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Abstract

In this paper, we extend the Hijazi inequality, involving the Energy-Momentum
tensor, for the eigenvalues of the Dirac operator on Spinc manifolds without
boundary. The limiting case is then studied and examples are given.
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1 Introduction

On a compact Riemannian spin manifold (Mn, g) of dimension n > 2, Th.
Friedrich [5] showed that any eigenvalue λ of the Dirac operator satisfies

λ2
> λ2

1 :=
n

4(n− 1)
inf
M
Sg, (1)

where Sg denotes the scalar curvature of M . The limiting case of (1) is
characterized by the existence of a special spinor called real Killing spinor.
This is a section ψ of the spinor bundle satisfying for every X ∈ Γ(TM),

∇Xψ = −λ1

n
X.ψ,
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where X.ψ denotes the Clifford multiplication and ∇ is the spinorial Levi-
Civita connection [20]. In 1995, O. Hijazi [16] established that, on such
manifolds any eigenvalue of the Dirac operator satisfies the following

λ2
> inf

M
(
1

4
Sg + |Tψ|2), (2)

where Tψ is the field of symmetric endomorphisms associated with the field of
quadratic forms (denoted also by Tψ) called the Energy-Momentum tensor,
defined on the complement set of zeroes of the eigenspinor ψ, for any vector
field X by

Tψ(X) = Re < X.∇Xψ,
ψ

|ψ|2 > .

The limiting case of (2) is characterized by the existence of a spinor field ψ
satisfying for all X ∈ TM ,

∇Xψ = −Tψ(X).ψ. (3)

The trace of Tψ being equal to λ, Inequality (2) improves Inequality (1)

since by the Cauchy-Schwarz inequality, |Tψ|2 >
(tr(Tψ))2

n
, where tr denotes

the trace of Tψ. N. Ginoux and G. Habib showed in [9] that the Heisenberg
manifold is a limiting manifold for (2) but equality in (1) cannot occur.

Using the conformal covariance of the Dirac operator, O. Hijazi [14] showed
that, on a compact Riemannian spin manifold (Mn, g) of dimension n > 3,
any eigenvalue of the Dirac operator satisfies

λ2
>

n

4(n− 1)
µ1, (4)

where µ1 is the first eigenvalue of the Yamabe operator given by

L := 4
n− 1

n− 2
△g +Sg,

△g is the Laplacian acting on functions. In dimension 2, C. Bär [2] proved
that any eigenvalue of the Dirac operator on M satisfies

λ2
>

2πχ(M)

Area(M, g)
, (5)

where χ(M) is the Euler-Poincaré characteristic of M . The limiting case
of (4) and (5) is also characterized by the existence of a Killing spinor. In
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terms of the Energy-Momentum tensor, O. Hijazi [16] proved that, on such
manifolds any eigenvalue of the Dirac operator satisfies the following

λ2
>





1
4
µ1 + inf

M
|Tψ|2 if n > 3,

πχ(M)
Area(M,g)

+ inf
M

|Tψ|2 if n = 2.

(6)

Again, the trace of Tψ being equal to λ, Inequality (6) improves Inequalities
(4) and (5). The limiting case of (6) is characterized by the existence of a
spinor field ϕ satisfying for all X ∈ TM ,

∇Xϕ = −Tϕ(X).ϕ, (7)

where ϕ = e−
n−1

2
uψ, ψ is an eigenspinor associated with the first eigenvalue

of the Dirac operator and ψ is the image of ψ under the isometry between
the spinor bundles of (Mn, g) and (Mn, g = e2ug). Suppose that on a spin
manifold M , there exists a spinor field ψ such that for all X ∈ TM,

∇Xψ = −E(X).ψ, (8)

where E is a symmetric 2-tensor defined on TM . It is easy to see that E must
be equal to Tψ. If the dimension of M is equal to 2, Th. Friedrich [6] proved
that the existence of a pair (ψ,E) satisfying (8) is equivalent to the existence
of a local immersion of M into the euclidean space R

3 with Weingarten
tensor equal to E. In [21], B. Morel showed that if Mn is a hypersurface of
a manifold N carrying a parallel spinor, then the Energy-Momentum tensor
(associated to the restriction of the parallel spinor) appears, up to a constant,
as the second fundamental form of the hypersurface. G. Habib [11] studied
Equation (8) for an endomorphism E not necessarily symmetric. He showed
that the symmetric part of E is Tψ and the skew-symmetric part of E is the
tensor defined on the complement set of zeroes of ψ by

Qψ(X, Y ) =
1

2
Re < Y.∇Xψ −X.∇Y ψ,

ψ

|ψ|2 >,

for all X, Y ∈ TM . Then he modifies the connection in the direction of E
and gets that any eigenvalue of the Dirac operator satisfies

λ2
> inf

M
(
1

4
Sg + |Tψ|2 + |Qψ|2). (9)

The Heisenberg group and the solvable group are examples of limiting mani-
folds [11]. For a better understand of the tensor Qψ, he studied Riemannian
flows and proved that if the normal bundle carries a parallel spinor, the ten-
sor Qψ plays the role of the O’Neill tensor of the flow. In this paper we prove
the corresponding inequalities for Spinc manifolds:
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Theorem 1.1 Let (Mn, g) be a compact Riemannian Spinc manifold of di-
mension n > 2, and denote by iΩ the curvature form of the connection A on
the S

1-principal fibre bundle (S1M,π,M). Then any eigenvalue of the Dirac
operator to which is attached an eigenspinor ψ satisfies

λ2
> inf

M

(1

4
Sg −

cn
4
|Ω|g + |Tψ|2 + |Qψ|2

)
, (10)

where cn = 2[n
2
]
1
2 and |Ω|g is the norm of Ω with respect to g.

In particular for Qψ ≡ 0, we have

λ2
> inf

M

(1

4
Sg −

cn
4
|Ω|g + |Tψ|2

)
. (11)

In 1999, A. Moroianu and M. Herzlich [13] proved that on Spinc manifolds
of dimension n > 3, any eigenvalue of the Dirac operator satisfies

λ2
> λ2

1 :=
n

4(n− 1)
µ1, (12)

where µ1 is the first eigenvalue of the perturbed Yamabe operator defined by

LΩ = L− cn|Ω|g.

The limiting case of (12) is characterized by the existence of a real Killing
spinor ψ satisfying Ω.ψ = i cn

2
|Ω|gψ. In terms of the Energy-Momentum

tensor we prove:

Theorem 1.2 Under the same conditions as Theorem 1.1, any eigenvalue
λ of the Dirac operator to which is attached an eigenspinor ψ satisfies

λ2
>





1
4
µ1 + infM |Tψ|2 if n > 3,

πχ(M)
Area(M,g)

− 1
2

R

M
|Ω|gvg

Area(M,g)
+ infM |Tψ|2 if n = 2,

(13)

where µ1 is the first eigenvalue of the perturbed Yamabe operator.

Using the Cauchy-Schwarz inequality in dimension n > 3, we have that
Inequality (13) implies Inequality (12). As a corollary of Theorem 1.2, we
compare the lower bound to a conformal invariant (the Yamabe number) and
to a topological invariant, in case of 4-dimensional manifolds whose associ-
ated line bundle has self dual curvature (see Corollary (4.1) and Corollary
(4.2)). Finally, we study the limiting case of (11) and (13), and we give ex-
amples.
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Even though the number infM |Tψ|2 is not a nice geometric invariant, it
appears naturally in some situations. For example, on hypersurfaces of cer-
tain limiting Spinc manifolds it is easy to see, with the help of the Spinc

Gauss formula, that it is precisely the second fundamental form. Also, when
deforming the Riemannian metric in the direction of the Energy-Momentum
tensor, the eigenvalues of the Dirac operator on a Spinc manifold are then
critical (see [24]). The author would like to thank Oussama Hijazi for his
support and encouragements.

2 Spinc geometry and the Dirac operator

In this section, we briefly introduce basic notions concerning Spinc manifolds
and the Dirac operator. Details can be found in [7], [20] and [22].

Let (Mn, g) be a compact connected oriented Riemannian manifold of dimen-
sion n > 2 without boundary. Furthermore, let SOM be the SOn-principal
bundle over M of positively oriented orthonormal frames. A Spinc structure
of M is a Spincn-principal bundle (SpincM,π,M) and a S

1-principal bun-
dle (S1M,π,M) together with a double covering given by θ : SpincM −→
SOM ×M S

1M such that

θ(ua) = θ(u)ξ(a),

for every u ∈ SpincM and a ∈ Spincn, where ξ is the 2-fold covering of Spincn
over SOn × S

1. A Riemannian manifold that admits a Spinc structure is
called a Riemannian Spinc manifold.

Let ΣcM := SpincM×ρnΣn be the associated spinor bundle where Σn = C
2[n2 ]

and ρn : Spincn −→ End(Σn) the complex spinor representation. A section
of ΣcM will be called a spinor and the set of all spinors will be denoted
by Γ(ΣcM). The spinor bundle ΣcM is equipped with a natural Hermitian
scalar product, denoted by < ., . > and satisfies

< X.ψ, ϕ >= − < ψ,X.ϕ > for every X ∈ Γ(TM) and ψ, ϕ ∈ Γ(ΣcM),

where X.ψ denotes the Clifford multiplication of X and ψ. With this Her-
mitian scalar product we define an L2-scalar product

(ψ, φ) =

∫

M

< ψ, φ > vg,
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for any spinors ψ and φ. Additionally, given a connection 1-form A on
S

1M , A : T (S1M) −→ iR and the connection 1-form ωM on SOM for the
Levi-Civita connection ∇M , induce a connection on the principal bundle
SOM ×M S

1M , and hence a covariant derivative ∇ on Γ(ΣcM) [7], given by

∇eiψ =
[
b, ei(σ) +

1

4

n∑

j=1

ej · ∇M
ei
ej · σ +

1

2
A(s∗(ei))σ

]
, (14)

where ψ = [b, σ] is a locally defined spinor field, (e1, . . . , en) is a local oriented
orthonormal tangent frame and s : U −→ S

1M is a local section of S
1M .

The curvature of A is an imaginary valued 2-form denoted by FA = dA,
i.e., FA = iΩ, where Ω is a real valued 2-form on S

1M . We know that Ω can
be viewed as a real valued 2-form on M [7]. In this case iΩ is the curvature
form of the associated line bundle L. It’s the complex line bundle associated
with the S

1-principal bundle via the standard representation of the unit cir-
cle. The spinorial curvature R associated with the connection ∇, is given
by

RX,Y =
1

4

n∑

i,j=1

g
(
RX,Y ei, ej

)
ei · ej · +

i

2
Ω(X, Y ).

In the Spinc case, the Ricci identity translates to

∑

j

ej.Rej ,Xψ =
1

2
Ric(X).ψ − i

2
(XyΩ).ψ, (15)

where y denotes the interior product. For every spinor ψ, the Dirac operator
is locally defined by

Dψ =
n∑

i=1

ei · ∇eiψ.

It is an elliptic, self-adjoint operator with respect to the L2-scalar product
and verifies the Schrödinger-Lichnerowicz formula

D2 = ∇∗∇ +
1

4
Sg Id Γ(ΣcM) +

i

2
Ω.,

where Ω. is the extension of the Clifford multiplication to differential forms
given by (e∗i ∧ e∗j).ψ = ei.ej.ψ.

3 Eigenvalue estimates on Spinc manifolds

In this section, we prove the lower bound (10). This proof is based on the
following Lemma given by A. Moroianu and M. Herzlich in [13]:
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Lemma 3.1 [13]. Let (Mn, g) be a Spinc manifold. For any spinor ψ ∈
Γ(ΣcM) and a real 2-form Ω, we have

< iΩ.ψ, ψ > > −cn
2
|Ω|g|ψ|2, (16)

where |Ω|g is the norm of Ω, with respect to g given by |Ω|2g =
∑

i<j(Ωij)
2, in

any orthonormal local frame. Moreover, if equality holds in (16), then

Ω.ψ = i
cn
2
|Ω|gψ. (17)

Proof of Theorem 1.1: The modified connection

∇̃Xψ := ∇Xψ + Tψ(X).ψ +Qψ(X).ψ,

satisfies |∇̃ψ|2 = |∇ψ|2 − |Tψ|2|ψ|2 − |Qψ|2|ψ|2. After integration on M , the
Schrödinger-Lichnerowicz formula gives

∫

M

|∇̃ψ|2vg =

∫

M

|Dψ|2vg −
∫

M

1

4
Sg|ψ|2vg −

∫

M

(|Tψ|2 + |Qψ|2)|ψ|2vg

−
∫

M

<
i

2
Ω.ψ, ψ > vg.

Let ψ be an eigenspinor corresponding to the eigenvalue λ of D. By Lemma
3.1, it follows

λ2

∫

M

|ψ|2vg >
1

4

∫

M

Sg|ψ|2vg +

∫

M

(|Tψ|2 + |Qψ|2)|ψ|2vg

+

∫

M

<
i

2
Ω.ψ, ψ > vg

>

∫

M

(1

4
Sg −

cn
4
|Ω|g + |Tψ|2 + |Qψ|2

)
|ψ|2vg.

Finally,

λ2
> inf

M

(1

4
Sg −

cn
4
|Ω|g + |Tψ|2 + |Qψ|2

)
.

4 Conformal geometry and eigenvalue esti-

mates

Before proving Theorem 1.2, we give some preliminaries about conformal
geometry. The conformal class of g is the set of metrics g = e2ug, for a real
function u on M . At a given point x of M , we consider a g-orthonormal basis
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{e1, . . . , en} of TxM . The corresponding g -orthonormal basis is denoted by
{e1 = e−ue1, . . . , en = e−uen} . This correspondence extends to the Spinc

level to give an isometry between the corresponding spinor bundles. We put
a ( ) above every object which is naturally associated with the metric g.
Then, for any spinor fields ψ and ϕ, one has

< ψ,ϕ >=< ψ,ϕ > ,

where < ., . > denotes the natural Hermitian scalar products on Γ(ΣcM),
and on Γ(ΣcM). The corresponding Dirac operators satisfy

D ( e−
(n−1)

2
u ψ ) = e−

n+1
2
u Dψ.

The norm of any real 2-form Ω with respect to g and g are related by

|Ω|g = e−2u|Ω|g.
O. Hijazi [16] showed that on a spin manifold the Energy-Momentum tensor
verifies

|Tϕ|2 = e−2u |Tϕ|2 = e−2u |Tψ|2,
where ϕ = e−

(n−1)
2

uψ. We extend the result to a Spinc manifold and get the
same relation.

Lemma 4.1 Under the same conditions as Theorem 1.1, any eigenvalue λ
of the Dirac operator satisfies

λ2
>

1

4
sup
u

inf
M

(Sue
2u − cn|Ω|g) + inf

M
|Tψ|2.

Proof: The modified connection introduced in [16]:

∇Tψ

X ψ = ∇Xψ + Tψ(X).ψ,

verifies |∇Tψψ|2 = |∇ψ|2 − |Tψ|2|ψ|2. Using the Schrödinger-Lichnerowicz
formula on M , applied to the spinor field ϕ with respect to the metric g,
yields

∫

M

|∇Tϕ

ϕ|2vg =

∫

M

|Dϕ|2vg −
∫

M

1

4
Su|ϕ|2vg −

∫

M

|Tϕ|2|ϕ|2vg

−
∫

M

<
i

2
Ω . ϕ, ϕ > vg. (18)

For ϕ = e−
(n−1)

2
u ψ and Dψ = λψ, one gets D ϕ = λe−u ϕ, and hence by

Lemma 3.1

0 6

∫

M

|∇Tϕ

ϕ|2vg 6

∫

M

[
λ2 − (

1

4
Sue

2u + |Tψ|2 − cn
4
|Ω|g)

]
e−2u|ϕ|2vg. (19)
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Lemma 4.2 Let (Mn, g) be a compact Riemannian Spinc manifold of di-
mension n > 2 and Sg (resp. Su or Sh) the scalar curvature associated with

the metric g (resp. with a conformal metric g = e2ug = h
4

n−2 g). The 2-form
iΩ denotes the curvature tensor on the S

1-principal bundle associated with
the Spinc structure. We have

sup
u

inf
M

(Sue
2u − cn|Ω|g) =





µ1 if n > 3,

4πχ(M)−2
R

M
|Ω|vg

Area(M,g)
if n = 2,

(20)

where µ1 is the first eigenvalue of the perturbed Yamabe operator.

Proof: For n > 3, let h > 0 be an eigenfunction of LΩ associated with the
eigenvalue µ1 such that

∫
M

h2vg = 1. For a conformal metric g = e2ug =

h
4

n−2 g, we have

Shh
4

n−2 − cn|Ω|g = Sue
2u − cn|Ω|g = h−1LΩh.

So µ1 = h−1LΩh = Shh
4

n−2 − cn|Ω|g. For any positive function H, we write
fH = h, where f is a positive function, and refering to [15] we get

µ1 =

∫
(H−1LH)f 2H2 vg − cn

∫

M

|Ω|gf 2H2 vg +

∫

M

H2|df |2 vg.

Finally,
µ1 > inf

M
(H−1LΩH) = inf

M
(Sve

2v − cn|Ω|g),

where e2v = H
4

n−2 , then µ1 = supu infM(Sue
2u − cn|Ω|g). For n = 2 and for

every u we have Sue
2u = Sg+2△g u. The Stokes and Gauβ-Bonnet theorems

yield

inf
M

(Sue
2u − 2|Ω|g) 6

∫
M

(
Sue

2u − 2|Ω|g
)
vg

Area(M, g)
=

4πχ(M) − 2
∫
M
|Ω|gvg

Area(M, g)
.

Let u0 be a solution of the following equation [1]

2 △g u =

∫
M

(Sg − 2|Ω|g)vg
Area(M, g)

− Sg + 2|Ω|g, (21)

hence,

Su0e
2u0 − 2|Ω|g = 2 △g u0 + Sg − 2|Ω|g =

4πχ(M) − 2
∫
M
|Ω|gvg

Area(M, g)
.

Proof of Theorem 1.2: Combining Lemma 4.2 and Lemma 4.1, Theorem
1.2 follows.
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Remark 4.1 Inequality (11) improves Inequality (12), which itself implies
the Friedrich Spinc inequality given by

λ2
>

n

4(n− 1)
inf
M

(Sg − cn|Ω|g). (22)

Equality holds in (22) if and only if equality holds in (12), i.e, if and only if
the eigenspinor ψ associated with the first eigenvalue of D is a Killing spinor
and Ω.ψ = i cn

2
|Ω|gψ.

Corollary 4.1 Any eigenvalue of the Dirac operator on a compact Rieman-
nian Spinc manifold of dimension n > 3, satisfies

λ2
>

1

4
vol(M, g)−

2
n

(
Y (M, [g]) − cn‖Ω‖n

2

)
+ inf

M
|Tψ|2,

where Y (M, [g]) is the Yamabe number given by

Y (M, [g]) = inf
η 6=0

∫
M

4n−1
n−2

|dη|2 + Sgη
2

( ∫
M
|η| 2n

n−2

)n−2
n

.

Proof : Using the Hölder inequality, it follows

µ1 = inf
η 6=0

∫
M

4n−1
n−2

|dη|2 + (Sg − cn|Ω|g)η2

∫
M
η2

> inf
η 6=0

∫
M

4n−1
n−2

|dη|2 + (Sg − cn|Ω|)η2

( ∫
M
|η| 2n

n−2

)n−2
n

vol(M, g)
2
n

.

Using the Hölder inequality one more time, we deduce

µ1 vol(M, g)
2
n > inf

η 6=0

∫
M

4n−1
n−2

|dη|2 + Sη2

( ∫
M
|η| 2n

n−2

)n−2
n

−cn
( ∫

M

|Ω|n2
) 2
n

= Y (M, [g])−cn‖Ω‖n
2
.

Finally, replacing in (13), we get the result.

Corollary 4.2 On a compact 4-dimensional Spinc manifold with self-dual
curvature iΩ, any eigenvalue of the Dirac operator satisfies

λ2
>

1

4
vol(M, g)−

1
2

(
Y (M, [g]) − 4π

√
2
√
c1(L)2

)
+ inf

M
|Tψ|2,

where c1(L) is the Chern number of the line bundle L associated with the
Spinc structure.

Proof: It follows directly from Corollary 4.1 and the fact that if n = 4 and
Ω self-dual, then

∫
M
|Ω|2gvg = 4π2c1(L)2 (see [7]).
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5 Equality case

In this section, we study the limiting case of (11) and (13). Examples are
then given.

Proposition 5.1 Under the same conditions as Theorem 1.1,

Equality in (11) holds ⇐⇒
{

∇Tψψ ≡ 0,
Ω.ψ = i cn

2
|Ω|gψ,

(23)

where ψ is an eigenspinor associated with the first eigenvalue of the Dirac
operator.

Proof: If equality in (11) is achieved, the two conditions follow directly.
Now, suppose that ∇Tψψ ≡ 0 and Ω.ψ = i cn

2
|Ω|gψ. The condition ∇Tψψ ≡ 0

implies that |ψ|2 is constant. The curvature tensor on the Spinc bundle
associated with the connection ∇ (resp. ∇Tψ) is denoted by R (resp. RTψ).
One easily gets the following relation

RTψ

X,Y ψ = RX,Y ψ + dTψ(X, Y ) · ψ + [Tψ(X), Tψ(Y )] · ψ,

where dTψ is a 2-form with values in Γ(TM) given by

dTψ(X, Y ) = (∇XT
ψ)Y − (∇Y T

ψ)X.

Taking Y = ej and performing its Clifford multiplication by ej yields by the
Ricci identity (15) on a Spinc manifold

−1

2
Ric(X) · ψ +

i

2
(XyΩ).ψ +

∑

j

ej · dTψ(X, ej) · ψ

+
∑

j

ej · [Tψ(X), Tψ(ej)] · ψ = 0 (24)

We then decompose the last two terms in (24) using that X ·α = X∧α−Xyα
for any form α, it follows
∑

j

ej · dTψ(X, ej) · ψ =
∑

j

[ej ∧ dTψ(X, ej)] · ψ − [X(tr Tψ) + div Tψ(X)]ψ.

∑

j

ej · [Tψ(X), Tψ(ej)] · ψ = 2 (tr Tψ)Tψ(X)·ψ−2
∑

j

g(X,Tψ(ej))T
ψ(ej) · ψ.

Taking the scalar product of (24) with ψ, and after seperating real and imag-
inary parts, yields for every vector field X the relation

(
X(tr Tψ) + div Tψ(X)

)
|ψ|2 =

i

2
< (XyΩ).ψ, ψ > . (25)
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But since Equality (17) holds we compute

< (XyΩ).ψ, ψ > = < (X ∧ Ω).ψ, ψ > − < X.Ω.ψ, ψ >

= < (X ∧ Ω).ψ, ψ > −i
[n
2

] 1
2 |Ω|g < X.ψ, ψ > .

After separating real and imaginary parts, < (XyΩ).ψ, ψ > must vanish.
Using this and

∑n

j=1 ej.(ejyΩ) = 2Ω, Clifford multiplication of (24) with ek,
and for X = ek, gives

−1

2
Sgψ − iΩ.ψ =

∑

k,j

ej · (ek ∧ dTψ(ej, ek)) · ψ − 2(tr Tψ)2ψ + 2|Tψ|2ψ.

An easy computation implies that
∑
k,j

ej · (ek ∧ dTψ(ej, ek)) · ψ = 0, hence

−1

2
Sg +

[n
2

] 1
2 |Ω|g = −2(tr Tψ)2 + 2|Tψ|2, (26)

which implies Equality in (11).

Proposition 5.2 On a compact Riemannian Spinc manifold (Mn, g) of di-
mension n > 3, assume that the first eigenvalue λ1 of the Dirac operator to
which is attached an eigenspinor ψ satisfies the equality case in (13). Then,
|Tψ| is constant and if h denotes an eigenfunction of the Yamabe operator
corresponding to µ1, then for any vector field X

g(X,Tψ(dh) − λ1dh) = g(λ1X − Tψ(X), dh) = 0. (27)

Proof: If n > 3 and equality holds in (13), Equation (19) with h = h

gives |Tψ| is constant, ∇Tϕ

ϕ = 0 and Ω.ϕ = i cn
2
|Ω|gϕ. By Proposition 5.1,

Equality (26) and (25) can be considered for a conformal metric g to get

(tr Tϕ)2 := f 2 =
1

4
Sh − cn

4
|Ω|g + |Tϕ|2,

grad f = −div Tϕ.

It is straightforward to see that these two equalities give (27).

Example 1: Note that as every spin manifold is Spinc with trivial line bun-
dle, the Heisenberg manifold is a Spinc manifold. In addition if we consider
the trivial flat connection on this trivial line bundle, then the Heisenberg
manifold is a limiting manifold for (11) but equality in (22) cannot occur.
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Example 2: Let M4 be a compact oriented Riemannian Spinc 4-dimensional
manifold. Let Φ ∈ Σ+M and A, a connection on the S

1-principal bundle asso-
ciated with the Spinc structure, be a solution of the Seiberg-Witten equations

DΦ = 0 and iΩ+ = −1

4
ωΦ,

where ωΦ(X, Y ) =< X.Y.Φ,Φ > for everyX, Y ∈ TM and Ω+ is the self-dual
part of Ω (the curvature form of A). Refering to [7], we know that

|Ω+|g =

√
2

4
|Φ|2 6 −

√
2

4
inf
M
Sg.

Using the fact that Ω.ψ+ = Ω+.ψ+ for any spinor ψ+ ∈ Σ+M , Inequality
(16) gives

< iΩ.ψ+, ψ+ > >
1

2
inf
M
Sg |ψ+|2. (28)

If ψ = ψ+ + ψ− is an eigenspinor associated with the eigenvalue λ of D,
then ψ+ is an eigenspinor of D2 associated with the eigenvalue λ2. Using
Inequality (28) in the proof of Theorem 1.1 applied to the spinor ψ+, the
lower bound (11) becomes

λ2
>

1

2
inf
M
Sg + inf

M
|Tψ+|2. (29)

Equality in (29) holds if and only if (23) holds and |Φ|2 = −Sg = constant.

Example 3: If the lower bound (22) is achieved, automatically equality
holds in (11). Here we will give an example where equality holds in (11) but
not in (22).
Let (M3, g) = (S3, can) be endowed with its unique spin structure and con-
sider a Killing spinor ψ with Killing constant 1

2
. As the norm of ψ is constant,

we may suppose that |ψ| = 1. Let ξ be the Killing vector field on M defined
by

ig(ξ,X) =< X.ψ, ψ > .

In [13], it is shown that:

1. idξ(X, Y ) = − < X ∧ Y.ψ, ψ > for any X, Y ∈ TM .

2. d|ξ|2 = −2dξ(ξ, .) = −2g(∇ξξ, .) ≃ −2∇ξξ = 0.

3. ξ.ψ = iψ and |ξ| = 1.
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4. ξ.ψ = −e1.e2.ψ, where {ξ/|ξ|, e1, e2} is an oriented local orthonormal frame.

Let h be a real constant such that h > 1. We define the metric gh on M , by:

{
gh(ξ,X) = g(ξ,X) pour tout X ∈ TM,
gh(X, Y ) = h−2g(X, Y ) pour X, Y ⊥ ξ.

Using the following isomorphism

(TM, g) −→ (TM, gh)

Z −→ Zh =

{
Z si Z = ξ,
hZ si Z ⊥ ξ,

if u = {ξ, e1, e2} is a positive local g-orthonormal frame defined in a neigh-
borhood U of x, then uh = {ξh = ξ, eh1 = he1, e

h
2 = he2} is a positive local

gh-orthonormal frame defined in a neighborhood U of x.
There exists an isomorphism of vector bundles (see [13]) given by:

ΣgM −→ ΣghM

ψ = [ũ, φ] −→ ψh = [ũh, φ],

satisfying,

< ψ1, ψ2 >ΣgM = < ψh1 , ψ
h
2 >Σ

gh
M and (X.ψ)h = Xh.ψh for any X ∈ TM.

The covariant derivative of the spinor ψh = [ũh, φ] is given by (see [13]):

∇h
Xhψ

h =
h2

2
Xh.ψh + i((1 − h2)ξ)(Xh)ψh.

Let α = (1−h2)ξ be a 1-form on M . We may view iα as a connection 1-form
on the trivial S

1 bundle. Let L = M × C be the induced trivial line bundle
over M . We denote by σ the global section of L and by ∇0 the covariant
derivative on L induced by the above connection. It satisfies

∇0
Xσ = iα(X)σ, for any X ∈ TM.

On the twisted bundle ΣghM ⊗L, we consider the connection ∇ = ∇h ⊗∇0

and we calculate

∇eh1
(ψh ⊗ σ) =

h2

2
eh1 .(ψ

h ⊗ σ),

∇eh2
(ψh ⊗ σ) =

h2

2
eh2 .(ψ

h ⊗ σ),
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∇ξ(ψ
h ⊗ σ) = (

−3h2

2
+ 2)ξ.(ψh ⊗ σ).

The spinor ψh ⊗ σ is a section of ΣghM ⊗ L, which is, of course, the spinor
bundle associated to the Spinc structure with auxiliary line bundle L2. It
is easy to see that ψh ⊗ σ is an eigenspinor associated with the eigenvalue
h2

2
− 2, and it is clear that ψh ⊗ σ is not a Killing spinor since h 6= 1, so

(M, gh) is not is a limiting manifold for the Friedrich Spinc inequality. But
it is a limiting manifold for the lower bound (11), in fact we will prove that
(23) holds.
The complex 2-form idα is the curvature form associated with the connection
∇0 on L. We have:

dα.(ψh ⊗ σ) = (1 − h2)dξ.(ψh ⊗ σ) = i(h2 − 1)h2ψh ⊗ σ.

The norm of dα with respect to the metric gh is given by

|dα|2gh = (1 − h2)2|dξ|2gh = (1 − h2)2(dξ(eh1 , e
h
2))

2 = h4(1 − h2)2.

Since h > 1, |dα|gh = h2(h2 − 1), then the second equation of (23) is verified.
Futhermore, it is easy to check that

Tψ
h⊗σ(eh1 , e

h
1) = Tψ

h⊗σ(eh2 , e
h
2) = −h

2

2
,

Tψ
h⊗σ(eh1 , ξ) = Tψ

h⊗σ(eh2 , ξ) = Tψ
h⊗σ(eh1 , e

h
2) = 0,

Tψ
h⊗σ(ξ, ξ) =

3h2

2
− 2.

Finally, it is straightforward to verify that the first equation of (23) holds:

−Tψh⊗σ(eh1).(ψh ⊗ σ) =
h2

2
eh1 .(ψ

h ⊗ σ) = ∇eh1
(ψh ⊗ σ),

−Tψh⊗σ(eh2).(ψh ⊗ σ) =
h2

2
eh2 .(ψ

h ⊗ σ) = ∇eh2
(ψh ⊗ σ),

−Tψh⊗σ(ξ).(ψh ⊗ σ) = (
−3h2

2
+ 2)ξ.(ψh ⊗ σ) = ∇ξ(ψ

h ⊗ σ).
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