obtained from the Azéma-Yor algorithm[END_REF], where a martingale (M t , t ≥ 0) which enjoys (a) and (b) and is distributed at time 1 as ε √ g with ε a Bernoulli r.v. and g an independent arcsine r.v. was constructed with the same method. Thus, the martingale (M t , t ≥ 0) has the same one-dimensional marginals as Azéma's martingale (ξ t , t ≥ 0) presented in I.3 although the laws of M and ξ differ. Likewise in [START_REF] Madan | Making Markov martingales meet marginals: with explicit constructions[END_REF], Madan and Yor construct a purely discontinuous martingale (N t , t ≥ 0) which enjoys (a) and (b) and has the same one-dimensional marginals as a Brownian motion (B t , t ≥ 0).

A.1.3 Plan

The remainder of this part is organised as follows: Sections A.2 to A.4 deal with the case of measures µ with support in ] -∞, 1], 1 belonging to the support of µ, while Section A.5 deals with a generic measure µ whose support is R. More precisely:

• First, Section A.2 consists in recalling the Azéma-Yor algorithm and the Madan-Yor condition (M •Y ), and then presenting a number of important quantities associated with µ, whether or not (M•Y ) is satisfied. Elementary relations between these quantities are established, which will ease up our discussion later on.

• Section A.3: when (M •Y ) is satisfied, it is clear that there exists a subprobability ν µ on ]0, 1[ such that:

D µ (a) = ν µ (]0, a[), a ∈ [0, 1]. (A.1.2)
We obtain relations between quantities relative to µ and ν µ .

In particular:

-In Subsection A.3.2, we establish a one-to-one correspondence between two sets of probabilities µ and ν. • Section A.4 consists in the presentation of a number of conditions (S 0 ) -(S 5 ) and subconditions (S ′ i ) which suffice for the validity of (M •Y ).

• Section A.5 tackles the case of a measure µ whose support is R, and gives a sufficient condition for the existence of a probability ν µ which satisfies (A.1.2).

• Finally, in Section A.6, many particular laws µ are illustrated in the form of graphs. We also give an example where (M •Y ) is not satisfied, which, given the preceding studies, seems to be rather the exception than the rule.

A.2 General overview of this method

A.2.1 The Azéma-Yor algorithm for Skorokhod embedding

We start by briefly recalling the Azéma-Yor algorithm for Skorokhod embedding. Let µ be a probability on R such that:

+∞ -∞ |x|µ(dx) < ∞ and +∞ -∞ xµ(dx) = 0. (A.2.1)
We define its Hardy-Littlewood function ψ µ by:

ψ µ (x) = 1 µ([x, +∞[) [x,+∞[ yµ(dy).
In the case where there exists x ≥ 0 such that µ([x, +∞[) = 0, we set α = inf{x ≥ 0; µ([x, +∞[) = 0} and ψ µ (x) = α for x ≥ α. Let (B t , t ≥ 0) be a standard Brownian motion. Azéma-Yor [START_REF] Azéma | Une solution simple au problème de Skorokhod[END_REF] introduced the stopping time:

T µ := inf{t ≥ 0; S t ≥ ψ µ (B t )}
where S t := sup s≤t B s and showed:

Theorem A.2.1 (Azéma-Yor, [AY79]). 1) (B t∧Tµ , t ≥ 0) is a uniformly integrable martingale.
2) The law of B Tµ is µ: B Tµ ∼ µ.

To prove Theorem A.2.1, Azéma-Yor make use of the martingales:

ϕ(S t )(S t -B t ) + +∞ St dxϕ(x), t ≥ 0 for any ϕ ∈ L 1 (R + , dx).
Rogers [START_REF] Rogers | Williams' characterisation of the Brownian excursion law: proof and applications[END_REF] shows how to derive Theorem A. 

A.2.2 A result of Madan-Yor

Madan-Yor [START_REF] Madan | Making Markov martingales meet marginals: with explicit constructions[END_REF] have exploited this construction to find martingales (X t , t ≥ 0) which satisfy (a) and (b). More precisely:

Proposition A.2.2.
Let X be an integrable and centered r.v. with law µ. Let, for every t ≥ 0, X t := √ tX. Denote by µ t the law of X t and by ψ t (= ψ µt ) the Hardy-Littlewood function associated to µ t :

ψ t (x) = 1 µ t ([x, +∞[) [x,+∞[ yµ t (dy) = √ tψ 1 x √ t
and by T (µ) t the Azéma-Yor stopping time (which we shall also denote T ψt ):

T (µ) t := inf{u ≥ 0; S u ≥ ψ t (B u )} (A.2.2) (Theorem A.2.1 asserts that B T (µ) t ∼ µ t ).
We assume furthermore:

t -→ T (µ) t is a.s.

increasing (I)

Then:

1) The process

X (µ) t := B T (µ) t
, t ≥ 0 is a martingale, and an (inhomogeneous) Markov process.

2) The process X (µ) t , t ≥ 0 enjoys the Brownian scaling property, i.e for every c > 0:

X (µ) c 2 t , t ≥ 0 (law) = cX (µ) t , t ≥ 0 In particular, X (µ) t := B T (µ) t , t ≥ 0 is a martingale associated to the pea- cock ( √ tX, t ≥ 0) (see Introduction).
Proof of Proposition A.2.2 Point 1) is clear. See in particular [START_REF] Madan | Making Markov martingales meet marginals: with explicit constructions[END_REF] where the infinitesimal generator of (X (µ) t , t ≥ 0) is computed. It is therefore sufficient to prove Point 2). Let c > 0 be fixed. i) From the scaling property of Brownian motion:

(S c 2 t , B c 2 t , t ≥ 0) (law) = (cS t , cB t , t ≥ 0) ,
and the definition (A.2.2) of T ψt , we deduce that:

B T ψ t , t ≥ 0 (law) = cB T ψ (c) t , t ≥ 0 (A.2.3) with ψ (c) t (x) := 1 c ψ t (cx).
ii) An elementary computation yields:

ψ t (x) = √ tψ x √ t (A.2.4)
with ψ := ψ 1 = ψ µ . We obtain from (A.2.4) that:

ψ (c) c 2 t (x) = 1 c ψ c 2 t (cx) = √ tψ x √ t = ψ t (x). (A.2.5)
Finally, gathering i) and ii), it holds:

X (µ) c 2 t := B T ψ c 2 t , t ≥ 0 (law) = cB T ψ (c) c 2 t , t ≥ 0 (from (A.2.3)) (law) = cB T ψ t = cX (µ)
t , t ≥ 0 (from (A.2.5))

A.2.2.1 Examples

In the paper [START_REF] Meziane | Some examples of Skorokhod embeddings obtained from the Azéma-Yor algorithm[END_REF] which is a forefather of the present paper, the following examples were studied in details:

i) The dam-drawdown example:

µ t (dx) = 1 t exp - 1 t (x + t) 1 [-t,+∞[ (x)dx
which yields to the stopping time T t := inf{u ≥ 0; S u -B u = t}. Recall that from Lévy's theorem, (S u -B u , u ≥ 0) is a reflected Brownian motion.

ii) The "BES(3)-Pitman" example:

µ t (dx) = 1 2t 1 [-t,t] (x)dx
which corresponds to the stopping time T t := inf{u ≥ 0; 2S u -B u = t}.

Recall that from Pitman's Theorem, (2S u -B u , u ≥ 0) is distributed as a Bessel process of dimension 3 started from 0.

iii) The Azéma-Yor "fan", which is a generalization of the two previous examples:

µ (α) (dx) = α t α - (1 -α)x t 2α-1 1-α 1 [-t, αt 1-α ] (x)dx, (0 < α < 1)
which yields to the stopping time We now wish to be able to read "directly" from the measure µ whether (I) is satisfied or not. The answer to this question is presented in the following Lemma Lemma A.2.3 (Madan-Yor [START_REF] Madan | Making Markov martingales meet marginals: with explicit constructions[END_REF], Lemma 3). Let X ∼ µ satisfy (A.2.1). We define:

T (α) t := inf{u ≥ 0; S u = α(B u + t)}. Example i) is obtained by letting α → 1 -. A.2.
D µ (x) := xµ(x) [x,+∞[ yµ(dy) with µ(x) := P(X ≥ x) = [x,+∞[ µ(dy)
Then (I) is satisfied if and only if :

x -→ D µ (x) is increasing on R + . (M •Y ) Proof of Lemma A.2.3
Condition (I) is equivalent to the increase, for any given x ∈ R, of the

function t -→ ψ t (x). From (A.2.4), ψ t (x) = √ tψ x √ t , hence, if x ≤ 0,
since ψ is a positive and increasing function, t -→ ψ t (x) is increasing. For x > 0, we set a t = x √ t ; thus:

ψ t (x) = √ tψ x √ t = x ψ(a t ) a t ,
and, t -→ a t being a decreasing function of t, condition (I) is equivalent to the increase of the function a -→ a ψ(a)

= D µ (a).

A remarkable feature of this result is that (I) only depends on the restriction of µ to R + . This is inherited from the asymmetric character of the Azéma-Yor construction in which R + , via (S u , u ≥ 0) plays a special role. Now, let µ be a probability on R satisfying (A. To simplify further, but without loss of generality, we shall take k = 1 and assume that 1 belongs to the support of µ. In Section A.5, we shall study briefly the case where µ is a measure whose support is R + .

A.2.3 Notation

In this Subsection, we present some notation which shall be in force throughout the remainder of the paper. Let µ be a positive measure on [0, 1], with finite total mass, and whose support contains 1. We denote by µ and µ, respectively its tail and its double tail functions:

µ(x) = [x,1] µ(dy) = µ([x, 1]) and µ(x) = 1 x µ(y)dy.
Note that µ is left-continuous, µ is continuous, and µ and µ are both decreasing functions. Furthermore, it is not difficult to see that a function Λ : [0, 1] -→ R + is the double tail function of a positive finite measure on [0, 1] if and only if Λ is a convex function on [0, 1], left-differentiable at 1, right-differentiable at 0, and satisfying Λ(1) = 0. We also define the tails ratio u µ associated to µ:

u µ (x) = µ(x)/µ(x), x ∈ [0, 1[.
Here is now a lemma of general interest which bears upon positive measures:

Lemma A.2.4 (Pierre [START_REF] Pierre | Le problème de Skorokhod: une remarque sur la démonstration d'Azéma-Yor[END_REF] or Revuz-Yor [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], Chapter VI Lemma 5.1). 1) For every x ∈ [0, 1[:

µ(x) = µ(0)u µ (x) exp - x 0 u µ (y)dy (A.2.7
)

and u µ is left-continuous. 2) Let v : [0, 1[-→ R + be a left-continuous function such that, for all x ∈ [0, 1[: µ(x) = µ(0)v(x) exp - x 0 v(y)dy Then, v = u µ .
Proof of Lemma A.2.4 1) We first prove Point 1). For x ∈ [0, 1[, we have:

- x 0 µ(y) µ(y) dy = x 0 dµ(y) µ(y) = log µ(y) x 0 = log µ(x) -log µ(0), hence, µ(0)u µ (x) exp - x 0 u µ (y)dy = µ(0) µ(x) µ(x) exp log µ(x) µ(0) = µ(x).
2) We now prove Point 2). Let U µ (x) :=

x 0 u µ (y)dy and V (x) :=

x 0 v(y)dy. Relation (A.2.7) implies:

u µ (x) exp (-U µ (x)) = v(x) exp (-V (x)) , i.e. (exp (-U µ (x))) ′ = (exp (-V (x))) ′ , hence exp (-U µ (x)) = exp (-V (x)) + c.
(The above derivatives actually denote left-derivatives). Now, since, U µ (0) = V (0) = 0, we obtain c = 0 and U µ = V . Then, differentiating, and using the fact that u µ and v are left-continuous, we obtain: u µ = v.

Remark A.2.5. Since µ is a decreasing function, we see, by differentiating (A.2.7), that the function u µ satisfies:

-if µ is differentiable, then so is u µ and u ′ µ ≤ u 2 µ , -more generally, the distribution on]0, 1[:

u 2 µ -u ′ µ , is a positive measure. Note that if µ(dx) = h(x)dx, then: u 2 µ -u ′ µ = µ/µ 2 - µ 2 -hµ µ 2 = h/µ ≥ 0. By (A.2.7), we have, for any x ∈ [0, 1[, µ(x) = µ(0) exp - x 0 u µ (y)dy . Since µ(0) = [0,1]
yµ(dy) > 0 and µ(1) = 0, we obtain:

∀x < 1, x 0 u µ (y)dy < ∞ and 1 - u µ (y)dy = +∞ (A.2.8)
As in Subsection A.2.1, we now define the Hardy-Littlewood function ψ µ associated to µ:

   ψ µ (a) = 1 µ([a, 1]) [a,1] yµ(dy) , a ∈ [0, 1[ ψ µ (1) = 1
and the Madan-Yor function associated to µ:

D µ (a) = a ψ µ (a) , a ∈ [0, 1].
In particular, D µ (1) = 1 and D µ (0) = 0. Note that, integrating by parts:

µ(a) = 1 a (y -a)µ(dy) = µ(a) (ψ µ (a) -a) , hence, u µ (a) = 1 ψ µ (a) -a
and, consequently:

D µ (a) = a ψ µ (a) -a + a = a (1/u µ (a)) + a = au µ (a) au µ (a) + 1 . (A.2.9)
We sum up all the previous notation in a Table, for future references:

A finite positive measure on [0, 1] µ(dx)

whose support contains 1.

µ(a) = µ([a, 1]) Tail function associated to µ µ(a) = 1 a µ(x)dx Double tail function associated to µ u µ (a) = µ(a)/µ(a) = 1 ψ µ (a) -a Tails ratio function associated to µ ψ µ (a) = 1 µ(a) [a,1] xµ(dx) Hardy-Littlewood function associated to µ D µ (a) = a ψ µ (a) = au µ (a) au µ (a) + 1
Madan-Yor function associated to µ A.3 Some conditions which are equivalent to (M•Y )

A.3.1 A condition which is equivalent to (M •Y )
Let µ denote a positive measure on [0, 1], with finite total mass, and whose support contains 1. We now study the condition (M •Y ) in more details.

A.3.1.1 Elementary properties of D µ

i) From the obvious inequalities, for x ∈ [0, 1]:

xµ(x) = x [x,1] µ(dy) ≤ [x,1] yµ(dy) ≤ [x,1] µ(dy) = µ(x)
we deduce that ψ µ and D µ are left-continuous on ]0, 1], and for every x ∈

[0, 1], x ≤ ψ µ (x) ≤ 1 and x ≤ D µ (x) ≤ 1. (A.3.1)
ii) We now assume that µ admits a density h; then:

-if h is continuous at 0, then: andh(1) > 0, then:

D ′ µ (0 + ) = µ(0)/µ(0), -if h is continuous at 1,
D ′ µ (1 -) = 1 2 ,
-if h admits, in a neighbourhood of 1, the equivalent:

h(1 -x) = x→0 Cx α + o(x α ), with C, α > 0 then: D ′ µ (1 -) = 1 2 + α .
These three properties are consequences of the following formula, which holds at every point where h is continuous:

D ′ µ (x) D µ (x) = 1 x -h(x) 1 -D µ (x) µ(x) . A.3.1.2 A condition which is equivalent to (M •Y ) Theorem A.3.1.
Let µ be a finite positive measure on [0, 1] whose support contains 1, and u µ its tails ratio. The following assertions are equivalent:

i) D µ is increasing on [0, 1], i.e. (M •Y ) holds.
ii) There exists a probability measure ν µ on ]0, 1[ such that:

∀a ∈ [0, 1], D µ (a) = ν µ (]0, a[). (A.3.2) iii) a -→ au µ (a) is an increasing function on [0, 1[. Proof of Theorem A.3.1
Of course, the equivalence between i) and ii) holds, since D µ (0) = 0 and D µ (1) = 1. As for the equivalence between i) and iii), it follows from (A.2.9):

D µ (a) = au µ (a) au µ (a) + 1 . Remark A.3.2.
1) The probability measure ν µ defined via (A.3.2) enjoys some particular properties. Indeed, from (A.3.2), it satisfies

ν µ (]0, a[) a = D µ (a) a = 1 ψ µ (a)
.

Thus, since the function ψ µ is increasing on [0, 1], the function a -→ ν µ (]0, a[) a is decreasing on [0, 1], and lim

a→0+ ν µ (]0, a[) a = 1 ψ µ (0)
.

2) From (A.2.9), we have

ν µ (]0, a[) = D µ (a) = au µ (a) au µ (a) + 1
, hence, for every

a ∈]0, 1[: u µ (a) = ν µ (]0, a[) aν µ ([a, 1[) ,
and, in particular, ν µ ([a, 1[) > 0. Thus, with the help of (A.2.8), ν µ necessarily satisfies the relation:

1 - da ν µ ([a, 1[) = +∞.
3 

A.3.2 Characterizing the measures ν µ

Theorem A.3.1 invites to ask for the following question: given a probability measure ν on ]0, 1[, under which conditions on ν does there exists a positive measure µ on [0, 1] with finite total mass1 such that µ satisfies (M •Y ) ?

In particular, are the conditions given in Point 1) and 2) of the previous Remark A.3.2 sufficient ? In the following Theorem, we answer this question in the affirmative.

Notation. We adopt the following notation:

• P 1 denotes the set of all probabilities µ on [0, 1], whose support contains 1, and which satisfy (M •Y ).

• P 0 1 = {µ ∈ P 1 ; µ({0}) = 0}. • P ′
1 denotes the set of all probabilities ν on ]0, 1[ such that:

i) ν([a, 1[) > 0 for every a ∈]0, 1[, ii) a -→ ν(]0, a[) a is a decreasing function on ]0, 1] such that c ν := lim a→0+ ν(]0, a[) a < ∞,
iii)

1 - da ν([a, 1[) = +∞.
• We define a map Γ on P 1 as follows: if µ ∈ P 1 , then Γ(µ) is the measure

ν on ]0, 1[ such that D µ (a) = ν(]0, a[), a ∈ [0, 1].
In other words, Γ(µ) = ν µ defined by (A.3.2). With the help of the above notation, we can state:

Theorem A.3.3. 1) Γ(P 0 1 ) = Γ(P 1 ) = P ′ 1 . 2) If µ ∈ P 1 and µ 0 ∈ P 0 1 , then Γ(µ) = Γ(µ 0 ) if and only if µ = µ({0})δ 0 + (1 -µ({0}))µ 0
(where δ 0 denotes the Dirac measure at 0). As a consequence of 1) and 2), Γ induces a bijection between P 0 1 and P ′ 1 .

Proof of Theorem A.3.3 a) Remark A.3.2 entails that:

Γ(P 0 1 ) ⊂ Γ(P 1 ) ⊂ P ′ 1 . b) We now prove P ′ 1 ⊂ Γ(P 0 1 ). Let ν ∈ P ′ 1 . We define u (ν) by:      u (ν) (x) := ν(]0, x[) x(1 -ν(]0, x[)) for x ∈]0, 1[, u (ν) (0) := c ν = lim x→0 + u (ν) (x),
and we set, for x ∈ [0, 1[:

m(x) = 1 c ν u (ν) (x) exp - x 0 u (ν) (y)dy . (A.3.3)
We remark that m is left-continuous on ]0, 1[, right-continuous at 0 and m(0) = 1. To prove that m is decreasing on [0, 1[, it suffices to show that m is decreasing on ]0, 1[ or, equivalently (see Remark A.2.5), that the distribution on ]0, 1[: u (ν) 2 -u (ν) ′ , is a positive measure. Now, from the definition of u (ν) , and setting:

ν(a) := ν(]0, a[),
we need to prove that (on ]0, 1[):

ν 2 (a)da ≥ a(1 -ν(a))dν(a) -ν(a)(1 -ν(a))da + aν(a)dν(a) ⇐⇒ ν 2 (a)da ≥ adν(a) -ν(a) 1 -ν(a) da ⇐⇒ 0 ≥ adν(a) -ν(a)da ⇐⇒ 0 ≥ d ν(a) a .
The latter is ensured by Property ii) in the definition of P ′ 1 . Hence, there exists a probability µ on [0, 1] such that

µ(x) = m(x), x ∈ [0, 1[.
In particular, since m is right-continuous at 0, µ({0}) = 0. Using Property iii) in the definition of P ′ 1 , we obtain from (A.3.3), by integration:

µ(0) = 1 c ν .
Therefore, by Lemma A.2.4, u (ν) = u µ , or:

u µ (a) = ν(]0, a[) a(1 -ν(]0, a[)) , a ∈]0, 1[. Consequently, D µ (a) = au µ (a) au µ (a) + 1 = ν(]0, a[), a ∈]0, 1[,
and hence, µ ∈ P 0 1 and Γ(µ) = ν. c) We now prove Point 2). Suppose first that µ ∈ P 1 , µ 0 ∈ P 0 1 and Γ(µ) = Γ(µ 0 ). We then have:

u µ (a) = u µ 0 (a), a ∈]0, 1[.
By Lemma A.2.4, this entails that there exists λ > 0 such that:

µ(x) = λµ 0 (x), x ∈]0, 1[
and therefore, by differentiation, the restriction of µ to ]0, 1] is equal to λµ 0 . Consequently, µ = µ({0})δ 0 + λµ 0 and, since µ is a probability, λ = 1 -µ({0}). Conversely, suppose that µ = µ({0})δ 0 + (1 -µ({0}))µ 0 . Since 1 belongs to the support of µ, µ({0}) < 1. Therefore, ψ µ (x) = ψ µ 0 (x) for x ∈]0, 1], and hence, D µ (a) = D µ 0 (a) for a ∈]0, 1], which entails Γ(µ) = Γ(µ 0 ).

Example A.3.4. If ν is a measure which admits a continuous density g which is decreasing on ]0, 1[, and strictly positive in a neighbourhood of 1, then ν ∈ P ′ 1 . For example, let us take for

β ≥ 2α > 0, g(x) = β -2αx β -α 1 ]0,1[ (x). Then, ν(]0, x[) = βx -αx 2 β -α
, and some easy computations show that:

µ(x) = β -αx β 1 -x α β -2α 1 - αx β -α - β -α β -2α .
In particular, letting α tend to 0, we obtain: ∀x ∈ [0, 1], µ(x) = 1, i.e. the correspondence:

ν(dx) = 1 ]0,1[ (x)dx ←→ µ(dx) = δ 1 (dx)
where δ 1 denotes the Dirac measure at 1.

A.3.3 Examples of elements of P ′ 1

To a positive measure ρ on ]0, +∞[ such that +∞ 0 yρ(dy) < ∞, we associate the measure:

ν(]0, a[) = 1 Z +∞ 0
(1 -e -ay )ρ(dy)

where

Z := +∞ 0 (1 -e -y )ρ(dy) is such that ν(]0, 1[) = 1. Clearly, a -→ ν(]0, a[) a = 1 Z +∞ 0 e -au ρ(u)du, where ρ(u) = ρ(]u, +∞[),
is decreasing and

c ν = 1 Z +∞ 0 yρ(dy) < ∞. Furthermore, lim a→1 - ν([a, 1[) 1 -a = 1 Z +∞ 0 ye -y ρ(dy) > 0, hence 1 da ν([a, 1[) = +∞,
and Theorem A.3.3 applies.

We now give some examples:

i) For ρ(dx) = e -λx dx (λ > 0), we obtain: ν(]0, a[) = (λ + 1)a λ + a (a ∈ [0, 1]) and µ(a) = 1 1 -a exp - a 0 λ + 1 λ dx 1 -x = (1 -a) 1/λ
ii) For ρ(dx) = P(Γ ∈ dx) where Γ is a positive r.v. with finite expectation, we obtain

ν(]0, a[) = P e Γ ≤ a e Γ ≤ 1
where e is a standard exponential r.v.independent from Γ. In this case, we also note that:

1 ψ µ (a) = ν(]0, a[) a = K +∞ 0 e -ax P(Γ > x)dx = KE Γ 0 e -ax dx = K a E 1 -e -aΓ
where K = 1/E 1 -e -Γ . Consequently, the Madan-Yor function

D µ (a) = a ψ µ (a) = KE 1 -e -aΓ
is the Lévy exponent of a compound Poisson process.

iii) For ρ(dx) = e -λx x dx, we obtain:

ν(]0, a[) = log(1 + a) log (2) . 

A.3.4 Another presentation of Theorem A.3.1

In the previous Subsection, we have parameterized the measure µ by its tail

function µ(x) := [x,1]
µ(dy) and its tails ratio u µ (cf. Lemma A.2.4). Here is another parametrization of µ which provides an equivalent statement to that of Theorem A.3.3.

Theorem A.3.5. Let µ be a finite positive measure on [0, 1] whose support contains 1. Then, µ satisfies (M •Y ) (i.e. D µ is increasing on [0, 1]) if and only if there exists a fonction α µ :]0, 1[-→ R + such that:

i) α µ is an increasing left-continuous function on ]0, 1[, ii) α 2 µ (x) + α µ (x) dx -xdα µ (x) is a positive measure on ]0, 1[, iii) lim x→0 + α µ (x) x < ∞, and 
1 - α µ (x)dx = +∞
and such that:

µ(x) = µ(0) exp - x 0 α µ (y) y dy . (A.3.4)
Properties i), ii) and iii) are equivalent to the fact that the measure ν, defined on ]0, 1[ by

ν(]0, x[) = α µ (x) α µ (x) + 1 belongs to P ′ 1 . By Theorem A.3.
3, this is equivalent to the existence of µ ∈ P 1 such that Γ(µ) = ν, which, in turn, is equivalent to

u µ (x) = α µ (x) x , x ∈]0, 1[,
and, finally, is equivalent to (A.3.4).

A.4 Some sufficient conditions for (M •Y )

Throughout this Section, we consider a positive finite measure µ on R + which admits a density, denoted by h. Our aim is to give some sufficient conditions on h which ensure that (M •Y ) holds. We start with a general lemma which takes up Madan-Yor condition as given in [MY02, Theorem 4] (this is Condition iii) below):

Proposition A.4.1. Let h be a strictly positive function of C 1 class on ]0, l[ (0 < l ≤ +∞). The three following conditions are equivalent:

i) For every c ∈]0, 1[, a -→ h(a) h(ac) is a decreasing function.
ii) The function ε(y a) where a -→ aV ′ (a) is an increasing function.

) := - yh ′ (y) h(y) is increasing. iii) h(a) = e -V (
We denote this condition by (S 0 ). Moreover, V and ε are related by, for any a, b ∈]0, l[: Remark A.4.2. Here are some general observations about condition (S 0 ):

V (a) -V (b) =
-if both h 1 and h 2 satisfy condition (S 0 ), then so does h 1 h 2 .

-if h satisfies condition (S 0 ), then, for every α ∈ R and β ≥ 0, so does a -→ a α h(a β ).

-As an example, we note that the Laplace transform h(a) = E e -aX of a positive self-decomposable r.v. X satisfies condition i). Indeed, by definition, for every c ∈ [0, 1], there exists a positive r.v. X (c) independent from X such that:

X (law) = cX + X (c) .
Taking Laplace transforms of both sides, we obtain:

h(a) := E e -aX = E e -acX E e -aX (c) ,
which can be rewritten:

h(a) h(ac) = E e -aX (c) .
-We note that in Theorem 5 of Madan-Yor [START_REF] Madan | Making Markov martingales meet marginals: with explicit constructions[END_REF], the second and third observations above are used jointly, as the authors remark that the function: k(a) := E e -a 2 X = h(a 2 ) for X positive and selfdecomposable satisfies (S 0 ).

Proof of Proposition A.4.1 1) We prove that i) ⇐⇒ ii) The implication ii) =⇒ i) is clear. Indeed, for c ∈]0, 1[, we write:

h(a) h(ac) = exp - a ac ε(y) y dy = exp - 1 c ε(ax) x dx (A.4.1)
which is a decreasing function of a since ε is increasing and 0 < c < 1. We now prove that i) =⇒ ii). From (A.4.1), we know that for every c ∈]0, 1[,

a -→ a ac ε(x)
x dx is an increasing function. Therefore, by differentiation,

∀a ∈]0, l[, ∀c ∈]0, 1[, ε(a) -ε(ac) ≥ 0
which proves that ε is an increasing function.

2) We prove that ii) ⇐⇒ iii)

From the two representations of h, we deduce that V (a) = This ends the proof of Proposition A.4.1.

In the following, we shall once again restrict our attention to probabilities µ on [0, 1], and shall assume that they admit a density h which is strictly positive in a neighborhood of 1 (so that 1 belongs to the support of µ). We now give a first set of sufficient conditions (including (S 0 )) which encompass most of the examples we shall deal with in the next Section. We write for a > 0:

1 D µ (a) = 1 a yh(y)dy aµ(a) = [-yµ(y)] 1 a + 1 a µ(y)dy aµ(a) = 1 + 1/a 1 µ(ax) µ(a) dx.
Clearly, (M •Y ) is implied by the property: for all x > 1, a -→ µ(ax) µ(a) is a decreasing function on 0, 1 x . Differentiating with respect to a, we obtain:

∂ ∂a µ(ax) µ(a) = -xh(ax)µ(a) + h(a)µ(ax) (µ(a)) 2 .
We then rewrite the numerator as:

h(a) 1 ax h(y)dy -xh(ax) 1 a h(u)du =xh(a) 1/x a h(ux)du -xh(ax) 1 a h(u)du =xh(a) 1/x a h(u) h(ux) h(u) - h(ax) h(a) du -xh(ax) 1 1/x h(u)du ≤ 0
from assertion i) of Proposition A.4.1, since for x > 1, the function

u -→ h(ux) h(u) = h(ux) h ux 1
x is decreasing.

2) We now prove: (S 1 ) =⇒ (M •Y )

We must prove that under (S 1 ), the function D µ (a) := aµ(a) 1 a xh(x)dx is increasing. Elementary computations lead, for a ∈]0, 1[, to:

D ′ µ (a) D µ (a) = 1 a -h(a) 1 -D µ (a) µ(a) . (A.4.3)
From (S 1 ) and (A.3.1):

0 ≤ h(a) µ(a) (1 -D µ (a)) ≤ 1 a(1 -a) (1 -a) = 1 a .
Hence, from (A.4.3):

D ′ µ (a) D µ (a) ≥ 1 a - 1 a = 0.
3) We then prove: (S ′ 1 ) =⇒ (S 1 ), hence (M •Y ) holds We have, for a > 0: 

µ(a) := 1 a h(x)dx = 1 a x 2 h(x) x 2 dx ≥ a 2 h(a) 1 a 1 x 2 dx (since x -→ x 2 h(x) is increasing.) = a 2 h(a) 1 a -1 = ah(a)(1 -a).
l(a) = 1 a 1 t e θ(t) (θ ′ (a) -θ ′ (t)) + 1 a 1 t 2 e θ(t) dt,
and, θ ′ being a decreasing function, this last expression shows that l is also a decreasing function. Therefore, it remains to prove that: Here are now some alternative conditions which ensure that (M •Y ) is satisfied:

Proposition A.4.4. We assume that µ admits a density h of C 1 class on ]0, 1[ which is strictly positive in a neighbourhood of 1. The following conditions imply (M •Y ):

(S 3 ) a -→ a 3 h ′ (a) is increasing on ]0, 1[. (S 4 ) a -→ a 3 h ′ (a) is decreasing on ]0, 1[. (S ′ 4 )
h is decreasing and concave.

(Clearly, (S ′ 4 ) implies (S 4 )).

(S 5 ) h is a decreasing function and a -→ ah(a) 1 -a is increasing on ]0, 1[.

(S ′ 5 ) 0 ≥ h ′ (x) ≥ -4h(

x). (In particular, h is decreasing)

Proof of Proposition A.4.4 1) We first prove: (S 3 ) =⇒ (S ′ 1 ) We denote ℓ := lim a→0 + a 3 h ′ (a) ≥ -∞. If ℓ < 0, then, there exists A > 0 and

ε ∈]0, 1[ such that for x ∈]0, ε[, h ′ (x) ≤ - A x 3
. This implies:

h(ε) -h(x) ≤ A 2 1 ε 2 - 1 x 2 i.e. h(x) ≥ C + A 2x 2 ,
which contradicts the fact that 1 0 h(x)dx < ∞. Therefore ℓ ≥ 0, h is positive and increasing and h(0 + ) := lim x→0 + h(x) exists. We then write:

a 2 h(a) = a 2 h(0 + ) + a 0 h ′ (x)dx = a 2 h(0 + ) + a 3 1 0 h ′ (ay)dy = a 2 h(0 + ) + 1 0 dy y 3 (ay) 3 h ′ (ay),
which implies that a -→ a 2 h(a) is increasing as the sum of two increasing functions.

2) We now prove: (S 4 ) =⇒ (M •Y )

We set µ(a) := We shall prove that, under (S 4 ), γ(1 -) = 0, γ ′ (1 -) = 0 and that γ is convex, which will of course imply that γ ≥ 0 on ]0, 1]. We denote ℓ := lim

a→1 - a 3 h ′ (a) ≥ -∞. Observe first that h(1 -) is finite. Indeed, if
ℓ is finite, then h ′ (1 -) exists, and so does h(1 -), while if ℓ = -∞, then lim and to prove that γ ′ (1 -) = 0, we need to show, since µ(a) -aµ(a) = µ(a), that:

lim a→1 - h ′ (a) 1 a µ(t)dt = 0. If h ′ (1 -) is finite, this property is clearly satisfied. Otherwise lim a→1 - h ′ (a) = -∞.
In this case, we write for a in the neighborhood of 1:

0 ≤ -h ′ (a) 1 a µ(t)dt ≤ -h ′ (a)(1 -a)µ(a),
and it is sufficient to prove that: hence, the assertion ρ ′ (a) ≤ 0 on ]0, 1[ is equivalent to:

lim a→1 - (1 -a)h ′ (a) = 0. (A.4.5) Now, since x -→ x 3 h ′ (x) is decreasing: h(1 -) -h(a) = 1 a h ′ (x)dx ≤ a 3 h ′ (a) - 1 2x 2 1 a = a(1 + a) 2 h ′ (a
- 1 ah(a) - h ′ (a) h 2 (a) ≤ 1 µ(a) . (A.4.7)
But, under (S 5 ), a -→ ah(a) 1 -a is increasing, and therefore we have, for

a ∈]0, 1[, 1 a(1 -a) + h ′ (a) h(a) ≥ 0. (A.4.8)
Then, using (A.4.6) and (A.4.8), we obtain:

- 1 ah(a) - h ′ (a) h 2 (a) ≤ - 1 ah(a) + 1 a(1 -a)h(a) = 1 ah(a) 1 1 -a -1 = 1 h(a)(1 -a) ≤ 1 µ(a)
which gives (A.4.7).

4) We finally prove: (S ′

5 ) =⇒ (S 5 )

We must prove that a -→ ah(a) 1 -a is increasing. Differentiating, we obtain:

ah(a) 1 -a ′ = h(a) 1 -a 1 a(1 -a) + h ′ (a) h(a) = h(a) 1 -a 1 a(1 -a) - h ′ (a) h(a) ≥ h(a) 1 -a 1 a(1 -a) -4 ≥ 0 since, for a ∈ [0, 1], a(1 -a) ≤ 1 4 .
Remark A.4.5. We observe that there exist some implications between these conditions. In particular:

• (S ′ 1 ) =⇒ (S 2 ). Indeed, note first that since (S ′ 1 ) implies (S 1 ), the relation µ(a) ≥ a(1 -a)h(a) holds, and implies lim This is condition (S 2 ), i.e. a -→ log(aµ(a)) is a concave function.

• (S ′ 4 ) implies both (S 0 ) and (S 5 ).

-(S 0 ) is satisfied since the function y -→ yh ′ (y) h(y) is clearly decreasing.

-To prove that (S 5 ) is satisfied, we write:

h(1)-h(a) = 1 a h ′ (x)dx = 1 a x 2 h ′ (x) x 2 dx ≤ a 2 h ′ (a) 1 a dx x 2 = ah ′ (a)(1-a), hence: h(a) 1 -a + ah ′ (a) ≥ h(1) 1 -a ≥ 0.
We sum up the implications between these different conditions in the following diagram:

(S ′ 4 ) (S 1 ) (S 2 ) (S 0 ) Remark A.4.6.
Let h be a decreasing function with bounded derivative h ′ . Then, for large enough c, the measure µ (c) (dx) := (h(x)+c)dx satisfies condition (S ′ 5 ), hence (M •Y ). Indeed, for h (c) (x) = h(x) + c, we have:

h (c)′ (x) h (c) (x) = |h ′ (x)| h(x) + c ----→ c→+∞ 0
This convergence being uniform, for large enough c, we obtain:

sup x∈[0,1] h (c)′ (x) h (c) (x) ≤ 4.
A.5 Case where the support of µ is R +

In this Section, we assume that µ(dx) = h(x)dx is a positive measure whose density h is strictly positive a.e. on R + . The following theorem gives sufficient conditions on h for the function D µ to be increasing and converging to 1 when a tends to +∞.

Theorem A.5.1. We assume that µ admits a density h on R + which satisfies (S 0 ) (see Proposition A.4.1). 1) Then, there exists ρ > 2 (possibly +∞) such that:

∀ c ∈]0, 1[, lim a→+∞ h(a) h(ac) = c ρ . (A.5.1) Furthermore: ρ = lim a→+∞ ε(a) = lim a→+∞ aV ′ (a).
2) D µ is an increasing function which converges towards ℓ with:

-if ρ < +∞, then ℓ = ρ -2 ρ -1 -if ρ = +∞, then ℓ = 1.
In particular, if ρ = +∞, then, there exists a probability measure ν µ such that: -The property that the function a -→ h(a) h(ac) is decreasing is not necessary to obtain the limit of D µ , see [START_REF] Bingham | Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications[END_REF]Theorem 8.1.4].

D µ (a) = ν µ (]0, a[), a ≥ 0. Remark A.5.2. - Point 
Proof of Theorem A.5.1 1) We first prove Point 1)

We assume that h satisfies (S 0 ) on R + . Therefore the decreasing limit 

γ c := lim
)dz ≥ a 2 A 1 z h(az) h(z) h(z)dz ≥ a 2 h(aA) h(A) A 1 zh(z)dz -----→ A→+∞ a 2-ρ +∞ 1 zh(z)dz.
Letting a tend to +∞, we obtain, since η(a) ----→ a→+∞ 0, that necessarily ρ > 2. Then, passing to the limit in (A.4.1), we obtain:

c ρ = exp - 1 c ε(+∞) y dy , i.e. ε(+∞) = ρ.
The last equality is a direct consequence of (A.4.2).

2) We now prove that D µ is increasing and converges towards ℓ

As in Theorem A. 

+ 1 = x 1 h(ax u x ) h(ax) du +∞ x h(au) h au x u du + 1 ----→ a→+∞ x 1 x u ρ du +∞ x x u ρ du + 1
from (A.5.1). Now, we must discuss different cases:

if ρ = +∞, then lim a→+∞ µ(a) µ(ax) = +∞, and plugging this limit into (A.5.2), we obtain ℓ = 1.

if ρ < +∞, we obtain:

lim a→+∞ µ(a) µ(ax) = 1 x 1-ρ .
Plugging this into (A.5.2), we obtain:

1 ℓ = 1 + +∞ 1 dx x ρ-1 = 1 - 1 2 -ρ = 1 -ρ 2 -ρ .
Remark A.5.3. More generally, for p ≥ 1, there is the equivalence:

+∞ y p h(y)dy < ∞ ⇐⇒ ρ > p + 1.
The implication =⇒ can be proven in exactly the same way as Point 1). Conversely, since ε(y) tends to ρ when y tends to +∞, there exists A > 0 and θ > 0 such that: ∀y ≥ A, ε(y) ≥ p + 1 + θ. Then applying Proposition A.4.1, we obtain:

h(a) = h(A) exp - a A ε(y) y dy ≤ h(A) exp -(p + 1 + θ) a A dy y = h(A) A a p+1+θ .
We note in particular that µ admits moments of all orders if and only if ρ = +∞.

A.6 Examples

We take µ(dx) = h(x)dx and give some examples of functions h which enjoy the (M •Y ) property. For some of them, we draw the graphs of h, D µ , u µ and a -→ ν µ (]0, a[) a .

A.6.1 Beta densities

h(x) = x α (1 -x) β 1 ]0,1[ (x) (α, β > -1) i) For -1 < β ≤ 0 (and α > -1), the function x -→ x 2 h(x) is increasing, hence from (S ′ 1 ), condition (M •Y ) holds. ii) For β ≥ 0: h(a) h(ac) = 1 c α 1 - a(1 -c) 1 -ac β
which, for 0 < c < 1, is a decreasing function of a, hence condition (S 0 ) is satisfied and (M •Y ) also holds in that case. 

(x) = x (1 -x) 1 [0,1[ (x) A.6.2 Further examples -The function h(x) = x α (1 + x 2 ) β 1 [0,1] (x) (α > -1, β ∈ R) satisfies (M •Y ). Indeed, for β ≤ 0, x -→ x 2 h(x) is an increasing function on [0, 1], hence condition (S ′ 1 ) holds, while, for β ≥ 0, condition (S 0 ) is satisfied. -The function h(x) = x α (1 -x 2 ) β 1 [0,1] (x) (α > -1, β < 1) satisfies (M •Y ).
As in the previous example, for 0 ≤ β ≤ 1, the function x -→ x 2 h(x) is increasing on [0, 1], and for β ≤ 0, this results from condition (S 0 ).

A.6.3 h(x) = | cos(πx)| m 1 [0,1] (x) (m ∈ R + )
We check that this example satisfies condition (S 1 ). Indeed, for a ≥ 1 2 , a -→ h(a) is increasing, hence:

1 a | cos(πx)| m dx ≥ | cos(πa)| m (1 -a) ≥ a| cos(πa)| m (1 -a).
For a ≤ 1 2 we write by symmetry: 

1 a | cos(πx)| m dx = 1-a 0 | cos(πx)| m dx ≥ a 0 | cos(πx)| m dx ≥ a| cos(πa)| m ≥ a| cos(πa)| m (1 -a).
ν µ (]0,a[)/a h(a) D µ (a) Figure 2: Graphs for h(x) = | cos(πx)| 3/2 1 [0,1] (x)
Remark A.6.1. More generally, every function which is symmetric with respect to the axis x = 1 2 , and is first decreasing and then increasing, satisfies condition (S 1 ).

A.6.4 h

(x) = x α e -x λ 1 ]0,1] (x) (α > -1, λ ∈ R)
This is a direct consequence of (S 0 ). 

(x) = e -x √ x 1 ]0,1] (x)
A.6.5 An example where (M •Y ) is not satisfied

Let µ be the measure with density h defined by:

h(x) = c1 [0,p[ (x) + e1 [p,1] (x) (c, e ≥ 0, p ∈]0, 1[).
For a < p, it holds:

D µ (a) := 2a (c(p -a) + e(1 -p)) c(p 2 -a 2 ) + e(1 -p 2 ) D µ is C ∞ on [0, p[,
and, for a < p, we have:

D ′ µ (a) = 2 c 2 p(p -a) 2 + e 2 (1 -p) 2 (1 + p) + ec(1 -p) (p -a) 2 + p 2 + p -2a (c(p 2 -a 2 ) + e(1 -p 2 )) 2
and

D ′ µ (p -) = 2 e 2 (1 -p) 2 1 + p 1 -c e e 2 (1 -p 2 ) 2 = 2 1 + p 1 -c e (1 + p) 2 .
Therefore, it is clear that, for c e large enough,

D ′ µ (p -) < 0, hence D µ is not increasing on [0, 1]. Note that, if e ≥ c (h is increasing), then D ′ µ ≥ 0 (see condition (S ′ 1 
)), and that D µ is increasing if and only if 

D ′ µ (p -) ≥ 0, i.
(x) = 61 [0,1/2[ (x) + 1 [1/2,1] (x)
A.6.6 A situation where neither condition

(S i ) i=0...5 is satis- fied, but (M •Y ) is Let h be a function such that, for a ∈ [1/2, 1], D ′ µ (a) > 0. We define h on [0, 1/2] such that 1/2 0 h(x)dx < ε and sup x∈[0,1/2]
h(x) ≤ η. Then, for ε > 0 and η ≥ 0 small enough, the measure µ(dx) = h(x)dx satisfies (M•Y ) and h may be chosen in such a way that none of the preceding conditions is satisfied. In this Part B, our aim is still to construct martingales satisfying the properties (a) and (b), this time by a (seemingly) new Skorokhod embedding method, in the spirit of the original Skorokhod method, and of the so-called Hall method (see [Obl04] for comments and references; we also thank J. Oblój [Obl09] for writing a short informal draft about this method). Our method of randomized Skorokhod embedding will ensure directly that the family of stopping times (τ t , t ≥ 0) is increasing.

Here is the content of this Part B:

• In Section B.2, we consider a real valued, integrable and centered random variable X . We prove that there exist an R + -valued random variable V and an R * --valued random variable W , with V and W independent and independent of (B u , u ≥ 0), such that, denoting:

τ = inf{u ≥ 0 ; B u = V or B u = W } ,
Property (Sk1) is satisfied by this randomized stopping time τ , i.e:

B τ (law)
= X . To prove this result we use, as an essential tool, the Schauder-Tychonoff fixed point theorem.

• In Section B.3, we prove that the stopping time τ defined in Section B.2 satisfies (Sk2), i.e: the martingale B τ := (B t∧τ , u ≥ 0) is uniformly integrable. Moreover, for every p ≥ 1, we state conditions ensuring that B τ is a martingale belonging to the space H p consisting of all martingales (M t , t ≥ 0) such that sup

t≥0 |M t | ∈ L p .
• In Section B.4, we follow the method presented in the general introduction, and construct an increasing family of randomized stopping times (τ t , t ≥ 0) , such that (B τt , t ≥ 0) is a martingale satisfying properties (a) and (b).

B.2 Randomized Skorokhod embedding B.2.1 Notation

We denote by R + (resp. R * -) the interval [0, +∞[ (resp. ] -∞, 0[ ), and by M + (resp. M -) the set of positive finite measures on R + (resp. R * -), equipped with the weak topology:

σ(M + , C 0 (R + )) (resp. σ(M -, C 0 (R * -)) )
where C 0 (R + ) (resp. C 0 (R * -) ) denotes the space of continuous functions on R + (resp. R * -) tending to 0 at +∞ (resp. at 0 and at -∞). B = (B u , u ≥ 0) denotes a standard Brownian motion started from 0. In the sequel we consider a real valued, integrable, centered random variable X, the law of which we denote by µ . The restrictions of µ to R + and R * are denoted respectively by µ + and µ -.

B.2.2 Existence of a randomized stopping time

This subsection is devoted to the proof of the following Skorokhod embedding method.

Theorem B.2.1.

i) There exist an R + -valued random variable V and an R * --valued random variable W , V and W being independent and independent of (B u , u ≥ 0), such that, setting

τ = inf{u ≥ 0 ; B u = V or B u = W } , one has: B τ (law) = X .
ii) Denoting by γ + (resp. γ -) the law of V (resp. W ), then:

µ + ≤ γ + ≪ µ + and µ -≤ γ -≪ µ -.
Moreover,

E[V ∧ (-W )] ≤ E[|X|] ≤ 2 E[V ∧ (-W )] (B.2.1)
and, for every p > 1,

1 2 E (V ∧ (-W )) V p-1 + (-W ) p-1 ≤ E[|X| p ] ≤ E (V ∧ (-W )) V p-1 + (-W ) p-1 (B.2.2)
Proof of Theorem B.2.1

In the following, we exclude the case µ = δ 0 , the Dirac measure at 0. Otherwise, it suffices to set: V = 0 . Then, i) is satisfied since τ = 0 , and ii) is also satisfied except the property γ -≪ µ -(since µ -= 0). 2. Let V and W be respectively an R + -valued random variable and an R * --valued random variable, V and W being independent and independent of B, and let τ , γ + , γ -be defined as in the statement of the theorem. As a direct consequence of Point 1, we obtain that B τ (law) = X if and only if:

µ + (dv) = R * - -w v -w γ -(dw) γ + (dv) on R + (B.2.3) µ -(dw) = R + v v -w γ + (dv) γ -(dw) on R * - (B.2.4)
As γ + and γ -are probabilities, the above equations entail:

γ + (dv) = µ + (dv) + R * - v v -w γ -(dw) γ + (dv) on R + (B.2.5) γ -(dw) = µ -(dw) + R + -w v -w γ + (dv) γ -(dw) on R * -(B.2.6)
To prove Point i) of the theorem, we shall now solve this system of equations (B.2.5) and (B.2.6) by a fixed point method, and then we shall verify that the solution thus obtained is a pair of probabilities, which will entail (B.2.3) and (B.2.4).

3. We now introduce some further notation. If (a, b) ∈ M + × M -and ε > 0, we set

a(ε) = 1 ]0,ε[ (v) a(dv) and b(ε) = 1 ]-ε,0[ (w) b(dw) .
We also set: m + = µ + (dv), m -= µ -(dw). We note that, since µ is centered and is not the Dirac measure at 0, then m + > 0 and m -> 0. We then define:

ρ(ε) := 4 sup µ + (ε) m -1 + , µ -(ε) m -1 - and Θ := {(a, b) ∈ M + × M -; a ≥ µ + , b ≥ µ -, a(dv) + b(dw) ≤ 2
and for every ε ≤ ε 0 , a(ε) ≤ ρ(ε) and b(ε) ≤ ρ(ε)}

where ε 0 will be defined subsequently. Finally, we define Γ = (Γ + , Γ -) : On the other hand,

M + × M --→ M + × M -by: Γ + (a, b)(dv) = µ + (dv) + R * - v v -w b(dw) a(dv) Γ -(a, b)(dw) = µ -(dw) + R + -w v -w a(dv) b(dw) Lemma B.2.1. Θ is a convex compact subset of M + × M -(
Γ + (a, b)(ε) = µ + (ε) + 1 ]0,ε[ (v) a(dv) 1 ]-v,0] (w) v v -w b(dw) + 1 ]0,ε[ (v) a(dv) 1 ]-∞,-v] (w) v v -w b(dw) . Since v v -w ≤ 1, and v v -w ≤ 1/2 if w ≤ -v, taking into account (B.2.8) we obtain: Γ + (a, b)(ε) ≤ µ + (ε) + a(ε) b(ε) + a(ε) 1 - m + 2 . Hence, Γ + (a, b)(ε) ≤ ρ 2 (ε) + ρ(ε) 1 - m + 2 + µ + (ε) .
In order to deduce from the preceding that: Γ + (a, b)(ε) ≤ ρ(ε), it suffices to prove:

ρ 2 (ε) - m + 2 ρ(ε) + µ + (ε) ≤ 0 or ρ(ε) ∈ 1 4 (m + -m 2 + -16 µ + (ε)), 1 4 (m + + m 2 + -16 µ + (ε)) ,
which is satisfied for ε ≤ ε 0 for some choice of ε 0 , by definition of ρ.

The proof of Γ -(a, b)(ε) ≤ ρ(ε) is similar. Lemma B.2.2.
The restriction of the map Γ to Θ is continuous.

Proof of Lemma B.2.2

We first prove the continuity of Γ + . For ε > 0, we denote by h ε a continuous function on R * -satisfying:

h ε (w) = 0 for -ε < w < 0 , h ε (w) = 1 for w < -2 ε
and, for every w < 0, 0 ≤ h ε (w) ≤ 1. We set:

Γ ε + (a, b) = Γ + (a, h ε b). Then, Γ ε + (a, b) ≤ Γ + (a, b) and 0 ≤ Γ + (a, b)(dv) -Γ ε + (a, b)(dv) ≤ 2 ρ(2 ε) ,
which tends to 0 as ε tends to 0. Therefore, by uniform approximation, it suffices to prove the continuity of the map Γ ε + . Let (a n , b n ) be a sequence in Θ, weakly converging to (a, b), and let ϕ ∈ C 0 (R + ). It is easy to see that the set:

v ϕ(v) v -• h ε (•) ; v ≥ 0 is relatively compact in the Banach space C 0 (R * -) . Consequently, lim n→∞ v ϕ(v) v -w h ε (w) b n (dw) = v ϕ(v) v -w h ε (w) b(dw) (B.2.9)
uniformly with respect to v. Since

v ϕ(v) v -w h ε (w) b n (dw) ≤ 2 |ϕ(v)| , (B.2.10) then v ϕ(v) v -w h ε (w) b n (dw) ; n ≥ 0 is relatively compact in the Banach space C 0 (R + ) . Therefore, lim n→∞ ϕ(v) Γ ε + (a n , b p )(dv) = ϕ(v) Γ ε + (a, b p )(dv)
uniformly with respect to p, and, by (B.2.9) and (B.2.10):

lim n→∞ ϕ(v) Γ ε + (a, b n )(dv) = ϕ(v) Γ ε + (a, b)(dv) .
Finally,

lim n→∞ ϕ(v) Γ ε + (a n , b n )(dv) = ϕ(v) Γ ε + (a, b)(dv) ,
which proves the desired result.

The proof of the continuity of Γ -is similar, but simpler since it does not need an approximation procedure.

As a consequence of Lemma B. 

α + = γ + (dv) , α -= γ -(dw)
and we shall now prove that α + = α -= 1.

4. By (B.2.7) applied to (a, b) = (γ + , γ -), we obtain:

α + + α -= 1 + α + α -
and therefore, α + = 1 or α -= 1. Suppose, for instance, α + = 1. Since α + + α -≤ 2, then α -≤ 1. We now suppose α -< 1. By (B.2.5),

γ + ≤ µ + + α -γ + , and hence, γ + ≤ (1 -α -) -1 µ + . Consequently, v γ + (dv) ≤ (1 -α -) -1 v µ + (dv) < ∞ .
We deduce from (B.2.5) and (B.2.6) that, for every r > 0,

∞ 0 v γ + (dv) + 0 -r w γ -(dw) = ε 1 (r) + ε 2 (r) + ∞ 0 γ + (dv) 0 -r γ -(dw)(v + w) (B.2.11) with ε 1 (r) = +∞ -r
x µ(dx) and

ε 2 (r) = ∞ 0 γ + (dv) -r -∞ γ -(dw) v 2 v -w .
Since X is centered, lim r→+∞ ε 1 (r) = 0 . On the other hand,

ε 2 (r) ≤ v γ + (dv) -r -∞ γ -(dw)
and therefore, lim r→+∞ ε 2 (r) = 0 . Since α + = 1 , we deduce from (B.2.11):

v γ + (dv) 1 - 0 -r γ -(dw) = ε 1 (r) + ε 2 (r) .
Since µ is not the Dirac measure at 0, then γ + (]0, +∞[) > 0 . Therefore, letting r tend to ∞, we obtain α -= 1, which contradicts the assumption α -< 1. Thus, α -= 1 and α + = 1.

5. We now prove point ii). We have already seen: γ + ≥ µ + and γ -≥ µ -. The property: γ + ≪ µ + follows directly from (B.2.3). More precisely, the Radon-Nikodym density of γ + with respect to µ + is given by:

R * - -w v -w γ -(dw) -1
, which is well defined since γ -is a probability and -w v -w is > 0 for w < 0 and v ≥ 0. On the other hand, since µ is not the Dirac measure at 0, then γ + (]0, +∞[) > 0 . By (B.2.4), this easily entails the property: γ -≪ µ -, the Radon-Nikodym density of γ -with respect to µ -being given by:

R + v v -w γ + (dv) -1
.

On the other hand, we have for v ≥ 0 and w < 0,

1 2 (v ∧ (-w)) ≤ -vw v -w ≤ v ∧ (-w) (B.2.12)
Moreover, we deduce from (B.2.3) and (B.2.4) We have obtained a theorem of existence, thanks to the application of the Schauder-Tychonoff fixed point theorem, which, of course, says nothing about the uniqueness of the pair (γ + , γ -) of probabilities satisfying the conditions (B.2.3) and (B.2.4). However, the following theorem states that this uniqueness holds. 

E [|X| p ] = -vw v -w v p-1 + (-w) p-1 γ + (dv)γ -(dw) (B.
-, j = 1, 2, two pairs of probabilities in M + × M + satisfying (B.2.3) and (B.2.4). We set, for j = 1, 2, v ≥ 0 and w < 0, 

a (j) (v) = R * - -w v -w γ (j) -(dw), (B.2.14) b (j) (w) = R + v v -w γ (j) + ( 
γ (j) + = 1 a (j) µ + and γ (j) -= 1 b (j) µ - (B.2.16)
On the other hand, the following obvious equality holds:

R + ×R * - v -w v -w γ (1) 
+ (dv) + γ

+ (dv) γ

(1)

-(dw) + γ (2) 
-(dw) = 4 (B.2.17) Therefore, developing (B.2.17) and using (B.2.14), (B.2.15) and (B.2.16), we obtain: 2) (v), and similarly with b (1) (w) and b (2) (w). Since µ is a probability, we deduce from (B.2.18) and the preceding that:

R + a (1) (v) + a (2) (v) 1 a (1) (v) + 1 a (2) (v) µ + (dv) + R * - b (1) (w) + b (2) (w) 1 b (1) (w) + 1 b (2) (w) µ -(dw) = 4 (B.2.18) Now, for x > 0, x + 1 x ≥ 2, and x + 1 x = 2 if and only if x = 1. Therefore, a (1) (v) + a (2) (v) 1 a (1) (v) + 1 a (2) (v) ≥ 4 and a (1) (v) + a (2) (v) 1 a (1) (v) + 1 a (2) (v) = 4 if and only if a (1) (v) = a ( 
a (1) (v) = a (2) (v) µ + -a.s. and b (1) (w) = b (2) (w) µ --a.s.

B.2.3.1

Let 0 < α < 1 and x > 0. We define µ + = α δ x and we take for µ -any measure in M -such that

µ -(dw) = 1 -α and w µ -(dw) = -α x .
Then, the unique pair of probabilities (γ + , γ -) satisfying (B.2.3) and (B.2.4) is given by:

γ + = δ x and γ -(dw) = 1 - w x µ -(dw) . B.2.3.2
Let 0 < α < 1 and 0 < x < y. We consider a symmetric measure µ such that:

µ + = 1 2 (α δ x + (1 -α) δ y ) .
By an easy computation, we obtain that the unique pair of probabilities (γ + , γ -) satisfying (B.2.3) and (B.2.4) is given by:

γ + = y -(1 -α) y 2 + α x 2 y -x δ x + -x + (1 -α) y 2 + α x 2 y -x δ y
and γ -(dw) = γ + (-dw) .

B.2.3.3

Let 0 < α < 1 and 0 < β < 1 such that α + β > 1. We define µ by:

µ + (dv) = sin απ π v α-1 (1 + v β ) (1 + 2v α cos απ + v 2α ) dv and µ -(dw) = sin βπ π (-w) β-1 (1 + (-w) α ) (1 + 2(-w) β cos βπ + (-w) 2β ) dw .
Then, the unique pair of probabilities (γ + , γ -) satisfying (B.2.3) and (B.2.4) is given by:

γ + (dv) = sin απ π v α-1 1 + 2v α cos απ + v 2α dv = (1 + v β )µ + (dv) and γ -(dw) = sin βπ π (-w) β-1 1 + 2(-w) β cos βπ + (-w) 2β dw = (1 + (-w) α )µ -(dw) .
This follows from the classical formula, which gives the Laplace transform of the resolvent of index 1 of a stable subordinator of index α (see Chaumont We now consider a symmetric measure µ such that:

µ + (dv) = 2 π (1 + v 2 ) -2 (1 + 2 π v log v) dv .
By an easy computation, we obtain that the unique pair of probabilities (γ + , γ -) satisfying (B.2.3) and (B.2.4) is given by:

γ + (dv) = 2 π
(1 + v 2 ) -1 dv and γ -(dw) = γ + (-dw) .

B.2.3.5

Let µ be a symmetric measure such that:

µ + (dv) = 1 π 1 v (1 -v) - 1 √ 1 -v 2 1 ]0,1[ (v) dv .
Then, the unique pair of probabilities (γ + , γ -) satisfying (B.2.3) and (B.2.4) is given by:

γ + (dv) = 1 π 1 v (1 -v) 1 ]0,1[ (v) dv
and γ -(dw) = γ + (-dw) . Thus, γ + is the Arcsine law. This follows from the formula:

1 π 1 0 w v + w 1 w (1 -w) dw = 1 - v 1 + v ,
which can be found in [START_REF] Bertoin | On a particular class of self-decomposable random variables: the durations of Bessel excursions straddling independent exponential times[END_REF](1.18) and (1.23)].

B.3 Uniform integrability

In this section, we consider again an integrable, centered, real-valued r.v. X, and we keep the notation of Theorem B.2.1. We shall study the properties of uniform integrability of the martingale: 1. We first prove that B τ is bounded in L 1 . We denote by E W,V the expectation with respect to the law of (W, V ), and by E B the expectation with respect to the law of Brownian motion B. We now complete Theorem B.3.1 when the r.v. X admits moments of order p > 1. We start with p = 2.

Theorem B.3.2. The following properties are equivalent:

i) E[V ] < ∞ and E[-W ] < ∞. ii) E[X 2 ] < ∞. iii) E[τ ] < ∞. iv) The martingale B τ is in H 2 .
Moreover, if these properties are satisfied, then

E[X 2 ] = E[V ] E[-W ] = E[τ ].
Proof of Theorem B.3.2 We deduce from (B.2.3) and (B.2.4) by addition:

E[X 2 ] = E[V ] E[-W ] .
This entails the equivalence of properties i) and ii) . On the other hand, if b ≥ 0 and a < 0, the martingale 

E[τ ] = E[T W,V ] = -E[W V ] = E[V ]E[-W ].
This shows that properties i) and iii) are equivalent.

By Doob's L 2 inequality,

E sup u≥0 |B τ u | 2 ≤ 4 sup u≥0 E (B τ u ) 2 = 4E[τ ]
Hence, iii) =⇒ iv). The converse follows from:

E [u ∧ τ ] = E (B τ u ) 2 ≤ E sup u≥0 |B τ u | 2 ,
upon letting u tend to +∞. Therefore:

E[τ ] ≤ E sup u≥0 |B τ u | 2 ≤ 4E[τ ].
We now replace the L 2 space by L p for p > 1.

Theorem B.3.3. Let p > 1. The following properties are equivalent:

i) E[(V ∧ (-W ))(V p-1 + (-W ) p-1 )] < ∞ . ii) E[|X| p ] < ∞.
iii) E[τ p/2 ] < ∞.

iv) The martingale B τ is in H p .

Proof of Theorem B.3.3

1. By (B.2.2), properties i) and ii) are equivalent.

which proves point ii). More precisely, the transition semi group: (P s,t , 0 ≤ s < t) is given by:

P s,t f (x) = E f ( √ t V ) x - √ t W √ t (V -W ) + f ( √ t W ) -x + √ t V √ t (V -W ) 1 ] √ t W, √ t V [ (x) +f (x) P x ∈] √ t W, √ t V [ .
Thus, (P s,t , 0 ≤ s < t) is a transition semi group of a very special kind since, actually, P s,t does not depend on s ∈ [0, t[.

-( 1

 1 Subsection A.3.3 consists in the study in the particular case of (M •Y ) when: e -ax )ρ(dx) for certain positive measures ρ, where Z = +∞ 0 -e -x )ρ(dx) is the normalizing constant which makes: D µ (a) = a ψ µ (a) a distribution function on [0, 1]. -Subsection A.3.4 gives another formulation of this correspondence.

2 . 2

 22 The (M •Y ) condition Proposition A.2.2 highlights the importance of condition (I) (see Proposition A.2.2 above) for our search of martingales satisfying conditions (a) and (b).

)

  The function D µ is characterized by its values on ]0, 1[ (since D µ (0) = 0 and D µ (1) = 1). Hence, D µ only depends on the values of ψ µ on ]0, 1[, and therefore, D µ only depends on the restriction of µ to ]0, 1]. The value of µ({0}) is irrelevant for the (M •Y ) condition.

  b), which gives, by differentiation: aV ′ (a) = ε(a). (A.4.2)

Theorem A.4. 3 .

 3 We assume that the density h of µ is continuous on ]0, 1[. Then, the following conditions imply (M •Y ): (S 0 ) h is strictly positive on ]0, 1[ and satisfies condition i) of Proposition A.4.1. (S 1 ) for every a ∈]0, 1[ µ(a) := 1 a h(x)dx ≥ a(1 -a)h(a). (S ′ 1 ) the function a -→ a 2 h(a) is increasing on ]0, 1[. (S 2 ) the function a -→ log(aµ(a)) is concave on ]0, 1[ and lim a→1 - (1 -a)h(a) = 0. Proof of Theorem A.4.3 1) We first prove: (S 0 ) =⇒ (M •Y )

4)

  We finally prove: (S 2 ) =⇒ (M •Y ) We set θ(a) = log(aµ(a)). Since 1 a th(t)dt = aµ(a) + 1 a µ(t)dt by integration by parts, we have, for a ∈]0, 1[, D µ (a) = e θ(a) must prove that the function a -→ e -θ(a) t) dt is decreasing. Differentiating this function, we need to prove: l(a) := θ ′ (a) ) = -∞, an integration by parts gives:

  dt ≤ (1 -a)µ(a), the result follows from the assumption lim a→1 - (1 -a)h(a) = 0.

[a, 1 ]

 1 xµ(dx).Thus: D µ (a) := aµ(a) µ(a) and, differentiation shows that D ′ µ (a) ≥ 0 is equivalent to: γ(a) := µ(a) µ(a) + a 2 h(a)µ(a) -ah(a) µ(a) ≥ 0 a ∈]0, 1] (A.4.4)

  a→1 - h ′ (a) = -∞, hence h is decreasing in the neighborhood of 1 and h being positive, h(1 -) also exists. Therefore, letting a → 1 in (A.4.4), we obtain that γ(1 -) = 0. Now differentiating (A.4.4), we obtain: γ ′ (a) = -2h(a) µ(a) + ah(a)µ(a) + ah ′ (a)(aµ(a) -µ(a)),

3 )

 3 )(1 -a) ≤ 0 and (A.4.5) follows by passing to the limit as a → 1. Finally, denote by ϕ the decreasing continuous function: a -→ a 3 h ′ (a). Then:γ ′ (a) = -ϕ(a)µ(a) a 2 -h(a) µ(a) + µ(a) . Consequently, γ ′ is a continuous function with locally finite variation, and we obtain by differentiation:dγ ′ (a) = -µ(a) a 2 dϕ(a) + h(a) (ah(a) + µ(a)) da.Hence, dγ ′ is a positive measure on ]0, 1[, which entails that γ is convex on ]0, 1[. We then prove: (S 5 ) =⇒ (M •Y ) From (A.4.4), to prove that D µ is increasing, we need to show that: ρ(a) := µ(a) µ(a) ah(a) + aµ(a) -µ(a) ≥ 0. Under (S 5 ), h is decreasing and hence, for a ∈]0, 1[, µ(a) ≤ h(a)(1 -a). (A.4.6) Consequently, lim a→1 ρ(a) = 0, and it is now sufficient to see that ρ ′ (a) ≤ 0 on ]0, 1[. ρ ′ (a) = -µ(a) µ(a) a 2 h 2 (a) h(a) + ah ′ (a) -µ(a) a

  a)h(a) = 0. Then, for a ∈]0, 1[, condition (S ′ 1 ) is equivalent to 2h(a) + ah ′ (a) ≥ 0 and we can write: ah ′ (a) + 2h(a) ≥ 0.

  1) of Theorem A.5.1 casts a new light on Proposition A.4.1. Indeed, from (A.5.1), we see that h is a regularly varying function in the sense of Karamata, and Proposition A.4.1 looks like a version of Karamata's representation Theorem (see [BGT89, Chapter 1, Theorems 1.3.1 and 1.4.1]).

  exists and belongs to [0, 1]. Then, for all c, d ∈]0, 1[: ) = γ c γ d . This implies that γ c = c ρ with ρ ∈ R + . Now, let η(a) =

2 . 3 ,

 23 we denote µ(a) = proof of the increase of D µ is exactly the same as that of the implication S 0 =⇒ (M •Y ) (see Theorem A.4.3). Then, D µ being bounded by 1, it converges towards a limit ℓ, and it remains to identify ℓ. We write, for x > 1:
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 1 Figure 1: Graphs for h(x) = x (1 -x) 1 [0,1[ (x)

Figure 3 :

 3 Figure 3: Graphs for h(x) = e -x √ x 1 ]0,1] (x)

Figure 4 :Figure 5 :

 45 Figure 4: Graph of D µ for h(x) = c1 [0,1/2[ (x) + 1 [1/2,1] (x)

Figure 6 :

 6 Figure 6: Graphs for h satisfying neither condition (S i ) i=0...5

1.

  We first recall the following classical result: Let b < 0 ≤ a and T b,a = inf{u ≥ 0 ; B u = a or B u = b} . Then, P (B T b,a = a) = -b a -b and P (B T b,a = b) = a a -b .

  equipped with the product of the weak topologies), and Γ(Θ) ⊂ Θ . Proof of Lemma B.2.1 The first part is clear. Suppose that (a, b) ∈ Θ. By definition of Γ, we have: Γ + (a, b) ≥ µ + , Γ -(a, b) ≥ µ - and Γ + (a, b)(dv) + Γ -(a, b)(dw) a, b)(dv) + Γ -(a, b)(dw) ≤ 2 and Γ + (a, b)(dv) ≤ 2 -m -, Γ -(a, b)(dw) ≤ 2 -m + (B.2.8)

Theorem B. 2 . 3 .

 23 Assume µ = δ 0 . Then the laws of the r.v.'s V and W satisfying Point i) in Theorem B.2.1 are uniquely determined by µ.

  B τ := (B u∧τ , u ≥ 0).Theorem B.3.1. The martingale B τ is uniformly integrable. Moreover, if E[φ(X)] < ∞ where φ : R → R + is defined by φ(x) = |x| log + (|x|), then, the martingale B τ belongs to H 1 , i.e. E sup u≥0 |B τ u | < ∞.Proof of Theorem B.3.1

↑ 2 . 3 .

 23 E W,V E B |B u∧T W,V | = E W,V lim u→+∞ ↑ E B |B u∧T W,V | = E W,V E B |B T W,V |(by the dominated convergence theorem,since |B u∧T W,V | ≤ V ∨ (-W )) = E [|B τ |] = E[|X|].We have:λP sup u≥0 |B τ u | ≥ λ = E W,V λP B sup u≥0 |B u∧T W,V | ≥ λ . (B.3.1) Now, since sup u≥0 |B u∧T W,V | ≤ V ∨ (-W ), λP B sup u≥0 |B u∧T W,V | ≥ λ ----→ λ→+∞ 0,and from Doob's maximal inequality and Point 1.:λP B sup u≥0 |B u∧T W,V | ≥ λ ≤ sup u≥0 E B |B u∧T W,V | = E B |B T W,V | ,which is P W,V integrable. Therefore, applying the dominated convergence theorem to the right hand side of (B.3.1), we obtain:λP sup u≥0 |B τ u | ≥ λ ----→ λ→+∞ 0.Since B τ is bounded in L 1 , this proves, from Azéma-Gundy-Yor [AGY80, Théorème 1], the uniform integrability of B τ . We now suppose that E[φ(X)] < ∞. Applying the previous computation of Point 1. to the submartingale (φ(B τ u ), u ≥ 0) (φ is convex), we obtainsup u≥0 E [φ(B τ u )] = lim u→+∞ ↑ E [φ(B τ u )] = E [φ(B τ )] = E [φ(X)] < ∞. (B.3.2)Note that, under the hypothesisE [φ(X)] < ∞, (B.3.2) gives another proof of the fact that B τ is a uniformly integrable martingale ([Mey66, Chapitre 2, Théorème T22]). On the other hand, from Doob's L log L inequality [RY99, p.55], E [φ(X)]) < ∞ from (B.3.2). Therefore, B τ belongs to H 1 . Actually, the martingale B τ belongs to the L log L class (cf. [RY99, Exercise 1.16]). B.3.0.6 Remark By Azéma-Gundy-Yor [AGY80, Théorème 1], we also deduce from the above Points 1. and 2. that: lim λ→+∞ λP √ τ ≥ λ = 0.
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 2 u∧T a,b -(u ∧ T a,b ), u ≥ 0 is uniformly integrable and hence, E[T a,b ] = E B 2T a,b = -ab. Consequently,

  study D µ on R + . Clearly, this function (on R + ) depends only on the restriction of µ to R + , which we denote by µ. Observe that (M •Y ) remains unchanged if we replace µ by λµ where λ is a positive constant. Besides, we shall restrict our study to the case where µ is carried by ]-∞, k], i.e. where µ = µ |R + is a subprobability on [0, k].

			2.1). Since our aim is to
	obtain conditions equivalent to (M •Y ), i.e.:	
	x -→ D µ (x) :=	x [x,+∞[ µ(dy) [x,+∞[ y µ(dy)	increases on R + ,	(A.2.6)
	it suffices to			

  (1 + 2w α cos απ + w 2α ) dw .We note that, in this example, if p > 1, the condition:E[|X| p ] < ∞ is satisfied if and only if p < α + β , whereas the conditions: E[V p-1 ] < ∞ and E[(-W ) p-1 ] < ∞ are satisfied if and only if p < 1 + α ∧ β . Now, α + β < 1 + α ∧ β since α ∨ β < 1 .This illustrates Remark B.2.2.1.

		-
	Yor [CY03, Exercise 4.2.1]):	
	1 1 + v α = (v + w) B.2.3.4 sin απ +∞ π 0	w α

Note that since Dµ remains unchanged if we replace µ by a multiple of µ, µ can always be chosen to be a probability.

We then deduce from (B.2.16):

and γ

(1)

-, which is the desired result. .

B.2.2.1 Remark

We have:

-w 1 -w .

Therefore, by (B.2.3), for p > 1:

and similarly for E[(-W ) p-1 ] . Consequently, 

Thus the difference between our embedding method and the one which relies on the Breiman-Hall formula is that we impose the independence of V and W . We then have the uniqueness of the laws of V and W (Theorem B.2.3) but no general explicit formula.

B.2.3 Some examples

In this subsection, we develop some explicit examples. We keep the previous notation. For x ∈ R, δ x denotes the Dirac measure at x.

B.4 Construction of self-similar martingales

In this Section, we consider a real valued, centered, random variable X . Let V , W , be as in Theorem B.2.1. We set:

Theorem B.4.1.

i) The process (B τt , t ≥ 0) is a left-continuous martingale such that, for every fixed t, B τt

ii) For any c > 0,

iii) The process (B τt , t ≥ 0) is an inhomogeneous Markov process.

In particular, (B τt , t ≥ 0) is a martingale associated to the peacock ( √ tX, t ≥ 0) (see I.4 in the General Introduction).

Proof of Theorem B.4.1 1. By the definition of times τ t and the continuity of B, one easily sees that the process (τ t , t ≥ 0) is a left-continuous increasing process. As a consequence, (B τt , t ≥ 0) is a left-continuous process.

2. Since, for a given t ≥ 0, (M u := B u∧τt , u ≥ 0) is a uniformly integrable martingale, and for s < t, τ s ≤ τ t , then (B τt , t ≥ 0) is a martingale. Let, for c > 0, (B

t ) the family of stopping times associated with the Brownian motion B (c) . In other words,

We easily obtain, for every t ≥ 0, τ

= c 2 τ c -2 t and then, B , t ≥ 0)

= X , we also have, for every t ≥ 0, B τt

3. We now consider the Brownian motion B as a strong Markov process in R. We may define τ t by:

(Note that τ t = τ t under P 0 , whereas, if x = 0, then τ t = τ t under P x .) For s < t, we have with the usual notation about time translation operators (θ u ), τ t = τ s + τ t • θ τs and consequently: B τt = B τt • θ τs , which entails, for f a bounded Borel function,