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In this paper, we extend the Hijazi inequality, involving the Energy-Momentum tensor, for the eigenvalues of the Dirac operator on Spin c manifolds without boundary. The limiting case is then studied and an example is given.

Introduction

On a compact Riemannian spin manifold (M n , g) of dimension n 2, Th. Friedrich [START_REF] Friedrich | Der erste Eigenwert des Dirac-operators einer kompakten Riemannschen Mannigfaltigkeit nichtnagativer Skalarkrümmung[END_REF] showed that any eigenvalue λ of the Dirac operator satisfies

λ 2 λ 2 1 := n 4(n -1) inf M S g , (1) 
where S g denotes the scalar curvature of M . The limiting case of (1) is characterized by the existence of a special spinor called real Killing spinor. This is a section ψ of the spinor bundle satisfying for every X ∈ Γ(T M ),

∇ X ψ = - λ 1 n X • ψ, 1 
where X • ψ denotes the Clifford multiplication and ∇ is the spinorial Levi-Civita connection [START_REF] Lawson | Spin Geometry[END_REF]. On the complement set of zeroes of any spinor field φ, we define φ the field of symmetric endomorphisms associated with the field of quadratic forms, denoted by T φ , called the Energy-Momentum tensor which is given, for any vector field X, by

T φ (X) = g( φ (X), X) = Re < X • ∇ X φ, φ |φ| 2 > .
The associated symmetric bilinear form is then given for every X, Y ∈ Γ(T M ) by

g( φ (X), Y ) = 1 2 Re < X • ∇ Y φ + Y • ∇ X φ, φ |φ| 2 > .
Note that if the spinor field φ is an eigenspinor, C. Bär showed that the zero set is contained in a countable union of (n -2)-dimensional submanifolds and has locally finite (n -2)-dimensional Hausdroff density [START_REF] Bär | Zero sets of solutions to semilinear elliptic systems of first order[END_REF]. In 1995, O. Hijazi [START_REF] Hijazi | Lower bounds for the eigenvalues of the Dirac operator[END_REF] modified the connection ∇ in the direction of the endomorphism ψ where ψ is an eigenspinor associated with an eigenvalue λ of the Dirac operator and established that

λ 2 inf M ( 1 4 S g + | ψ | 2 ). (2) 
The limiting case of (2) is characterized by the existence of a spinor field ψ satisfying for all X ∈ Γ(T M ),

∇ X ψ = -ψ (X) • ψ. (3) 
The trace of ψ being equal to λ, Inequality (2) improves Inequality [START_REF] Aubin | Nonlinear Analysis on Manifolds, Monge-Ampre Equations[END_REF] since by the Cauchy-Schwarz inequality,

| ψ | 2 (tr( ψ )) 2 n
, where tr denotes the trace of ψ . N. Ginoux and G. Habib showed in [START_REF] Ginoux | A spectral estimate for the Dirac operator on Riemannian flows[END_REF] that the Heisenberg manifold is a limiting manifold for (2) but equality in (1) cannot occur.

Using the conformal covariance of the Dirac operator, O. Hijazi [START_REF] Hijazi | A conformal Lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors[END_REF] showed that, on a compact Riemannian spin manifold (M n , g) of dimension n 3, any eigenvalue of the Dirac operator satisfies

λ 2 n 4(n -1) µ 1 , (4) 
where µ 1 is the first eigenvalue of the Yamabe operator given by

L := 4 n -1 n -2 g +S g ,
g is the Laplacian acting on functions. In dimension 2, C. Bär [START_REF] Bär | Lower eigenvalue estimates for Dirac operators[END_REF] proved that any eigenvalue of the Dirac operator on M satisfies

λ 2 2πχ(M ) Area(M, g) , (5) 
where χ(M ) is the Euler-Poincaré characteristic of M . The limiting case of ( 4) and ( 5) is also characterized by the existence of a real Killing spinor. In terms of the Energy-Momentum tensor, O. Hijazi [START_REF] Hijazi | Lower bounds for the eigenvalues of the Dirac operator[END_REF] proved that, on such manifolds any eigenvalue of the Dirac operator satisfies the following

λ 2      1 4 µ 1 + inf M | ψ | 2 if n 3, πχ(M ) Area(M,g) + inf M | ψ | 2 if n = 2. ( 6 
)
Again, the trace of ψ being equal to λ, Inequality (6) improves Inequalities (4) and ( 5). The limiting case of ( 6) is characterized by the existence of a spinor field ϕ satisfying for all X ∈ Γ(T M ),

∇ X ϕ = -ϕ (X) • ϕ, (7) 
where ϕ = e -n-1 2 u ψ, the spinor field ψ is an eigenspinor associated with the first eigenvalue of the Dirac operator and ψ is the image of ψ under the isometry between the spinor bundles of (M n , g) and (M n , g = e 2u g). Suppose that on a spin manifold M , there exists a spinor field φ such that for all X ∈ Γ(T M ),

∇ X φ = -E(X) • φ, (8) 
where E is a symmetric 2-tensor defined on T M . It is easy to see that E must be equal to φ . If the dimension of M is equal to 2, Th. Friedrich [START_REF] Friedrich | On the spinor representation of surfaces in Euclidean 3spaces[END_REF] proved that the existence of a pair (φ, E) satisfying ( 8) is equivalent to the existence of a local immersion of M into the euclidean space R 3 with Weingarten tensor equal to E. In [START_REF] Morel | Tenseur d'impulsion-énergie et géométrie spinorielle extrinsèque[END_REF], B. Morel showed that if M n is a hypersurface of a manifold N carrying a parallel spinor, then the Energy-Momentum tensor (associated with the restriction of the parallel spinor) appears, up to a constant, as the second fundamental form of the hypersurface. G. Habib [START_REF] Habib | Energy-Momentum tensor on foliations[END_REF] studied Equation (8) for an endomorphism E not necessarily symmetric. He showed that the symmetric part of E is φ and the skew-symmetric part of E is q φ defined on the complement set of zeroes of φ by

g(q φ (X), Y ) = 1 2 Re < Y • ∇ X φ -X • ∇ Y φ, φ |φ| 2 >,
for all X, Y ∈ Γ(T M ). Then he modifies the connection in the direction of ψ + q ψ where ψ is an eigenspinor associated with an eigenvalue λ and gets that

λ 2 inf M ( 1 4 S g + | ψ | 2 + |q ψ | 2 ). ( 9 
)
The Heisenberg group and the solvable group are examples of limiting manifolds [START_REF] Habib | Energy-Momentum tensor on foliations[END_REF]. For a better understanding of the tensor q φ , he studied Riemannian flows and proved that if the normal bundle carries a parallel spinor, the tensor q φ plays the role of the O'Neill tensor of the flow. Here we prove the corresponding inequalities for Spin c manifolds:

Theorem 1.1 Let (M n , g) be a compact Riemannian Spin c manifold of dimension n 2, and denote by iΩ the curvature form of the connection A on the S 1 -principal fibre bundle (S 1 M, π, M ). Then any eigenvalue of the Dirac operator to which is attached an eigenspinor ψ satisfies

λ 2 inf M 1 4 S g - c n 4 |Ω| g + | ψ | 2 + |q ψ | 2 , ( 10 
)
where c n = 2[ n 2 ]
1 2 and |Ω| g is the norm of Ω with respect to g.

In this paper, we only consider the deformation of the connection in the direction of the symmetric endomorphism φ and hence under the same conditions as Theorem 1.1, one gets

λ 2 inf M 1 4 S g - c n 4 |Ω| g + | ψ | 2 . (11) 
In 1999, A. Moroianu and M. Herzlich [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF] proved that on Spin c manifolds of dimension n 3, any eigenvalue of the Dirac operator satisfies

λ 2 λ 2 1 := n 4(n -1) µ 1 , (12) 
where µ 1 is the first eigenvalue of the perturbed Yamabe operator defined by

L Ω = L -c n |Ω| g .
The limiting case of ( 12) is characterized by the existence of a real Killing spinor ψ satisfying Ω • ψ = i cn 2 |Ω| g ψ. In terms of the Energy-Momentum tensor we prove: Theorem 1.2 Under the same conditions as Theorem 1.1, any eigenvalue λ of the Dirac operator to which is attached an eigenspinor ψ satisfies

λ 2      1 4 µ 1 + inf M | ψ | 2 if n 3, πχ(M ) Area(M,g) -1 2 R M |Ω|gvg Area(M,g) + inf M | ψ | 2 if n = 2, ( 13 
)
where µ 1 is the first eigenvalue of the perturbed Yamabe operator.

Using the Cauchy-Schwarz inequality in dimension n 3, we have that Inequality [START_REF] Hebey | Introduction à l'analyse non linéaire sur les variétés[END_REF] implies Inequality [START_REF] Habib | Energy-Momentum tensor on foliations[END_REF]. As a corollary of Theorem 1.2, we compare the lower bound to a conformal invariant (the Yamabe number) and to a topological invariant, in case of 4-dimensional manifolds whose associated line bundle has self dual curvature (see Corollary (4.1) and Corollary (4.2)). Finally, we study the limiting case of ( 11) and ( 13), and we give an example.

Even though the number inf M | ψ | 2 is not a nice geometric invariant, it appears naturally in some situations. For example, on hypersurfaces of certain limiting Spin c manifolds it is easy to see, with the help of the Spin c Gauss formula, that it is precisely the second fundamental form. Also, when deforming the Riemannian metric in the direction of the Energy-Momentum tensor, the eigenvalues of the Dirac operator on a Spin c manifold are then critical (see [START_REF] Nakad | The Energy-Momentum tensor on Spin c manifolds[END_REF]). The author would like to thank Oussama Hijazi for his support and encouragements.

Spin c geometry and the Dirac operator

In this section, we briefly introduce basic notions concerning Spin c manifolds and the Dirac operator. Details can be found in [START_REF] Friedrich | Dirac operator's in Riemannian Geometry[END_REF], [START_REF] Lawson | Spin Geometry[END_REF] and [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF].

Let (M n , g) be a compact connected oriented Riemannian manifold of dimension n 2 without boundary. Furthermore, let SOM be the SO n -principal bundle over M of positively oriented orthonormal frames. A Spin c structure of M is a Spin c n -principal bundle (Spin c M, π, M ) and a S 1 -principal bundle (S 1 M, π, M ) together with a double covering given by θ : Let Σ c M := Spin c M × ρn Σ n be the associated spinor bundle where

Spin c M -→ SOM × M S 1 M such that θ(ua) = θ(u)ξ(a),
Σ n = C 2 [ n 2 ]
and ρ n : Spin c n -→ End(Σ n ) the complex spinor representation. A section of Σ c M will be called a spinor and the set of all spinors will be denoted by Γ(Σ c M ). The spinor bundle Σ c M is equipped with a natural Hermitian scalar product, denoted by < ., . > and satisfies

< X • ψ, ϕ >= -< ψ, X • ϕ > for every X ∈ Γ(T M ) and ψ, ϕ ∈ Γ(Σ c M ),
where X • ψ denotes the Clifford multiplication of X and ψ. With this Hermitian scalar product we define an L 2 -scalar product

(ψ, φ) = M < ψ, φ > v g ,
for any spinors ψ and φ. Additionally, given a connection 1-form A on S 1 M , A : T (S 1 M ) -→ iR and the connection 1-form ω M on SOM for the Levi-Civita connection ∇ M , induce a connection on the principal bundle SOM × M S 1 M , and hence a covariant derivative ∇ on Γ(Σ c M ) [START_REF] Friedrich | Dirac operator's in Riemannian Geometry[END_REF], given by

∇ e i ψ = b, e i (σ) + 1 4 n j=1 e j • ∇ M e i e j • σ + 1 2 A(s * (e i ))σ , (14) 
where ψ = [b, σ] is a locally defined spinor field, (e 1 , . . . , e n ) is a local oriented orthonormal tangent frame and s :

U -→ S 1 M is a local section of S 1 M .
The curvature of A is an imaginary valued 2-form denoted by F A = dA, i.e., F A = iΩ, where Ω is a real valued 2-form on S 1 M . We know that Ω can be viewed as a real valued 2-form on M [START_REF] Friedrich | Dirac operator's in Riemannian Geometry[END_REF]. In this case iΩ is the curvature form of the associated line bundle L. It's the complex line bundle associated with the S 1 -principal bundle via the standard representation of the unit circle. The spinorial curvature R associated with the connection ∇, is given by

R X,Y = 1 4 n i,j=1 g R X,Y e i , e j e i • e j • + i 2 Ω(X, Y ).
In the Spin c case, the Ricci identity translates to

j e j • R e j ,X ψ = 1 2 Ric(X) • ψ - i 2 (X Ω) • ψ, (15) 
where denotes the interior product. For every spinor ψ, the Dirac operator is locally defined by

Dψ = n i=1 e i • ∇ e i ψ.
It is an elliptic, self-adjoint operator with respect to the L 2 -scalar product and verifies the Schrödinger-Lichnerowicz formula

D 2 = ∇ * ∇ + 1 4 S g Id Γ(Σ c M ) + i 2 Ω•,
where Ω• is the extension of the Clifford multiplication to differential forms given by (e * i ∧ e * j ) • ψ = e i • e j • ψ.

Eigenvalue estimates on Spin c manifolds

In this section, we prove the lower bound [START_REF] Ginoux | A spectral estimate for the Dirac operator on Riemannian flows[END_REF]. This proof is based on the following Lemma given by A. Moroianu and M. Herzlich in [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF]:

Lemma 3.1 [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF]. Let (M n , g) be a Spin c manifold. For any spinor ψ ∈ Γ(Σ c M ) and a real 2-form Ω, we have

< iΩ • ψ, ψ > - c n 2 |Ω| g |ψ| 2 , ( 16 
)
where |Ω| g is the norm of Ω, with respect to g given by |Ω| 2 g = i<j (Ω ij ) 2 , in any orthonormal local frame. Moreover, if equality holds in [START_REF] Hijazi | Première valeur propre de l'opérateur de Dirac et nombre de Yamabe[END_REF], then

Ω • ψ = i c n 2 |Ω| g ψ. (17) 
Proof of Theorem 1.1: Let E (resp. Q) be a symmetric (resp. skewsymmetric) 2-tensor defined on T M . For any spinor field φ, the modified connection

∇ X φ := ∇ X φ + E(X) • φ + Q(X) • φ, satisfies | ∇φ| 2 = |∇φ| 2 -|E| 2 |φ| 2 -|Q| 2 |φ| 2 .
After integration on M , the Schrödinger-Lichnerowicz formula gives

M | ∇φ| 2 v g = M |Dφ| 2 v g - M 1 4 S g |φ| 2 v g - M (|E| 2 + |Q| 2 )|φ| 2 v g - M < i 2 Ω • φ, φ > v g .
Let ψ be an eigenspinor corresponding to the eigenvalue λ of D. For E = ψ , Q = q ψ and by Lemma 3.1, it follows

λ 2 M |ψ| 2 v g 1 4 M S g |ψ| 2 v g + M (| ψ | 2 + |q ψ | 2 )|ψ| 2 v g + M < i 2 Ω • ψ, ψ > v g M 1 4 S g - c n 4 |Ω| g + | ψ | 2 + |q ψ | 2 |ψ| 2 v g .
Finally,

λ 2 inf M 1 4 S g - c n 4 |Ω| g + | ψ | 2 + |q ψ | 2 .

Conformal geometry and eigenvalue estimates

Before proving Theorem 1.2, we give some basic facts on conformal Spin c geometry. The conformal class of g is the set of metrics g = e 2u g, for a real function u on M . At a given point x of M , we consider a g-orthonormal basis {e 1 , . . . , e n } of T x M . The corresponding g -orthonormal basis is denoted by {e 1 = e -u e 1 , . . . , e n = e -u e n } . This correspondence extends to the Spin c level to give an isometry between the corresponding spinor bundles. We put a " " above every object which is naturally associated with the metric g, except for the scalar curvature where S g (resp. S u or S h ) denotes the scalar curvature associated with the metric g (resp. g = e 2u g = h 4 n-2 g). Then, for any spinor fields ψ and ϕ, one has < ψ, ϕ >=< ψ, ϕ > , where < ., . > denotes the natural Hermitian scalar products on Γ(Σ c M ), and on Γ(Σ c M ). The corresponding Dirac operators satisfy

D ( e -(n-1) 2 u ψ ) = e -(n+1) 2 u Dψ.
The norm of any real 2-form Ω with respect to g and g are related by

|Ω| g = e -2u |Ω| g .
O. Hijazi [START_REF] Hijazi | Lower bounds for the eigenvalues of the Dirac operator[END_REF] showed that on a spin manifold the Energy-Momentum tensor verifies

| ϕ | 2 = e -2u | ϕ | 2 = e -2u | ψ | 2 ,
where ϕ = e -(n-1) 2 u ψ. We extend the result to a Spin c manifold and get the same relation.

n-2 -c n |Ω| g . For any positive function H, we write f H = h, where f is a positive function, and refering to [START_REF] Hijazi | Première valeur propre de l'opérateur de Dirac et nombre de Yamabe[END_REF] we get

µ 1 = (H -1 LH)f 2 H 2 v g -c n M |Ω| g f 2 H 2 v g + M H 2 |df | 2 v g . Finally, µ 1 inf M (H -1 L Ω H) = inf M (S v e 2v -c n |Ω| g ),
where

e 2v = H 4 n-2 , then µ 1 = sup u inf M (S u e 2u -c n |Ω| g ).
For n = 2 and for every u we have S u e 2u = S g + 2 g u. The Stokes and Gauβ-Bonnet theorems yield inf

M (S u e 2u -2|Ω| g ) M S u e 2u -2|Ω| g v g Area(M, g) = 4πχ(M ) -2 M |Ω| g v g Area(M, g) .
Let u 0 be a solution of the following equation [START_REF] Aubin | Nonlinear Analysis on Manifolds, Monge-Ampre Equations[END_REF] 2

g u = M (S g -2|Ω| g )v g Area(M, g) -S g + 2|Ω| g , (21) 
hence,

S u 0 e 2u 0 -2|Ω| g = 2 g u 0 + S g -2|Ω| g = 4πχ(M ) -2 M |Ω| g v g Area(M, g) .
Proof of Theorem 1.2: Combining Lemma 4.2 and Lemma 4.1, Theorem 1.2 follows.

Remark 4.1 Inequality (11) improves Inequality [START_REF] Habib | Energy-Momentum tensor on foliations[END_REF], which itself implies the Friedrich Spin c inequality given by

λ 2 n 4(n -1) inf M (S g -c n |Ω| g ). ( 22 
)
Equality holds in [START_REF] Morel | Tenseur d'impulsion-énergie et géométrie spinorielle extrinsèque[END_REF] if and only if equality holds in [START_REF] Habib | Energy-Momentum tensor on foliations[END_REF], i.e., if and only if the eigenspinor ψ associated with the first eigenvalue of D is a real Killing spinor and

Ω • ψ = i cn 2 |Ω| g ψ.
Corollary 4.1 Any eigenvalue of the Dirac operator on a compact Riemannian Spin c manifold of dimension n 3, satisfies

λ 2 1 4 vol(M, g) -2 n Y (M, [g]) -c n Ω n 2 + inf M | ψ | 2 ,
where Y (M, [g]) is the Yamabe number given by

Y (M, [g]) = inf η =0 M 4 n-1 n-2 |dη| 2 + S g η 2 M |η| 2n n-2 n-2 n
.

Proof : Using the Hölder inequality, it follows

µ 1 = inf η =0 M 4 n-1 n-2 |dη| 2 + (S g -c n |Ω| g )η 2 M η 2 inf η =0 M 4 n-1 n-2 |dη| 2 + (S g -c n |Ω|)η 2 M |η| 2n n-2 n-2 n vol(M, g) 2 n
.

Using the Hölder inequality again, we deduce

µ 1 vol(M, g) 2 n inf η =0 M 4 n-1 n-2 |dη| 2 + Sη 2 M |η| 2n n-2 n-2 n -c n M |Ω| n 2 2 n = Y (M, [g])-c n Ω n 2 .
Finally, replacing in (13), we get the result.

Corollary 4.2 On a compact 4-dimensional Spin c manifold with self-dual curvature form iΩ, any eigenvalue of the Dirac operator satisfies

λ 2 1 4 vol(M, g) -1 2 Y (M, [g]) -4π √ 2 c 1 (L) 2 + inf M | ψ | 2 ,
where c 1 (L) is the Chern number of the line bundle L associated with the Spin c structure.

Proof: It follows directly from Corollary 4.1 and the fact that if n = 4 and Ω self-dual, then M |Ω| 2 g v g = 4π 2 c 1 (L) 2 (see [START_REF] Friedrich | Dirac operator's in Riemannian Geometry[END_REF]).

Equality case

In this section, we study the limiting case of ( 11) and ( 13). An example is then given.

Proposition 5.1 Under the same conditions as Theorem 1.1,

Equality in (11) holds ⇐⇒ ∇ X ψ = -ψ (X) • ψ, Ω • ψ = i cn 2 |Ω| g ψ, (23) 
for any X ∈ Γ(T M ) and where ψ is an eigenspinor associated with the first eigenvalue of the Dirac operator.

Proof: If equality in [START_REF] Gursky | Yamabe invariants and Spin c structure[END_REF] is achieved, the two conditions follow directly. Now, suppose that ∇ X ψ = -ψ (X)•ψ and Ω•ψ = i cn 2 |Ω| g ψ. The condition ∇ X ψ = -ψ (X)•ψ implies that |ψ| 2 is constant. Denoting by R The curvature tensor on the Spin c bundle associated with the connection ∇, one easily gets the following relation

R X,Y ψ + d ψ (X, Y ) • ψ + [ ψ (X), ψ (Y )] • ψ = 0,
where d ψ is a 2-form with values in Γ(T M ) given by

d ψ (X, Y ) = (∇ X ψ )Y -(∇ Y ψ )X.
Taking Y = e j and performing its Clifford multiplication by e j yields by the Ricci identity (15) on a Spin c manifold

- 1 2 Ric(X) • ψ + i 2 (X Ω) • ψ + j e j • d ψ (X, e j ) • ψ + j e j • [ ψ (X), ψ (e j )] • ψ = 0. ( 24 
)
We then decompose the last two terms in [START_REF] Montiel | Using spinors to study submanifolds[END_REF] using that X •α = X ∧α-X α for any form α, it follows

j e j • d ψ (X, e j ) • ψ = j [e j ∧ d ψ (X, e j )] • ψ -[X(tr ψ ) + div ψ (X)]ψ. j e j • [ ψ (X), ψ (e j )] • ψ = 2 (tr ψ ) ψ (X) • ψ -2 j g(X, ψ (e j )) ψ (e j ) • ψ.
Taking the scalar product of (24) with ψ, and after seperating real and imaginary parts, yields for every vector field X the relation

X(tr ψ ) + div ψ (X) |ψ| 2 = i 2 < (X Ω) • ψ, ψ > . (25) 
But since Equality (17) holds we compute

< (X Ω) • ψ, ψ > = < (X ∧ Ω) • ψ, ψ > -< X • Ω • ψ, ψ > = < (X ∧ Ω) • ψ, ψ > -i n 2 1 2 |Ω| g < X • ψ, ψ > .
After separating real and imaginary parts, < (X Ω) • ψ, ψ > must vanish. Using this and n j=1 e j • (e j Ω) = 2Ω, Clifford multiplication of ( 24) with e k , and for X = e k , gives

- 1 2 S g ψ -iΩ • ψ = k,j e j • (e k ∧ d ψ (e j , e k )) • ψ -2(tr ψ ) 2 ψ + 2| ψ | 2 ψ.
An easy computation implies that k,j e j • (e k ∧ d ψ (e j , e k )) • ψ = 0, hence

- 1 2 S g + n 2 1 2 |Ω| g = -2(tr ψ ) 2 + 2| ψ | 2 , (26) 
which implies Equality in [START_REF] Gursky | Yamabe invariants and Spin c structure[END_REF].

Proposition 5.2 On a compact Riemannian Spin c manifold (M n , g) of dimension n 3, assume that the first eigenvalue λ 1 of the Dirac operator to which is attached an eigenspinor ψ satisfies the equality case in [START_REF] Hebey | Introduction à l'analyse non linéaire sur les variétés[END_REF]. Then, | ψ | is constant and if h > 0 denotes an eigenfunction of the Yamabe operator corresponding to µ 1 , then for any vector field X g(X, ψ (dh) -

λ 1 dh) = g(λ 1 X -ψ (X), dh) = 0. (27) 
Proof: If n 3 and equality holds in [START_REF] Hebey | Introduction à l'analyse non linéaire sur les variétés[END_REF], we consider the positive function v > 0 defined by e 2v = h 4 n-2 where h is an eigenfunction of the Yamabe operator corresponding to µ 1 . Inequality [START_REF] Kim | The Einstein-Dirac equation on Riemannian spin manifolds[END_REF] 

with u = v gives | ψ | is constant, ∇ X ϕ = -ϕ (X) • ϕ and Ω • ϕ = i cn
2 |Ω| g ϕ. By Proposition 5.1, Equality ( 26) and ( 25) can be considered for the conformal metric g = e 2v g = h 4 n-2 g to get

(tr ϕ ) 2 := f 2 = 1 4 S v - c n 4 |Ω| g + | ϕ | 2 , grad f = -div ϕ .
It is straightforward to see that these two equalities give (27).

Example: If the lower bound ( 22) is achieved, automatically equality holds in [START_REF] Gursky | Yamabe invariants and Spin c structure[END_REF]. Here we will give an example where equality holds in [START_REF] Gursky | Yamabe invariants and Spin c structure[END_REF] but not in [START_REF] Morel | Tenseur d'impulsion-énergie et géométrie spinorielle extrinsèque[END_REF]. Let (M 3 , g) = (S 3 , can) be endowed with its unique spin structure and consider a real Killing spinor ψ with Killing constant 1 2 . As the norm of ψ is constant, we may suppose that |ψ| = 1. Let ξ be the Killing vector field on M defined by ig(ξ, X) =< X • ψ, ψ > .

In [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF], it is shown that: Let h be a real constant such that h > 1. We define the metric g h on M , by:

1. idξ(X, Y ) = -< X ∧ Y • ψ, ψ > for any X, Y ∈ Γ(T M ).
g h (ξ, X) = g(ξ, X) pour tout X ∈ Γ(T M ), g h (X, Y ) = h -2 g(X, Y ) pour X, Y ⊥ ξ.
Using the following isomorphism

(T M, g) -→ (T M, g h ) Z -→ Z h = Z si Z = ξ, hZ si Z ⊥ ξ, if u = {ξ, e 1 , e 2 } is a positive local g-orthonormal frame defined in a neigh- borhood U of x, then u h = {ξ h = ξ, e h 1 = he 1 , e h 2 = he 2 } is a positive local g h -orthonormal frame defined in a neighborhood U of x.
There exists an isomorphism of vector bundles (see [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF]) given by:

Σ g M -→ Σ g h M ψ = [ũ, φ] -→ ψ h = [ũ h φ], satisfying, < ψ 1 , ψ 2 > ΣgM = < ψ h 1 , ψ h 2 > Σ g h M and (X•ψ) h = X h •ψ h for any X ∈ Γ(T M ).
The covariant derivative of the spinor ψ h = [ũ h , φ] is given by (see [START_REF] Herzlich | Generalized Killing spinors and conformal eigenvalue estimates for Spin c manifold[END_REF]):

∇ h X h ψ h = h 2 2 X h • ψ h + i((1 -h 2 )ξ)(X h )ψ h .
Let α = (1 -h 2 )ξ be a 1-form on M . We may view iα as a connection 1-form on the trivial S 1 bundle. Let L = M × C be the induced trivial line bundle over M . We denote by σ the global section of L and by ∇ 0 the covariant derivative on L induced by the above connection. It satisfies ∇ 0 X σ = iα(X)σ, for any X ∈ Γ(T M ).

On the twisted bundle Σ g h M ⊗ L, we consider the connection ∇ = ∇ h ⊗ ∇ 0 and we calculate

∇ e h 1 (ψ h ⊗ σ) = h 2 2 e h 1 • (ψ h ⊗ σ), ∇ e h 2 (ψ h ⊗ σ) = h 2 2 e h 2 • (ψ h ⊗ σ), ∇ ξ (ψ h ⊗ σ) = ( -3h 2 2 + 2)ξ • (ψ h ⊗ σ).
The spinor ψ h ⊗ σ is a section of Σ g h M ⊗ L, which is, of course, the spinor bundle associated to the Spin c structure with auxiliary line bundle L 2 . It is easy to see that ψ h ⊗ σ is an eigenspinor associated with the eigenvalue

h 2
2 -2, and it is clear that ψ h ⊗ σ is not a real Killing spinor since h = 1, so (M, g h ) not is a limiting manifold for the Friedrich Spin c inequality. But it is a limiting manifold for the lower bound [START_REF] Gursky | Yamabe invariants and Spin c structure[END_REF], in fact we will prove that (23) holds.

The complex 2-form idα is the curvature form associated with the connection ∇ 0 on L. We have:

dα • (ψ h ⊗ σ) = (1 -h 2 )dξ • (ψ h ⊗ σ) = i(h 2 -1)h 2 ψ h ⊗ σ.
The norm of dα with respect to the metric g h is given by

|dα| 2 g h = (1 -h 2 ) 2 |dξ| 2 g h = (1 -h 2 ) 2 (dξ(e h 1 , e h 2 )) 2 = h 4 (1 -h 2 ) 2 .
Since h > 1, |dα| g h = h 2 (h 2 -1), then the second equation of ( 23) is verified. Futhermore, it is easy to check that T ψ h ⊗σ (e h 1 ) = T ψ h ⊗σ (e h 2 ) = g h ( ψ h ⊗σ (e h 1 ), e h 1 ) = g h ( ψ h ⊗σ (e h 2 ), e h 2 ) = -h 2 2 , g h ( ψ h ⊗σ (e h 1 ), ξ) = g h ( ψ h ⊗σ (e h 2 ), ξ) = g h ( ψ h ⊗σ (e h 1 ), e h 2 ) = 0,

T ψ h ⊗σ (ξ) = g h ( ψ h ⊗σ (ξ), ξ) = 3h 2 2 -2.
Finally, it is straightforward to verify that the first equation of ( 23) holds:

-ψ h ⊗σ (e h 1 ) • (ψ h ⊗ σ) = h 2 2 e h 1 • (ψ h ⊗ σ) = ∇ e h 1 (ψ h ⊗ σ), -ψ h ⊗σ (e h 2 ) • (ψ h ⊗ σ) = h 2 2 e h 2 • (ψ h ⊗ σ) = ∇ e h 2 (ψ h ⊗ σ), -ψ h ⊗σ (ξ) • (ψ h ⊗ σ) = ( -3h 2 2 + 2)ξ • (ψ h ⊗ σ) = ∇ ξ (ψ h ⊗ σ).

  for every u ∈ Spin c M and a ∈ Spin c n , where ξ is the 2-fold covering of Spin c n over SO n × S 1 . A Riemannian manifold that admits a Spin c structure is called a Riemannian Spin c manifold.

2. d|ξ| 2 =

 2 -2dξ(ξ, .) = -2g(∇ ξ ξ, .) -2∇ ξ ξ = 0. 3. ξ • ψ = iψ and |ξ| = 1. 4. ξ•ψ = -e 1 •e 2 •ψ, where {ξ/|ξ|, e 1 , e 2 } is an oriented local orthonormal frame.

Lemma 4.1 Under the same conditions as Theorem 1.1, any eigenvalue λ of the Dirac operator to which is attached an eigenspinor ψ satisfies

Proof: For any spinor field φ and for any symmetric 2-tensor E defined on T M , the modified connection introduced in [START_REF] Hijazi | Lower bounds for the eigenvalues of the Dirac operator[END_REF]:

Using the Schrödinger-Lichnerowicz formula on M , applied to the spinor field φ with respect to the metric g, yields

For the spinor ϕ = e -(n-1) 2 u ψ with Dψ = λψ, one gets D ϕ = λe -u ϕ, and hence by Lemma 3.1 and for

Lemma 4.2 Let (M n , g) be a compact Riemannian Spin c manifold of dimension n 2 and S g (resp. S u or S h ) the scalar curvature associated with the metric g (resp. g = e 2u g = h 4 n-2 g). The 2-form iΩ denotes the curvature form on the S 1 -principal bundle associated with the Spin c structure. We have

where µ 1 is the first eigenvalue of the perturbed Yamabe operator L Ω .

Proof: For n 3, let h > 0 be an eigenfunction of L Ω associated with the eigenvalue µ 1 such that M h 2 v g = 1. For a conformal metric g = e 2u g = h