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Introduction

Quand on considère un morphisme propre f : X → C d'une variété complexe X sur une courbe lisse C, telle que l'on ait {d f = 0} ⊂ f -1 (s 0 ) au voisinage du point s 0 de C, le choix d'une coordonnée locale sur C près de s 0 permet de se ramener à la situation de dégénescence standard d'une famille de variétés complexes paramètrée par un disque f : X → D ⊂ C, la fibre singulière étant au-dessus de l'origine. On est alors dans la situation où l'on dispose d'une fonction holomorphe 1 propre f et on peut alors construire les faisceaux de (a,b)-modules déduits des complexes (Ker df ) • , d • ) grâce à la multiplication par la fonction numérique f (voir [B.08] théorème 2.1.1). Mais il est clair que la construction, et précisément via la fonction numérique f , dépend du choix de la coordonnée locale choisie près du point s 0 de la courbe C. L'objet de ce qui suit est d'étudier le comportement de nos constructions par un changement de coordonnée locale centrée en s 0 . Le résultat que nous obtenons est le théorème suivant. Le lecteur trouvera les définitions des invariants fondamentaux et des paramètres principaux d'un thème [λ]-primitif dans les rappels de la section 2. Mais on notera déjà que les invariants fondamentaux d'un thème [λ]-primitif sont localement constants dans une famille holomorphe et déterminent le polynôme de Bernstein de ce thème, alors que les paramètres principaux sont des nombres complexes (non nuls) qui ne dépendent que de la classe d'isomorphisme du thème considéré, mais varient holomorphiquement avec le paramètre dans une famille holomorphe. Nous montrerons par un exemple explicite, que, cependant, la classe d'isomorphisme d'un thème [λ]-primitif de rang k ≥ 3 n'est pas, en général, invariante par changement de variable, ce qui montre l'intérêt de l'invariance des paramètres fondamentaux donnée par notre résultat. Nous conclueront en montrant que la notion de famille holomorphe de thèmes [λ]-primitifs est stable par changement de variable.

2 Position du problème. Définition 2.0.4 (Invariants fondamentaux) La suite λ 1 , . . . , λ k des exposants des quotients successifs de la suite de Jordan-Hölder d'un thème [λ]-primitif est équivalente à la donnée de λ 1 , p 1 , . . . , p k-1 où les p j sont définis en posant λ j+1 = λ j + p j -1. Les p j sont dans N. Nous appellerons les nombres λ 1 , p 1 , . . . , p k-1 les invariants fondamentaux du thème [λ]-primitif considéré Rappelons (voir [B.09b]) qu'un thème [λ]-primitif de rang k est toujours isomorphe à un thème du type ci-dessus, les S j pouvant être choisis polynomiaux en b (avec S j (0) = 1 ) et on peut borner les degrés des S j en fonction des invariants fondamentaux (voir les familles standards dans [B.09b]).

Exemple. Soit λ ∈ C, ℜ(λ) > 0 et soit k ≥ 1 un entier. Notons Ξ (k-1) λ := k-1 j=0 C[[b]].s λ-1 . (Log s) j j! le (a,b)-module défini par les relations a.s λ-1 := λ.b.s λ-1 et a.s λ-1 . (Log s) j j! = λ.b.s λ-1 . (Log s) j j! + b. s λ-1 . (Log s) j-1 (j -1)! pour j ∈ [1, k -1]. C'est
On notera que si E ⊂ Ξ k-1 λ avec k = rg(E),
(a -λ 1 .b).S -1 1 .(a -λ 2 .b).S -1 2 . . . S -1 k-1 .(a -λ k .b) où S j ∈ C[[b]] vérifie S j (0) = 1, avec la convention α j = ∅ si p j = 0.
3 Le théorème du changement de variable.

Lemme

3.0.8 Soit θ ∈ C[[a]] vérifiant θ(0) = 0 et θ ′ (0) = 0. Alors on a un (unique) homomorphisme de C -algèbre unitaire Θ :  →  vérifiant Θ(a) := α = θ(a) et Θ(b) := β = b.θ ′ (a). Preuve. Les relations a n .b = b.a n +n.b.a n-1 .b valables pour tout n ∈ N donnent la relation θ(a).b = b.θ(a) + b.θ ′ (a).b dans  pour toute série formelle θ ∈ C[[a]].
Alors on aura, toujours dans  :

α.β = θ(a).b.θ ′ (a) = (b.θ(a) + b.θ ′ (a).b).θ ′ (a) = β.α + β 2
ce qui montre notre assertion. 

Nous appellerons changement de variable un

θ ∈ C[[a]] vérifiant θ(0) = 0 et θ ′ (0) = 0.
-1 .a de θ * (E) est θ * (E ♯ ), où E ♯ est le saturé de E par b -1 .a et θ * (E) a le même polynôme de Bernstein que E. Preuve. Si F ⊂ E est stable par a et b, il est régulier car E l'est, et il est donc stable par α et β. La réciproque résulte du fait qu'il existe un changement de variable η ∈ C[[α]] tel que a = η(α). Si F est normal dans E, soit x ∈ E vérifiant β.x ∈ F . On a donc θ ′ (a).x ∈ F , et comme θ ′ (a) est un inversible de C[[a]], on en conclut que θ * (F ) est normal dans θ * (E). Montrons que θ * (E) est à pôle simple si E l'est. Mais comme θ ′ (a) est inversible dans  et E régulier, on aura β.E = b.E. Alors α.E ⊂ a.E ⊂ b.E = β.E, et θ * (E) est bien à pôle simple.
Comme l'espace vectoriel E b.E est invariant par changement de variable, montrons l'invariance de l'action de b -1 .a sur cet espace vectoriel. On se ramène immédiatement au cas θ ′ (0) = 1. On a alors en posant θ(a) = a + a2 .η(a)

β -1 .α = θ ′ (a) -1 .b -1 .θ(a) = (1 + a 2 .η ′ (a) + 2a.η(a)) -1 .(b -1 .a).(1 + a.η(a)) dans E et comme a induit l'application nulle sur E b.E, l'invariance en découle. Si E est régulier, il existe une inclusion de E dans un (a,b)-module G à pôle simple. On a alors θ * (E) ⊂ θ * (G) qui est à pôle simple. D'où la régularité de θ * (E). On a obtenu de plus que le saturé de θ * (E) est contenu dans θ * (E ♯ ), où E ♯ désigne le saturé de E par b -1 .a dans E[b -1 ]. Pour obtenir l'égalité considérons un sous-(a,b)-module à pôle simple F vérifiant θ * (E) ⊂ F ⊂ θ * (E ♯ ). Alors le changement de variable inverse θ -1 donnera E ⊂ θ -1 * (F ) ⊂ E ♯ . Comme θ -1 * (F ) est à pôle simple, on aura, puisque E ♯ est le plus petit module à pôle simple contenant E, θ -1 * (F ) = E ♯ , d'où l'égalité θ * (E ♯ ) = θ * (E) ♯ .
Remarques.

1 ].e λ et la b-compatibilité assurent de l'existence et de l'unicité de χ n pour tout entier n, il nous suffit de montrer que χ n dépend polynomialement de θ. Fixons p ∈ N, p ≫ 1. Alors on a deux bases de l'espace vectoriel V p := E λ b p .E λ , la base b q .e λ et la base β q .e λ , q ∈ [0, p -1]. Et on a clairement β q .e λ = b q .e λ + b q+1 .V pour tout q. Ceci montre que ce changement de base est triangulaire avec des 1 sur la diagonale. Donc de déterminant égal à 1. Par ailleurs, comme β dépend polynomialement de θ, la matrice de ce changement de base est polynomiale en θ. Sa matrice inverse également puisque le déterminant vaut 1. Ceci permet de conclure, car pour calculer le coefficient de β m dans χ n , on peut se contenter de travailler dans V n+m+1 .

Corollaire 3.0.18 Dans la situation précédente il existe une unique

S λ θ ∈ C[[b]] vérifiant S λ θ (0) = 1 et dépendant polynomialement de θ ∈ C N -1 tel que l'on ait α θ .ε θ λ = λ.β θ .ε θ λ si l'on pose ε θ λ = S λ θ (β θ ).e λ .
Preuve. Comme on suppose λ fixé dans la suite, on omettera l'exposant λ pour les éléments de C Remarque. Si on part de z = 0 et λ 1 ∈ 1+Q + * , alors E est un thème de rang 2. Si l'on sait par ailleurs que pour tout θ le (a,b)-module θ * (E) est encore un thème, cela impliquera que z θ n'est pas nul. Or les seuls polynômes qui ne s'annulent jamais sur C N -1 sont les polynômes constants. Cela montrera que l'on a z θ ≡ z pour tout θ. Ce raisonnement sera la clef de la démonstration du théorème qui suit.

Théorème 3.0.20 Soit E un thème [λ]-primitif de rang k et d'invariants fondamentaux λ 1 , p 1 , . . . , p k-1 . Notons z 1 , . . . , z k-1 les paramètres des thèmes [λ]-primitif de rang 2 F 2 , F 3 F 1 , . . . , F k F k-2 . Soit θ un changement de vari- able de la forme θ(a) = r.a + ∞ j=2 θ j .a j avec r = 0. Alors θ * (E) est un thème [λ]-primitif de rang k et d'invariants fondamentaux λ 1 , p 1 , . . . , p k-1 . Les paramètres des thèmes [λ]-primitif de rang 2 θ * (F 2 ), θ * (F 3 F 1 ), . . . , θ * (F k F k-2 )
sont les nombres r p 1 .z 1 , . . . , r p k-1 .z k-1 .

Démonstration. Commençons par montrer qu'il suffit de prouver le résultat en rang 2. En effet si l'on sait déjà que si E est un thème [λ]-primitif de rang 2 d'invariants fondamentaux λ 1 , p 1 et de paramètre z, alors θ * (E) est un thème [λ]-primitif de rang 2 ayant mêmes invariants fondamentaux et de paramètre r p 1 .z, on en déduit les propriétés suivantes pour un thème [λ]-primitif de rang k et d'invariants fondamentaux λ 1 , p 1 , . . . , p k-1 : i) D'abord θ * (E) est monogène régulier de rang k. Si on suppose que pour un thème [λ]-primitif F de rang k -1 θ * (F ) est encore un thème [λ]-primitif F de rang k -1 avec les mêmes invariants fondamentaux que F , alors le lemme 3.0.13 permet de montrer qu'il en sera de même en rang k. Le rang 1 étant clair, il suffit donc bien de traiter le cas du rang 2.

ii) De même la quasi-invariance7 des paramètres des thèmes quotients F j+2 F j de rang 2 est conséquence de ce résultat pour k = 2, puisque θ * (F j ) est le sous-thème normal de rang j de θ * (E).

Pour traiter le cas de rang 2, montrons déjà que si E est un thème [λ]-primitif de rang 2 et si θ est un changement de variable, alors θ * (E) est un thème [λ]-primitif de rang 2. On a une injection (a,b)-linéaire j : E → Ξ

(1)

λ . On aura donc une injection j : θ * (E) → θ * (Ξ (1) λ ). Comme le lemme 3.0.12 donne un isomorphisme θ * (Ξ

(1) λ ) ≃ Ξ (1)
λ , cela montre que θ * (E) est un thème [λ]-primitif. La quasi-invariance du paramètre est conséquence alors du fait que, pour un changement de variable polynomial8 , le paramètre est une fonction polynomiale de θ qui ne peut s'annuler (sinon on n'aurait pas un thème !). Ceci implique aussi le cas d'un changement de variable général, car pour θ donné et E donné, en remplaçant θ par θ N son développement limité d'ordre N ≫ 1, on aura que (θ N ) * (E) est isomorphe à θ * (E). D'où le cas général.

Exemple. Soit ϕ := s λ+p-2 .Log s+S(b).s λ-2 où λ ∈ 1+Q * + , S ∈ C[[b]], S(0) = 0 et p ∈ N * . Alors E := Ã.ϕ ⊂ Ξ (1) λ
est un thème de rang 2. Nous allons calculer pour p ≥ 1 le paramètre de ce thème dont les invariants fondamentaux sont

λ 1 = λ, λ 2 = λ + p -1 et p 1 = p. On a (a -(λ + p -1).b).ϕ = s λ+p-1 λ + p -1 + S(b).s λ-1 + b 2 .S ′ (b).s λ-2 -(λ + p -1).S(b). s λ-1 λ -1 = (λ -1).S(b) + b.S ′ (b) -(λ + p -1).S(b) . s λ-1 λ -1 + ρ.b p . s λ-1 λ -1 où l'on a posé ρ = Γ(λ+p-1) Γ(λ-1) puisque b p . s λ-1 λ -1 = Γ(λ -1) Γ(λ + p) .s λ+p-1 .
On arrive donc, pour p ≥ 1 à l'égalité 

(Log s) 2 2 . X = s λ . (Log s) 2 2 -λ. s λ λ . (Log s) 2 2 -b( s λ-1 λ .Log s) X = b(s λ-1 .Log s) = s λ λ .Log s - s λ λ .
Posons Y := (aλ.b).ξ(b).s λ-1 .Log s. On a alors

Y = ξ(b).(a -λ.b).s λ-1 .Log s + b 2 .ξ ′ (b).s λ-1 .Log s = ξ(b). s λ λ + b 2 .ξ ′ (b).s λ-1 .Log s Calculons également Z := (a -λ.b).(η 0 + η 1 .b).s λ-3 : Z = η 0 . λ -2 -λ . s λ-2 λ -2 + η 1 . λ -1 -λ . s λ-1 (λ -2)(λ -1) = -2η 0 . s λ-2 λ -2 -η 1 . s λ-1 (λ -2)(λ -1) On aura donc (1 + b.ξ ′ (b)) -1 .(a -λ.b).e = s λ .Log s λ - s λ λ - 2η 0 λ -2 .(1 + b.ξ ′ (b)) -1 .s λ-2 + - η 1 (λ -1)(λ -2) .(1 + b.ξ ′ (b)) -1 .s λ-1 + (1 + b.ξ ′ (b)) -1 .(ξ(b) + b.ζ ′ (b)). s λ λ
On applique alors (a -(λ + 1).b) ce qui donne un élément de C [[s]].s λ-1 dont les coefficients respectifs u, v, w de s λ-1 , s λ , s λ+1 sont respectivement donnés par Posons alors s :

u := 4η 0 (λ -2)(λ -1) v := - 4η 0 .ξ ′ (0) (λ -2)(λ -1)λ + η 1 (λ -2)(λ -1)λ w := 1 λ + 1 - 4η 0 .(ξ ′′ (0) + 2ξ ′ (0) 2 ) 2(λ -2)(λ -1)λ(λ + 1) + - η 1 .ξ ′ (0) (λ -2)(λ -1)λ(λ + 1) + 2η 0 .(ξ ′′ (0) + 2ξ ′ (0) 2 ) (λ -2)(λ -1)λ(λ + 1) + η 1 .ξ ′ (0) (λ -2)(λ -1)λ(λ + 1) = 1 λ + 1 Donc on trouve 4η 0 (λ -2)(λ -1) . 1 + η 1 -4η 0 .ξ ′ (0) 4η 0 .b + (λ -2)(λ -1) 4η 0 .b 2 + • • • .s λ-1 . Posons S ∈ C[[b]] l'élément
u = η 1 -4η 0 .ξ ′ (0) 4η 0 + ξ ′ (0), α = (λ -2)(λ -1) 4η 0 . On a donc u = η 1 4η 0 et α = (λ -2)(λ -1) 4η 
= t.(1 + σ.t) où σ ∈ C. On obtient e = t λ-1 .(1 + σ.t) λ-1 . [Log t + Log(1 + σ.t)] 2 2 + η 0 .t λ-3 .(1 + σ.t) λ-3 + + η 1 t λ-2 .(1 + σ.t) λ-2 λ -2 ce que l'on peut réecrire e = S 1 (t).t λ-1 . (Log t) 2 2 + S 2 (t).t λ .Log t + θ 0 .t λ-3 + θ 1 . t λ-2 λ -2 + S 3 (t).t λ-1 où l'on a S ( t) = 1 + σ.(λ -1).t + 0(t 2 ) S 2 (t) = 2σ + 0(t) θ 0 = η 0 et θ 1 = η 1 + η 0 .(λ -2)(λ -3).σ la valeur de S 3 importera peu. Si on pose ε := S 1 (t) -1 .e on aura ε = t λ-1 . (Log s) 2 2 + ξ(β).t λ-1 .Log t + η 0 .t λ-3 + + (θ 1 -σ.(λ -1)(λ -2).η 0 ). t λ-2 λ -2 + ζ(β).t λ-1 Lemme 5.0.22 Pour chaque n ∈ N on a a n .b = n+1 p=1 n! (n -p + 1)! b p .a n-p+1 .
Preuve. Par récurrence sur n ≥ 0. Les cas n = 0 et n = 1 sont triviaux. Supposons la formule prouvée pour n. On a alors Définition 5.0.25 Soit X un espace complexe réduit. Nous dirons que l'élément θ ∈ O(X) [[a]] est un changement de variable X-relatif si l'on a θ(0) = 0 et θ ′ (0)(x) = 0 pour tout x ∈ X.

a n+1 .b = n+1 p=1 n! (n -p + 1)! a.b p .a n-p+1 = n+1 p=1 n! (n -p + 1)! (b p .a + p.b p+1 ).a n-p+1 = n+2 q=1 (n + 1)! (n + 1 -q + 1)! b q .a n-q+2 puisque n! (n -q + 1)! + n!(q -1) (n -q + 2)! = (n + 1)! (n -q + 2)! .
On a donc pour chaque x ∈ X fixé un changement de variable. Une conséquence immédiate de la proposition 5.0.24 est le théorème suivant de stabilité par changement de variable relatif pour les familles holomorphes de thèmes [λ]-primitifs de rang k.

Théorème 5.0.26 Soit X un espace complexe réduit et soit E une famille holomorphe de thèmes [λ]-primitifs de rang k paramétrée par X. Considérons un changement de variable X-relatif θ ∈ O(X) [[a]]. Alors la famille θ * (E) des θ * (E(x)) x∈X , est holomorphe. Donnons un corollaire également immédiat, mais important de ce théorème et du théorème 3.0.20.

Corollaire 5.0.27 Soit X un espace complexe réduit connexe et soit E une famille holomorphe de thèmes [λ]-primitifs de rang k paramétrée par X. Soit θ ∈ O(X) [[a]] un changement de variable relatif. Notons (λ 1 , p 1 , . . . , p k-1 ) les invariants fondamentaux de cette famille, et notons α 1 , . . . , α k-1 : X → C les fonctions holomorphes sur X données par les paramètres principaux de cette famille. Alors les fonctions holomorphes sur X données par les paramètres principaux de la famille holomorphe θ * (E) sont respectivement r p 1 .α 1 , . . . , r p k-1 .α k-1 , où l'on a posé r := θ ′ (0) ∈ O(X).

  Théorème 1.0.1 Soit E un thème [λ]-primitif de rang k et d'invariants fondamentaux λ 1 , p 1 , . . . , p k-1 . Soit θ(a) := a + θ 2 .a 2 + • • • ∈ C[[a]]un changement de variable. Alors le (a,b)-module θ * (E) est un thème [λ]-primitif de rang k ayant les mêmes invariants fondamentaux que E. De plus les paramètres principaux de θ * (E) sont les mêmes que ceux de E.

  Les algèbres à et Â. Notons à la C -algèbre unitaire suivante : à := { ∞ ν=0 P ν (a).b ν } où les P ν sont des polynômes de C[x]. La multiplication est définie par la relation de commutation a.bb.a = b 2 et le fait que les multiplications à gauche et à droite par a sont continues pour la topologie b-adique. On a alors pour chaque S ∈ C[[b]] la relation de commutation a.S = S.a + b 2 .S ′ où S ′ désigne la dérivée de S par rapport à la variable b. On vérifie facilement que l'on a b n . à = Ã.b n et que à est complète pour la topologie b-adique. Il est aussi facile de voir que l'élément 1 + a ∈ à n'est pas inversible dans Ã. On définit l'algèbre  comme la complétée a-adique de à comme C[a]-module à gauche, c'est-à-dire que  := { ∞ ν=0 P ν (a).b ν } où maintenant les P ν sont des séries formelles dans C[[x]]. Les relations de commutations dans à a n .b = b.a n + n.b.a n-1 .b ∀n ∈ N donnent alors, pour T ∈ C[[x]] la relation T (a).b = b.T (a)+b.T ′ (a).b où

  clairement un (a,b)-module à pôle simple de rang k sur C[[b]]. Définition 2.0.3 Nous appellerons thème [λ]-primitif un sous-Ã-module (à gauche) monogène d'un Ξ (N -1) λ pour un N ∈ N * et un λ ∈ Q + * . Pour tout ϕ ∈ Ξ (N -1) λ , le sous-Ã-module E := Ã.ϕ est un thème. En effet c'est un sous-C[[b]]-module d'un C[[b]]-module libre de rang fini, il est donc libre de rang fini. Comme Ξ (N -1) λ est à pôle simple E est régulier. Et réciproquement tout thème [λ]-primitif est de cette forme. Il est facile de voir que si k -1 est la puissance maximale de Log s qui apparaît effectivement dans ϕ le rang de E sur C[[b]] est égal à k, et l'on peut alors prendre N = k. Rappels. Il a été démontré dans [B.09b] qu'un thème [λ]-primitif E admet une unique suite de Jordan-Hölder et que cette propriété caractérise les thèmes [λ]-primitifs parmi les (a,b)-modules monogènes géométriques 1 . Dans ce cas, si k = rg(E) on a pour chaque j ∈ [0, k] un unique sous-(a,b)-module F j qui est normal de rang j.

  Définition 3.0.9 Soit E un (a,b)-module régulier (ou même, plus généralement, un Â-module). On définit, pour tout changement de variable θ, un nouvel (a,b)module θ * (E), qui sera appelé le changé de variable de E par θ, comme étant le(a,b)-module (resp. le Â-module) obtenu en faisant agir sur E l'élément a ∈ à par α := θ(a) et l'élément b ∈ à par β := b.θ ′ (a). Ceci revient à faire agir  sur E via l'automorphisme Θ, c'est-à-dire que pour u ∈  et x ∈ E on pose u. θ x := Θ(u).x. Proposition 3.0.10 Soit E un (a,b)-module à pôle simple, alors θ * (E) est à pôle simple, on a b n .E = β n .E = b n .θ * (E) pour chaque entier n, et l'action de b -1 .a sur θ * (E) b.θ * (E) est la même 2 que celle de b -1 .a sur E b.E. Soit E un (a,b) régulier et soit θ un changement de variable. Alors θ * (E) est un (a,b)-module régulier de même rang. Ses sous-(a,b)-modules sont les mêmes que ceux de E, et ils sont normaux dans θ * (E) si et seulement s'ils le sont dans E. Le saturé par b

  Lemme 3.0.11 Soit λ ∈ C et E λ := C[[b]].e λ le (a,b)-module de rang 1 défini par la relation a.e λ = λ.b.e λ 3 . Pour tout changement de variable θ on a θ * (E λ ) ≃ E λ . Remarque. Comme on a Aut a,b (E λ ) = C * , c'est-à-dire que le groupe des automorphismes du (a,b)-module E λ est réduit aux homothéties non nulles, l'isomorphisme entre θ * (E λ ) et E λ est unique à un scalaire multiplicatif non nul près. Preuve. On a déjà vu que si E est à pôle simple θ * (E) est également à pôle simple et il est de même rang que E car β.E = b.E montre que l'espace vectoriel E b.E est invariant par changement de variable. Donc θ * (E λ ) est isomorphe à E µ pour un µ ∈ C d'après la classification des (a,b)-modules réguliers de rang 1. Mais l'égalité des polynômes de Bernstein donne µ = λ. Remarque. Une conséquence simple de ce qui précède est que si (F j ) j∈[0,k] est une suite de Jordan-Hölder d'un (a,b)-module régulier E de rang k, les θ * (F j ) j∈[0,k] forment une suite de Jordan-Hölder de θ * (E) et les quotients θ * (F j+1 ) θ * (F j ) sont isomorphes aux quotients F j+1 F j . Lemme 3.0.12 Soit λ ∈ C \ -N. Il existe un unique (a,b)-module E à pôle simple de rang 2 tel que l'action de a dans E b 2 .E soit égale à btout changement de variable et c'est le (a,b)-module Ξ (1) λ ≃ C[[b]].s λ-1 .Log s ⊕ C[[b]].s λ-1 . Preuve. On sait que E admet un sous-(a,b)-module normal isomorphe à E λ , et que, quitte à modifier le second vecteur de base modulo b 2 .E on peut supposer que a.e 2 = λ.be 2 4 ; posons alors a.e 1 = λ.b.e 1 + b.e 2 + b 2 .S(b).e 1 + b 2 .T (b).e 2 . Si on cherche une base ε 1 , ε 2 sur C[[b]] sous la formeε 1 = e 1 + b.U.e 1 + b.V.e 2 et ε 2 = e 2 (*) vérifiant a.ε 1 = λ.b.ε 1 + b.ε 2 et a.ε 2 = λ.bε 2 (seconde condition que l'on a déjà supposée vérifiée), on trouve pour U ∈ C[[b]] l'équation différentielle (1 + b.S).U + b.U ′ = -S (A) puis, U étant ainsi choisi, l'équation différentielle b.V ′ + V = -U.(1 + b.T ) -T. (B)Explicitons les calculs : Pour résoudre (A), notons Σ la primitive sans terme constant de S, et posonsU := Γ.exp(-Σ). Alors (A) devient Γ + b.Γ ′ = -S.exp(Σ) (A')qui a une unique solution dans C[[b]]. La résolution de (B) est alors facile. On en conclut que tout tel (a,b)-module est isomorphe à celui défini par la C[[b]]-base ε 1 , ε 2 et les relations ( * ). Pour λ ∈ -N c'est bien sûr Ξ (1) λ avec ε 1 := s λ-1 .Log s et ε 2 := s λ-1 . Comme un changement de variable de la forme θ(a) = a + a 2 .η(a) ne change pas l'action de a et b sur E b 2 .E quand E est à pôle simple, l'invariance par ces changements de variables résulte de la caractérisation précédente. Pour les changement de variables de la forme θ(a) = ρ.a avec ρ ∈ C * , l'assertion est immédiate. Lemme 3.0.13 Soit E un (a,b)-module monogène régulier [λ]-primitif de rang k ≥ 3 et soit (F j ) j∈[1,k] une suite de Jordan-Hölder de E. Supposons que F k-1 soit un thème ainsi que E F k-2 . Alors E est un thème. Preuve. Soit E λ ⊂ E un sous-(a,b)-module normal de rang 1. D'après le théorème 2.1.6 de [B.09b], il suffit de montrer que E λ = F 1 pour conclure. Considérons l'image de E λ dans le quotient E F k-2 . Le normalisé de cette image est de rang ≤ 1. Ceci montre que cette image est contenue dans F k-1 F k-2 qui est l'unique sous-module normal de rang 1 de E F k-2 puisque l'on a supposé que c'est un thème. Alors on a E λ ⊂ F k-1 qui est un thème. Donc E λ = F 1 qui est l'unique sous-module normal de rang 1 de ce thème. Corollaire 3.0.14 Soit E un thème [λ]-primitif de rang k et soit θ un changement de variable. Alors θ * (E) est un thème [λ]-primitif de rang k. Il a mêmes invariants fondamentaux que E. Preuve. En rang 1 c'est clair. En rang 2 également car si j : E → Ξ (1) λ est une injection (a,b)-linéaire, alors j : θ * (E) → θ * (Ξ (1) λ ) sera une injection (a,b)-linéaire, et on a θ * (Ξ le lemme précédent. Montrons maintenant le résultat par récurrence sur k ≥ 2. Supposons le résultat démontré pour le rang k ≥ 2 et montrons-le en rang k + 1. Soit E un thème [λ]-primitif de rang k + 1. Notons F j le sous-(a,b)-module normal de rang j de E. Alors F k est un thème [λ]-primitif de rang k et donc également θ *(F k ). Comme E F k-1 est un thème [λ]-primitif de rang 2, il en est de même de θ * (E) θ * (F k-1 ) ≃ θ * (E F k-1 ). Comme θ * (E) est monogène [λ]-primitif et admet la suite de Jordan-Hölder θ * (F j ), j ∈ [1, k + 1], le lemme suivant permet de conclure que θ * (E) est un thème. Les invariants fondamentaux étant donnés par les quotients succesifs de l'unique suite de Joran-Hölder de θ * (E), la conclusion réulte de la remarque qui précède le lemme 3.0.12.Définition 3.0.15 Soit f : E → F une application C -linéaire entre deux C[[b]]-modules. On dira que f est b-compatible si on a pour chaque entier n l'inclusion f (b n .E) ⊂ b n .F . Si f est bijective, on dira que f est strictement b-compatible si on a f (b n .E) = b n .F pour tout n. Ceci équivaut à demander que f et f -1 soient b-compatibles.Remarque. Il n'existe pas 5 d'application b-compatible bijective de C[[b]] dans C[[b]] qui ne soit pas strictement compatible. Définition 3.0.16 Soit E un C[[b]]-module libre de type fini et soit f θ : E → E une application C -linéaire dépendant d'un paramètre θ ∈ C N . On suppose que f est b-compatible pour chaque valeur de θ. On dira que f dépend polynomialement de θ si pour chaque x ∈ E et chaque entier n l'application C N → E b n .E qui à θ associe la classe de f θ (x) dans E b n .E est polynomiale. Remarques. 1. Dans le cas d'un élément S θ de C[[b]] dépendant du paramètre θ ∈ C N il est équivalent de demander que chaque coefficient de S θ soit un polynôme en θ ou que l'opérateur de multiplication par S θ de C[[b]] dans C[[b]] soit b-compatible. 2. On notera que si l'on a deux applications C -linéaires b-compatibles f et g de C[[b]] dans C[[b]], dépendant polynomialement d'un paramètre θ ∈ C N , leur composée est encore linéaire b-compatible et dépend polynomialement de θ. En effet le coefficient de b n de g(f (x)) ne dépend que des coefficients de f (x) dans C[[b]] b n+1 . C[[b]] et de l'endomorphisme induit par g sur ce quotient dont la matrice est à coefficients dans les polynômes en θ. Dans la suite on considèrera des changements de variable de la forme θ(a) = a + N j=2 θ j .a j où l'on prendra (θ 2 , . . . , θ N ) ∈ C N -1 comme paramètre. On va déjà étudier ces changements de variables (donc α θ = θ(a) et β θ = b.θ ′ (a)) sur le (a,b)-module E λ pour λ ∈ C \ -N. Lemme 3.0.17 Soit E := E λ = C[[b]].e λ où a.e λ = λ.b.e λ . Il existe pour chaque n ∈ N un élément χ n ∈ C[[u]] dépendant polynomialement de θ ∈ C N -1 tel que l'on ait dans E λ b n .e λ = β n .χ n (β).e λ (1) où l'operateur β := β θ est défini par β := b.θ ′ (a) sur E λ . Preuve. Notons déjà que α = θ(a) est une application C -linéaire b-compatible dépendant polynomialement 6 de θ ∈ C N -1 sur tout (a,b)-module à pôle simple. Il en est alors de même pour β qui est même la composée de b et de l'application linéaire (bijective) strictement compatible θ ′ (a) qui dépend polynomialement de θ. Comme l'égalité C[[b]].e λ = C[[β]

  [[β]] que l'on considèrera. Commençons par remarquer que l'on a α.e λ = λ.b.e λ + N j=2 θ j .λ j .b j .e λ où λ j = λ.(λ + 1) . . . (λ + j -1) pour j ≥ 1, ce qui, en utilisant le lemme précédent nous fournitR θ ∈ C[[β]] dépendant polynomialement de θ ∈ C N -1 tel que α.e λ = λ.β.e λ + β 2 .R θ (β).e λ . L'égalité α.S θ .e λ = λ.β.S θ .e λ donne alors S θ . λ.β.e λ + β 2 .R θ (β).e λ + β 2 .S ′θ .e λ = λ.β.S θ .e λ ce qui, après simplification donne l'équation différentielleS ′ θ + R θ .S θ = 0 et donc S θ = exp -Rθ où Rθ désigne la primitive nulle en 0 de R θ .Comme R θ dépend polynomialement de θ il en sera de même de Rθ et aussi de exp -Rθ puisque la nullité du terme constant de Rθ assure que le coefficient de β p dans l'exponentielle ne dépend que du développement limité à l'ordre p de l'exponentielle. . Proposition 3.0.19 Soit E := à Ã.(aλ.b)(1 + z.b p ) -1 .(a -(λ + p -1).b) où l'on suppose λ ∈ -N et p ∈ N * . On effectue sur E le changement de variable θ(a) = a + N j=2 θ j .a j . Alors θ * (E) est isomorphe au (a,b)-module à Ã.(aλ.b)(1 + z θ .b p ) -1 .(a -(λ + p -1).b), où z θ est un polynôme en θ ∈ C N -1 .

  (a -(λ + p -1).b).ϕ = b.S ′ (b) -pS(b) + ρ.b p . s λ-1 λ -1 ce qui montre que (aλ.b).T -1 (b).(a -(λ + p -1).b).ϕ = 0 où l'on a posé T (b) := (b.S ′ (b) -pS(b) + ρ.b p ). On notera que comme on a supposé S(0) = 0 et p ≥ 1 on a T (0) = -p.S(0) = 0.Le paramètre fondamental de ce thème de rang 2 est donc égal àα := -ρ p.S(0) = -Γ(λ + p -1) p.Γ(λ -1).S(0) puisque la série formelle b.S ′ (b)p.S(p) a un coefficient de b p qui est nul.4 Un contre-exemple.Nous allons montré sur un exemple de rang 3 que les paramètres non principaux ne sont pas. en général, invariants par changements de variables. Commençons par montrer une proposition.Proposition 4.0.21 Soit λ ∈ C tel que λ ∈ 2 + Q * + . Considérons alors l'élément de Ξ b).s λ-1 .Log s + (η 0 + η 1 .b).s λ-3 + ζ(b).s λ-1 où ξ, ζ ∈ C[[b]] et η 0 , η 1 ∈ C, η 0 = 0.Alors le thème [λ]-primitif de rang 3 Ã.e est isomorphe au quotient à Ã.(aλ.b).(1 + u.b + α.b 2 ) -1 .(a -(λ + 1).b).(aλ.b) où les nombres complexes u et α sont donnés par 4η 0 .u = η 1 et 4η 0 .α = (λ -1).(λ -2). 13 preuve. Calculons déjà X := (aλ.b).s λ-1 .

  entre crochets dans la formule précédente. On aura donc (aλ.b).S(b) -1 .(a -(λ + 1).b).(1 + b.ξ ′ (b)) -1 .(aλ.b).e = 0. Posons e 3 := e, e 2 := (1 + b.ξ ′ (b)) -1 .(aλ.b).e, e 1 := S(b) -1 .(a -(λ + 1).b).e 2 . Cherchons maintenant U, V ∈ C[[b]] de manière que l'élément ε 3 := e 3 + U.e 2 + V.e 1 vérifie (aλ.b).ε 3 = e 2 + (ρ + σ.b).e 1 . Cela donne l'équation (aλ.b).ε 3 = e 2 + (b.ξ ′ (b) + b 2 .U ′ (b) + b.U(b)).e 2 + (U(b).S(b) + b 2 .V ′ (b)) = e 2 + (ρ + σ.b).e 1 On veut donc b 2 .U ′ (b) + b.U(b) + b.ξ ′ (b) = 0 ainsi que ρ = U(0) et σ = U ′ (0) + U(0).S ′ (0). Comme (a -(λ + 1).b).b.e 1 = 0, la valeur du nombre σ ne jouera aucun rôle, et on aura ρ = -ξ ′ (0). Alors (aλ).ε 3 = e 2 + (ρ + σ.b).e 1 := ε 2 (a -(λ + 1).b).ε 2 = (S(b)ρ.b).e 1 On obtient donc que Ã.e ≃ Ã.ε 3 est isomorphe à Ã Ã.(aλ.b).(1 + u.b + α.b 2 ) -1 .(a -(λ + 1).b).(aλ.b) avec u et α les coefficients respectifs de b et b 2 dans S(b) + ξ ′ (0).b, ce qui donne

  0 , ce qui prouve notre assertion. Prenons maintenant ξ = ζ = 0. On a donc e := s λ-1 . (Log s) 2 2 + (η 0 + η 1 .b).s λ-3 et Ã.e ≃ Ã Ã.(aλ.b).(1 + u.b + α.b 2 ) -1 .(a -(λ + 1).b).(aλ.b) où les nombres complexes u et α sont donnés par 4η 0 .u = η 1 et 4η 0 .α = (λ -1).(λ -2).

  Lemme 5.0.23 Soit θ ∈ C[[a]] un changement de variable. On note α := θ(a) et β := b.θ ′ (a). Pour chaque S ∈ C[[b]] il existe une suite (S l ) l∈N de C[[b]] telle que l'on ait = l≥0 S l (β).α l dans l'algèbre Â. Preuve. Il suffit de montrer que pour chaque ν ∈ N on peut trouver une suite (S ν,l ) l≥0 dans C[[β]] de manière à vérifier b ν = β ν . l≥0 S ν,l (β).α l avec S ν,0 (0) = θ ′ (0) -ν . Ceci s'obtient facilement par récurrence sur ν. Posons a = η(α), c'est à dire que η := θ -1 au sens de la composition des séries formelles sans terme constant. Si l'on a b ν = β ν . l≥0 S ν,l (β).α l on aura b ν+1 = β ν . l≥0 S ν,l (β).α l .β.η ′ (α) et il suffit d'appliquer le lemme 5.0.22 pour faire avancer la récurrence, en constatant que η ′ (0) = θ ′ (0) -1 . Proposition 5.0.24 Soit X un espace complexe réduit et soit ϕ : X → Ξ (N -1) λ une application k-thématique. Soit θ ∈ C[[a]] un changement de variable. Soit θ * (E ϕ ) le faisceau de O X -modules E ϕ muni des opérations α := θ(a) et β := b.θ ′ (a). Alors θ * (E ϕ ) est un O X [[β]]-module libre de rang k de base ϕ, α.ϕ, . . . , α k-1 .ϕ et qui est stable par α. Donc ϕ est encore k-thématique pour la O X (α, β)-structure de Ξ (N -1) λ définie par α et β. Preuve. Il s'agit de montrer que ϕ, α.ϕ, . . . , α k-1 .ϕ est une O X [[β]]-base de E ϕ , ce faisceau étant manifestement stable par α. Comme on a b.E = β.E, et a k .E ⊂ b.E, la matrice de ϕ, α.ϕ, . . . , α k-1 .ϕ dans la O X -base ϕ, a.ϕ, . . . , a k-1 .ϕ de E b.E est triangulaire avec des 1 sur la diagonale. Ceci montre que ϕ, α.ϕ, . . . , α k-1 .ϕ est une une O X -base de E b.E ≃ E β.E. On a donc bien une O X [[β]]-base. Comme, de plus, on a α k .ϕ ∈ b.E = β.E, on a bien montré que ϕ est k-thématique pour la (a,b)-structure donnée par (α, β).

  ce qui est toujours possible d'après notre définition, on aF j = E ∩ Ξ j-1 λ . Pour p ≥ 1 le nombre α ∈ C * caractérisant la classe d'isomorphisme d'un thème E qui est [λ]-primitif de rang 2 d'invariants fondamentaux (λ 1 , p 1 )sera appelé le paramètre de E. Dans le cas p 1 = 0 nous conviendont que le paramètre est α := ∅.

	Définition 2.0.6 Définition 2.0.7 Soit E un thème [λ]-primitif et soit (F j ) j∈[0,k] ses sous-thèmes
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	réguliers de rang 2 donnée dans [B.93] (voir [B.09b]).
	Théorème 2.0.5 Fixons λ 1 > 1 dans Q + * et p 1 ∈ N. Les classes d'isomorphismes
	de thèmes [λ]-primitifs de rang 2 d'invariants fondamentaux est la suivante :
	1. Pour p 1 = 0 on a un unique thème [λ]-primitifs de rang 2 d'invariants fondamentaux (λ 1 , 0) à isomorphisme près ; il est donné par le Ã-module
		Ã Ã.(a -λ 1 .b)(a -(λ 1 -1).b).
	2. Pour chaque p ≥ 1 les classes d'isomorphismes de thèmes [λ]-primitifs
	de rang 2 d'invariants fondamentaux (λ 1 , p 1 ) sont en bijection avec C * . Au nombre α ∈ C * correspond la classe d'isomorphisme du Ã-module (à
	gauche)	Ã Ã.(a -λ 1 .b)(1 + α.b p 1 ) -1 (a -(λ + p 1 -1).b).

  . On prendra garde que si F ⊂ E est un sous-(a,b)-module, il est stable par α et β, mais le sous-(a,b)-module ainsi obtenu (qui est θ * (F )) n'est pas, à priori, isomorphe à F . Le lemme suivant montrera que pour les (a,b)-modules réguliers de rang 1, θ * (E) est toujours isomorphe à E. On verra plus loin que c'est aussi le cas pour thème [λ]-primitif de rang 2, mais que c'est en général faux pour un thème [λ]-primitif de rang ≥ 3. 2. Comme a.E + b.E est un sous-(a,b)-module de E il est immédiat de voir que a.θ * (E) + b.θ * (E) = θ * (a.E + b.E). Un (a,b)-module régulier E est monogène si et seulement si dim C (E (a.E + b.E)) = 1. Cette propriété étant invariante par changement de variable, on en conclut que si E est régulier monogène, pour tout changement de variable θ le (a,b)-module θ * (E) est encore régulier monogène. Donc θ * (E) a le même élément de Bernstein que E. On notera que ceci est une conséquence simple du premier théorème de structure des (a,b)-modules monogènes réguliers de [B. 09a] puisque pour u ∈ Â la forme initiale en (a,b) de Θ(u) est la même que celle de u, à un scalaire non nul près (qui est θ ′ (0) k si la forme initiale est de degré k).

Un (a,b)-module régulier est géométrique si les racines de son polynôme de Bernstein sont dans -Q * + .

c'est en fait l'action de β -1 .α sur l'espace vectoriel E β.E ≃ E b.E.

donc E λ ≃ Ã Ã.(aλ.b) ≃ Â Â.(aλ.b).

grâce à la proposition 1.3 de[B.93].

On voit facilement que la matrice est triangulaire dans la base b n , n ≥ 0.

et même de façon affine de (θ 2 , . . . , θ N ).

par rapport au caractère θ → θ ′ (0) p du groupe des changements de variables, pour un thème de rang 2 d'invariants fondamentaux (λ 1 , p).

c'est-à-dire de la forme θ(a) = r.a + N j=2 θ j .a j .

On a θ 1σ.(λ -1)(λ -2).η 0 = η 1 -2η 0 .σ.(λ -2) ce qui montre que les invariants du changé de variables sont 4η 0 ũ = η 1 -2η 0 .σ.(λ -2) et 4η 0 α = (λ -1)(λ -2) et donc α = α. On constate donc que pour σ = 0 le changé de variable n'est pas isomorphe au thème initial, même si son paramètre principal lui, n'a pas changé, conformément au théorème 3.0.20. On remarquera que le thème de rang 3 considéré a la propriété d'unicité, c'est-à-dire le fait que le couple (α, u) détermine sa classe d'isomorphie. En effet E n'est pas stable car il est de rang 3 et p 2 = 0 et le quotient E F 1 vérifie la propriété d'unicité 9 et End Ã(E) ≃ C . id puisqu'un endomorphisme de rang 1 devrait envoyé e λ sur un élément non nul de E λ+1 . On peut alors appliquer la proposition 3.3.6 de [B.09b] pour conclure.5 Le cas d'une famille holomorphe.Le but de ce paragraphe est de montrer la stabilité de la notion de famille holomorphe de thèmes [λ]-primitifs par un changement de variable. On obtiendra même cette stabilité dans le cas relatif, c'est-à-dire quand le changement de variable dépend holomorphiquement du paramètre de la famille holomorphe. Commençons par une formule : 9 c'est toujours le cas en rang 2.