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Atoms can be trapped using a combination of static and rotating magnetic fields. A theoretical
analysis is performed of a rotating polarisation axis which is used to eliminate regions of zero
coupling. A similar result is found using linear polarisation, but in the case of circular polarisation
no orientational dependence in the coupling remains when on resonance.

PACS numbers:

I. INTRODUCTION

Trapping atoms by dressing them with rf radiation has
been realised with a wide range of experimental and theo-
retical configurations [1–21]. The first experimental trap-
ping with rf dressing [3] resulted in an egg-shell type po-
tential with the atoms confined to the surface of the shell.
Gravity caused the atoms to occupy the lower part of the
egg-shell. Tubes of dressed atoms have been used to show
interference effects [4, 11, 19], and there have been sev-
eral designs and realisations of dressed atom ring-traps
[7, 10, 13, 15].
The wide range of trapping topologies and shapes

emerging is due to complex vector relationship between
the oscillating and static magnetic fields used. These
fields can change both in magnitude and in direction over
a region of space. For the case of linearly polarised rf with
a field Brf (r) cosωrft, the interaction strength in the ro-
tating wave approximation (RWA) is governed by a Rabi
frequency Ω which may be written as

Ω(r) =
|gF |µB

2h̄
Brf(r) sin θ(r) ≡ Ω0(r) sin θ(r) , (1)

where θ(r) is the angle between the static field B0(r)
and the oscillating magnetic field. In equation (1) gF is
the usual Landé g-factor and µB is the Bohr magneton
and clearly the maximum possible Rabi frequency at a
location r is

Ω0(r) =
|gF |µB

2h̄
Brf(r) . (2)

The condition Ω0(r) ≪ ωrf is required for the RWA to be
valid [22]. The Rabi frequency Ω(r) shows clear spatial
and orientational dependence. In this case the uppermost
dressed state potential is simply given by

E(r) = h̄F
[

(ωrf − ω0(r))
2
+Ω2(r)

]1/2

, (3)

where ω0(r) characterises the energy of the atom in the
static field through

ω0(r) =
gFµBB0(r)

h̄
. (4)

The factor ωrf − ω0(r) in equation (3) represents a spa-
tially varying detuning. With this detuning the RWA is
valid if Ω0(r), |ωrf − ω0(r)| ≪ ωrf . From equation (3) we
see that, in a region of fairly uniform Rabi frequency, the
defining feature of the trap is the region of resonance,
i.e. an iso-B surface where ω0(r) = ωrf . This picture gets
modified in a complex way when the Rabi frequency is
spatially varying, too.

In this paper we will pay particular attention to the sit-
uation which can arise when the static field B0(r) has the
same orientation as the oscillating magnetic field Brf(r).
In that case equation (1) shows that the Rabi frequency
is zero, since the angle θ is zero. As a consequence the
dressing breaks down and an atom is no longer trapped
by dressed potentials. This would usually happen in
a small region of space where the two magnetic fields
align. (We note that the relatively “small” size of this
region of atom loss is due to the exponential dependence
of Landau-Zener losses on coupling squared [12].) Such a
location has sometimes been termed a hole in the dressed
potentials and it is usually undesirable, though in Ref.
[12] two such holes were used to facilitate evaporative
cooling in the dressed rf trap. The holes were arranged
to be at the sides of the trap so that only the most ener-
getic atoms reached them under the influence of gravity.
More generally, the holes tend to arise when the relative
angle between the magnetic fields varies considerably in
space.

We should emphasise that these holes are not inevitable
in dressed rf potentials. They can be avoided by appro-
priate use of bias fields: e.g. near the centre of a Ioffe-
Pritchard magnetic trap [2, 3]. And they can also be
avoided if the trapping region is different from the reso-
nant region: for example, if the rf frequency ωrf is below
resonance for the centre of the trap [4].

If we switch from linear to circularly polarised rf, there
is still potential for holes to be present. In a simple
quadrupole trap (with coils in an anti-Helmholtz con-
figuration) the number of holes reduces from two to one
[7]. The difference is that the Rabi frequency in equation
(3) is now

Ω(r) = Ω0(r) (1 + cos θ(r)) (5)
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which replaces equation (1). In equation (5) Ω0(r) is the
maximum possible Rabi frequency in the linear case as
already given in equation (2). Thus we note that Ω(r),
as given by equation (5), has a maximum value which is
twice that of the linear case (see equation (1)) for a rf
field with the same peak amplitude Brf . This is because
in the linear case we always have to make the RWA, and
reject the counter-rotating term, while in the circular po-
larisation case the RWA is not needed for the maximum
coupling (σ+) orientation. In equation (5) the angle θ is
now the angle between the circular polarisation axis êc

(which is perpendicular to the plane of rotation of Brf(r))
and the static field B0(r). This means that when the rf
rotates clockwise about the static magnetic field B0(r)
the maximum coupling (2) is achieved (for positive gF );
then as the plane of rotation is itself turned away, the
coupling smoothly reduces to zero, a value reached when
the axis rotation has completely turned around.
Thus, for dressed rf traps formed in regions where the

static field varies over all directions, the holes cannot be
removed by simply changing rf polarisation. For large
traps the holes can be moved to places where the atoms
will not reach them because of gravity. However, a pro-
cedure to remove holes of this kind could be important
when dressing very small magnetic traps [23]. In that
case gravity cannot be relied on to keep atoms away from
the holes. An example arises when we consider dressed
traps made with fields from magnetic nano-wires [24]. In
this case the field gradients are so strong that for normal
rf frequencies only very small (micron-scale) traps would
be made by dressing: atoms at micro-Kelvin tempera-
tures would then explore all parts of the dressed poten-
tial, find the holes, and escape. In section II we will see
how such holes can be closed by using time varying cir-
cularly polarised rf radiation. In section III we will see
that a similar technique with linearly polarised rf will
also close such holes, and the paper concludes with a
short summary in section IV.

II. A TECHNIQUE TO CLOSE MICROSCOPIC

HOLES: THE CIRCULAR POLARISATION CASE

To close the holes in a dressed rf potential we will use
a variant of the time-averaged adiabatic potential tech-
nique (TAAP) [13]. This technique in its original form
involves oscillating the adiabatic potential quite rapidly
so that the time averaged potential yields a new poten-
tial of interest. In the original example, a ring trap is
produced from an egg-shell by a shaking process. In the
form used here we will rotate the polarisation direction to
vary the adiabatic potential via a time varying Rabi fre-
quency. Then if the mechanical oscillations of the atom
are slow enough, we again obtain a time averaged po-
tential so that in the case of holes, the hole is removed
by the averaging process. We will also find that we can
remove all orientational dependence from the potential
when the atoms are at a resonant location.
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FIG. 1: (Colour online) Schematic showing the co-ordinate
system used in section II with a static field B0 and the rf
vector Brf which rotates rapidly about the polarisation axis
êc with a frequency ωrf . The polarisation axis êc itself rotates
about the y-axis at an angular frequency ωp.

If we consider first the case of circularly polarised rf,
the homogenised coupling can be produced by rotating

the axis of polarisation. Let us focus on a single location
r and we suppose that the static field B0(r) is pointing
in an arbitrary direction with components B0x, B0y, and
B0z, and that, for concreteness, the circular polarisation
axis rotates in the z-x plane with a frequency ωp (see
figure 1). Then for a unit vector in the direction of the
polarisation axis we have

êc(t) = cosωpt ẑ+ sinωpt x̂ . (6)

Within the RWA, the effective interaction is given by
equation (5) with the angle θ being the angle between
the two vectors êc(t) and B0(r). From the definitions of
scalar product and using equation (6)

êc(t) ·B0 = B0 cos θ

= B0x sinωpt+B0z cosωpt , (7)

where B0 =
√

B2
0x +B2

0y +B2
0z. Strictly, the compo-

nents of B0(r) vary with position r, but we omit this in
the notation for simplicity. Then, from equation (7),

cos θ =
B0x

B0

sinωpt+
B0z

B0

cosωpt , (8)

which can be inserted into equation (5) to find for the
Rabi frequency:

Ω(t) = Ω0

(

1 +
B0x

B0

sinωpt+
B0z

B0

cosωpt

)

. (9)

This assumes a quasi-static situation in which the ro-
tation of polarisation axis is rather slower than the rf
frequency. We will now time average the adiabatic po-
tential (3), but we note that in the resonant regime this
potential is dominated by the Rabi frequency. As a result
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the leading term in the time averaged potential simply
involves the time averaged Rabi frequency

E(r, t) ∼ h̄FΩ(r, t) = h̄FΩ0(r) . (10)

Strikingly, we see that in the potential (10) all the orien-
tational dependence has been removed, i.e. the direction
of B0(r) no longer matters. The effective Rabi frequency
is Ω0(r) which only depends on the magnitude of Brf(r)
and, in this sense, the vectorial nature of the magnetic
field has been eliminated (along with any holes).
The dressed potential (3) shows that trapped atoms

will tend to prefer a region of resonance if other forces,
such as gravity, can be neglected. If an atom is in the non-
resonant regime the detuning δ(r) = ωrf − ω0(r) plays a
role in the potential. In the case of a rotating polarisation
axis the dressed potential is no longer independent of
orientation. To see this we can examine the detuning
dominated regime |δ(r)| ≫ Ω(r, t) where

E(r, t) = h̄F |δ(r)|
[

1 + (Ω(r, t)/δ(r))2
]1/2

∼ h̄F |δ(r)|

(

1 +
Ω2(r, t)

2δ2(r)
+ ...

)

,

(11)
so that using equation (9) and performing the time aver-
age we find

E(r, t) ∼ h̄F |δ(r)|

(

1 +
Ω2

0(r)

4δ2(r)
(3− B2

0y/B
2
0) + ...

)

.

(12)
The explicit presence of a term involving B0y demon-
strates the orientation dependence in the non-resonant
regime.
The validity of the results in this section is ensured by

the conditions ωtrap ≪ ωp ≪ ω0 [13], where ωtrap rep-
resents the mechanical oscillation frequency of the atom.
The inequality ωtrap ≪ ωp ensures that as the atom oscil-

lates in a trap it experiences an average potential E(r, t).
At the same time the Larmor frequency must remain a
good concept and hence ωp ≪ ω0. For a resonant rf
atom trap the Larmor frequency ω0 will be essentially
the same as the rf frequency ωrf . The trap frequency can
be very low (of order Hz), but the highest values are in
a direction transverse to the iso-B surface and depend
on the local field gradient and Rabi frequency. For the
quadrupole field described in Ref. [7], with 10 MHz rf
and a Rabi frequency of 20kHz, the conditions become:
1 kHz ≪ 100 kHz ≪ 10 MHz. Here a geometric mean of
ωtrap and ωrf has been taken for the value of the rotation
frequency ωp. For this example the conditions appear to
be feasible, but at their limit.

III. ROTATION OF LINEAR POLARISATION

DIRECTION

The scheme is less successful in the case of a rotat-
ing linear polarisation direction. We can still close any
hole, but there remains some orientation dependence. We
should note that rotating the linear polarisation axis is in

itself not the same as having a circular polarisation. This
is because the axis rotation frequency ωp is supposed to
be much less than the rf frequency ωrf . This is a require-
ment if we want to time average the adiabatic potential,
i.e. to make an effective potential for the mechanical mo-
tion of the atom whilst the spin dynamics and RWA are
both obeyed.
If we take the linear rf polarisation direction to be êl(t)

with, analogously to equation (6),

êl(t) = cosωpt ẑ+ sinωpt x̂ (13)

then within the RWA, the effective interaction is given
by equation (1). This time, instead of equation (7) we
use

|êl(t)×B0| = B0 |sin θ|

=
√

B2
0y + (cosωptB0x − sinωptB0z)

2
.(14)

Then if we use equation (1) and include the time averag-
ing,

Ωeff = Ω(t) = Ω0sin θ(t) , (15)

where sin θ is to be given by equation (14). The time
average is performed using standard integrals to obtain

Ωeff =
2Ω0

π
E(k) , (16)

where E(k) is a complete elliptic integral of the second
kind with

k =

√

1−
B2

0y

B2
0

. (17)

In this case Ωeff does not depend on B0 alone. In fact Ωeff

has values which lie between 2Ω0/π and Ω0, depending
on the relative orientation of the fields.
As in the case of a rotating circular polarisation, an

orientational dependence is found in the non-resonant
regime. This time we can show that by substituting
Ω(r, t) = Ω0(r) sin θ(r, t) into the dressed potential (3)
and performing the time average we find

E(r, t) = 4h̄F
√

δ2(r) + Ω2
0(r) E(kδ) (18)

where

kδ(r) =
Ω0(r)

√

δ2(r) + Ω2
0(r)

k(r) . (19)

The source of the orientational dependence is k(r), which
is given by equation (17).

IV. SUMMARY

The origin of holes in dressed state potentials is the
vectorial nature of the magnetic field interaction itself.
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We should emphasise that not all dressed state systems
produce holes. In the case of linearly polarised rf, the
strongest coupling (Rabi frequency) is obtained when the
rf polarisation is orthogonal to the static magnetic field.
Within the rotating wave approximation (RWA) there is
no coupling at all if the polarisation is in the same di-
rection as the static magnetic field B0: this is essentially
the source of a hole.
A hole may persist even if circular polarisation is used.

However, we have seen that by continuously rotating the
polarisation axis, the hole can be eliminated in a time
averaged adiabatic potential (TAAP). Furthermore the
coupling becomes independent of the relative orientation
of the static and rotating magnetic fields (equation (10)):
in effect the vector nature of the magnetic field is lost.
The hole is removed even if a rotating linear polarisa-
tion is used. However, in that case, the resulting cou-
pling is not completely independent of orientation. For
off-resonant atoms the dressed potentials are never inde-
pendent of field orientation for the schemes considered

here. So although there are situations where complete
dressed rf potential surfaces have no holes, even if there
are holes, those holes can be circumvented by the use of
the TAAP technique. This adds to the flexibility and
applicability of trapping with dressed rf potentials.
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P. Krüger, Nature Physics 1, 57 (2005).

[5] C.L. Garrido Alzar, H. Perrin, B.M. Garraway and
V. Lorent, Phys. Rev. A 74, 053413 (2006).

[6] I. Lesanovsky, T. Schumm, S. Hofferberth, L.M. Anders-
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