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In this paper, testing procedures based on double-sampling are proposed that yield gains in terms of
power for the tests of General Linear Hypotheses. The distribution of a test statistic, involving both the
measurements of the outcome on the smaller sample and of the covariates on the wider sample, is first
derived. Then, approximations are provided in order to allow for a formal comparison between the
powers of double-sampling and single-sampling strategies. Furthermore, it is shown how to allocate
the measurements of the outcome and the covariates in order to maximize the power of the tests for a
given experimental cost.
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1. Introduction

Since the first works on the so-called regression estimator of a total or a mean by Cochran [1, 2],
double-sampling is widely used in the context of sample survey to reduce the variance of the
estimation by use of measurements of an auxiliary covariate that are available on a wider
sample. The same idea can be found, for instance in Conniffe and Moran [3] , transposed to
the estimation of the parameters of a multivariate normal regression model. In the agricultural
applications handled by Conniffe and Moran [3] and later by Engel and Walstra [4], a surrogate
and also cheaper version of the outcome is expected to be a beneficial auxiliary covariate for
use in a double-sampling design.

The purpose is then to find the optimal allocation of the measurements of the outcome
and of its approximate version, namely the double-sampling scheme that minimizes the vari-
ance of the estimators of the regression coefficients subject to a given experimental cost.
In the presence of many auxiliary covariates, Conniffe [5], and more recently Causeur and
Dhorne [6], show the enhancements that are made possible by accounting for the joint distribu-
tion of the concomitant variables when optimizing the sampling design. Furthermore, aiming
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at a more detailed definition of the optimal sampling plan by accounting for every marginal
experimental cost, some extensions based on multiple-phase monotone sampling designs were
also described by Causeur [7]. Analogous ideas can also be found in Breslow et al. [8], where
the properties of estimation in non-parametric models are investigated in a double-sampling
framework.

Probably because they are mostly motivated by regression examples in which the main
issue is to derive a prediction formula, the previously cited works focus on the improvement
of estimation that is made possible by a double-sampling design. On the contrary, very less
is said about the testing procedures that traditionally complete the estimation results in a
regression analysis. Such issues are encountered for instance when comparing types of soils
with respect to some physical or chemical property when a few number of soil samples can
be used for a reliable analysis of the property under study whereas much more numerous
indirect measurement of the same property can be obtained by remote sensing. Especially in
this case involving a qualitative explanatory variable, explicit expressions for the estimators
of the parameters of the analysis of variance model are straightforward deduced from the
existing works but, here, testing procedures for the effects of the different factors are usually
much more important. The first aim of this paper is therefore to extend the double-sampling
analysis by testing strategies for General Linear Hypotheses. By analogy with the well-known
desirable properties of the double-sampling estimator, it is shown in the present paper how to
include the measurements of the auxiliary covariates in the test statistic in order to improve
its power relative to the traditional F-test used in the single-sampling context. Furthermore,
in such situations where the main goal is the test of an effect rather than the estimation of
parameters, a strategy is proposed for an optimal allocation of the measurements of the outcome
and the auxiliary covariate, which consists, for a given experimental cost, in maximizing the
power of the test with respect to the sample sizes. Calculation tools to derive asymptotic
approximations of the power of the double-sampling test are provided in order to make this
approach numerically possible.

In section 2, the paper introduces the sampling framework together with notations for
the different models involved in the procedure. Some results on the functional relationships
between the parameters of the models are recalled and the case of qualitative explanatory
variables is also specifically examined in this section. Section 3 is devoted to the definition
of a testing procedure for General Linear Hypotheses that takes advantage of the double-
sampling framework. An asymptotic approximation of the distribution of the test statistic
is given. In section 4, strategies to obtain the most powerful sampling design for a given
experimental cost are presented.

2. Regression settings in the double-sampling framework

First, the main model describes linearly the conditional distribution of a continuous outcome
Y given p predictors x = (x(1), x(2), . . . , x(p)), with p ≥ 1:

Y ∼ N
(
β(0)

y + xβy; σ 2
y

)
,

where β(0)
y is the constant of the model and βy = (β(1)

y , . . . , β
(p)
y )′ is the p-vector of the slope

parameters.
When a double-sampling scheme is used, auxiliary covariates Z = (Z(1), . . . , Z(q)) are

introduced in the model by means of two auxiliary regression models. In the following, in
order to improve the readability of the arguments, the presentation will focus on the case
q = 1. An extension to the multivariate context can be achieved on the basis of Causeur and
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Dhorne [6]. However, accounting for multiple-phase monotone sampling schemes that could
be inspired by Causeur [7] is more complex and out of the purpose of this paper.

First, common observations of the outcome, the predictors and the auxiliary covariates are
supposed to be observable on a sample of size n, and the following linear model is assumed
for the distribution of the outcome given the predictors and the auxiliary covariate:

Y ∼ N
(
β

(0)
y|z + xβy|z + γZ; σ 2

y|z
)
,

where β
(0)
y|z is the constant of the model, βy|z = (β

(1)
y|z, . . . , β

(p)

y|z )′ is the p-vector of the slope
parameters for the predictors and γ is the slope parameter for the covariate.

Now, common observations of the covariate and the predictors are also available on a sample
of size N ≥ n, including the first sample, and the following linear model is assumed for the
distribution of the covariate given the predictors:

Z ∼ N
(
β(0)

z + xβz; σ 2
z

)
,

where β(0)
z is the constant, βz = (β(1)

z , . . . , β
(p)
z ) is the p-vector of slope parameters and σ 2

z is
the residual variance.

A closed-form expression of the maximum-likelihood estimators is now based on a kind
of transitiveness relationship that enables to express the parameters of the main model as a
combination of the parameters of the auxiliary models:

βy = βy|z + γβz,

σ 2
y = σ 2

y|z + γ 2σ 2
z .

Although such a double-sampling procedure has mainly been used in situations where the
predictors are quantitative variables, the preceding definitions are formally valid in analysis
of variance contexts where the explanatory variables are qualitative.

In an illustrative purpose, let us examine the case a one way analysis of variance model
with a factor taking three levels. The double-sampling design is summarized in table 1.

The preceding presentation of the model still holds where the explanatory variables are now
dummy variables for the factor: for the ith level of the factor

Y ∼ N
(
μy + α(i)

y ; σ 2
y

)
, (1)

with, for instance, the cornerstone restriction on the main effects: α(1)
y = 0.

Table 1. An example of a double sampling design for a one way
analysis of variance model with a factor taking three levels. Missing

values for the response variable are identified by ?.

Sample sizes Y Z X

n1 firstst level
N1 − n1 ?

n2 Second level
N2 − n2 ?

n3 Third level
N3 − n3 ?
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Similarly, given the covariate and the factor’s level, it can be tempting to assume an analysis
of covariance model with interaction:

Y ∼ N
(
μy|z + α

(i)
y|z + (η + δ(i))Z; σ 2

y|z
)
,

with α
(1)
y|z = 0 and δ(1) = 0. However, it is straightforward checked that the assumption of

homoscedasticity in model (1) holds if and only if all the interaction parameters δ(i) are
zero.

In that case, the analogy between the analysis of variance model and the regression settings
can be used to express the parameters of the main model as a function of the parameters of
the auxiliary models:

μy = μy|z + ημz,

αy = αy|z + ηαz,

σ 2
y = σ 2

y|z + η2σ 2
z .

Simple conditions for the estimability of the parameters of interest (μy, α
(i)
y , σ 2

y ) are deduced
from the above functional relationships. Indeed, to ensure that all parameters in model (2) are
estimable, both response Y and covariate Z should be observed on a sample of size n ≥ 4,
namely the number of levels plus 1, with n = n1 + n2 + n3 and no ni should be zero.

Moreover, as mentioned in the next section, the sampling fractions ni/Ni will be assumed
to have the same limit for large values of the sample sizes.

3. Testing procedures

In the settings introduced in the previous section, we are interested in the following test of a
General Linear Hypothesis: {

H0 : βy = 0

H1 : βy �= 0
.

Results for tests of a particular subset of coefficients in βy can be deduced from those that are
presented thereafter.

CallYn andZn then-vectors of the observations of the outcome and the covariate respectively
on the sample of size n. Call also ZN the N -vector of the observations of the covariate on
the whole sample of size N . Finally, call X(n) and X(N) the matrices with n and N rows
respectively and p columns, containing the observations of the predictors on the samples of
size n and N respectively. Up to now, the same notation will be used as a sub or super scripts
for other quantities, such as estimators, when they are derived on the small or large sample
of size n or N respectively. Furthermore, X(n) is assumed to be full rank and such that the
corresponding variance-covariance matrix S(n) = (1/n)X′

(n)(In − (1/n)Jn)X(n), where Jn is
the n × n matrix with all entries equal to 1, tends to a positive definite matrix �x for large
values of n. It is also assumed that S(N) = (1/N)X′

(N)(IN − (1/N)JN)X(N) tends to the same
limit for large values of N .

A useful way of defining the model in a double-sampling context consists in working with
the (n + N)-vector obtained by concatenating Yn and ZN . Under the assumptions of section 2,
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U = (Y ′
n, Z

′
N)′ is normally distributed with the following expectation and variance:

E(U) =
[

1n X(n) 0n 0n,p

0N 0N,p 1N X(N)

] ⎛⎜⎜⎜⎝
β(0)

y

βy

β(0)
z

βz

⎞⎟⎟⎟⎠ ,

= Xβ,

Var(U) =
⎡⎢⎣ σ 2

y In γ σ 2
z In 01,N−n

γ σ 2
z In σ 2

z IN

0N−n,1

⎤⎥⎦ ,

= V, (2)

where 1k and 0k stand for the vectors of size k which all entries equal 1 and 0 respectively and
0k,p stands for the k × p matrix with all elements equal to 0.

First, let us examine the testing procedure in the situation of known variance parameters
before extending the results to the general case of unknown variance parameters. Note that
assuming the parameters in V are known implies not only that σy and σz are known but also γ .

3.1 Exact test for known variance parameters

According to Causeur and Dhorne [6], the generalized least squares estimator β̂ of β can be
explicitly derived as follows:

β̂ = (X′V −1X)−1X′V −1U,

=
(

β̂(n)
y + γ

[
β̂(N)

z − β̂(n)
z

]
β̂(N)

z

)
,

where β̂(n)
y , β̂(n)

z and β̂(N)
z are ordinary least squares estimators of βy and βz.

Now, call SSβy
= SSβy

(γ, σ 2
y , σ 2

z ) the sum-of-squares traditionally involved when testing
the nullity of βy :

SSβy
= β̂ ′

y Var (β̂y)
−1β̂y .

It can be deduced, for instance from Conniffe [5], that the former test statistic can also be
expressed as follows:

SSβy
=

[
β̂(n)

y

σy

+ ρ
β̂(N)

z − β̂(n)
z

σz

]′ [
ρ2

N
S−1

(N) + 1 − ρ2

n
S−1

(n)

]−1
[

β̂(n)
y

σy

+ ρ
β̂(N)

z − β̂(n)
z

σz

]
,

where ρ = γ σz/σy is the partial correlation coefficient between Y and Z given the predictors.
The test statistic appears therefore as a continuum indexed by ρ between the classical stan-
dardized sum-of-squares derived on the small sample for ρ = 0 and on the wider sample for
ρ = 1. Therefore, it can be expected that the present testing strategy will always be at least
as good as the usual F-test based on the available measurements of the outcome and always
worse than the F-test that could be derived if the outcome was observed on the whole sample.

According to well-known results in the theory of linear models, the former quadratic
form is distributed according to a noncentral χ2

p distribution with non-centrality parame-

ter βy[(ρ2/N)S−1
(N) + ((1 − ρ2)/n)S−1

(n) ]−1βy/σ
2
y , which enables a classical testing procedure

based on the exact distribution of the test statistic.
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3.2 Approximate test for unknown variance parameters

According to Causeur and Dhorne [6], the maximum-likelihood estimators of the variance
parameters are given by the following expressions:

γ̂ = σ̂ (n)
yz{

σ̂ 2
z

}(n)
,

σ̂ 2
z = {

σ̂ 2
z

}(N)
,

σ̂ 2
y = {

σ̂ 2
y

}(n) + γ̂ 2
[{

σ̂ 2
z

}(N) − {
σ̂ 2

z

}(n)
]
,

where σ̂ (n)
yz , {σ̂ 2

y }(n), {σ̂ 2
z }(n) and {σ̂ 2

z }(N) are the usual maximum-likelihood estimators of σyz,
σ 2

y and σ 2
z based on residual sum-of-squares. Note that, due to the functional invariance of the

maximum-likelihood estimation, ρ is estimated by ρ̂ = γ̂ σ̂z/σ̂y .
In the general framework of linear mixed models, Kenward and Roger [9] proposes a small

sample inference method to account for the estimation of the variance components in the
distribution of the test statistics. We propose an alternative method that is made possible
by the specific covariance structure involved in our missing-data problem. Properties of this
structure will for instance avoid us some technical assumptions that are used by Kenward and
Roger [9].

We propose hereafter to study the testing procedure based on ŜSβy
= SSβy

(γ̂ , σ̂ 2
y , σ̂ 2

z )

obtained by replacing the variance parameters by their maximum-likelihood estimator in the
expression of SSβy

.

Example In order to see how estimating the variance parameters modifies the distribution
of the test statistic, let us examine an artificial situation. Suppose here that σy = σz = 1.
Suppose also that p = 2, βy = (0, 0)′ and βz = (3, 3)′. The sample sizes can either be (n =
15, N = 30) or (n = 30, N = 80) and the partial correlation ρ is either 0.2 or 0.8. With such
values for the input parameters, 10,000 datasets are simulated as follows: first, predictors x are
randomly drawn from a bivariate normal distribution with mean 0 and variance–covariance
identity. Then U is randomly simulated 10,000 times according to the normal conditional
distribution introduced in expression (2). In figure 1, the empirical quantiles of ŜSβy

are plotted
against the theoretical quantiles of a χ2

2 distribution. Whatever the sample sizes and the partial
correlation, this figure shows departures of the distribution of ŜSβy

from the χ2
2 distribution.

As in the single-sampling case where the Fisher distribution replaces the χ2-distribution when
the variance parameter is estimated, the distribution of ŜSβy

is more heavy-tailed than the χ2
2

distribution. Moreover, the departures from the χ2 distribution are more important in small-
sample conditions and especially in the case of a poor partial correlation between the outcome
and the covariate.

Providing an approximation of the distribution of ŜSβy
by means of a combination of

classical distributions is not as straightforward as in the single-sampling framework. First, the
test statistic appears to be a quadratic form which kernel matrix

V̂ar(β̂y)
−1 =

[
σ̂ 2

y ρ̂2

N
S−1

(N) + σ̂ 2
y (1 − ρ̂2)

n
S−1

(n)

]−1

is the inverse of a linear combination of matrices with random coefficients. Furthermore, ŜSβy

is also a quadratic function of the random vector β̃y = β̂(n)
y + γ̂

[
β̂(N)

z − β̂(n)
z

]
, which is not
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Figure 1. Empirical quantiles of ŜSβy versus the quantiles of SSβy .

independent of the kernel matrix, due to the presence of γ̂ in the expression of the estimator of
the regression coefficients. These two points are addressed in the following proposition giving
a more tractable asymptotic approximation of ŜSβy

.

PROPOSITION 1 Let ŜS
∗
βy

be defined by ŜS
∗
βy

= nβ̂ ′
yS(N)β̂y/σ̂

2
y K(ρ̂2), where K(ρ̂2) =

1 − (1 − ϕ)ρ̂2 and ϕ = n/N is the sub-sampling fraction.
For large n and N , ŜSβy

and ŜS
∗
βy

have the same asymptotic distributions.

Proof Let us first consider the following re-expression of V̂ar(β̂y)
−1:

V̂ar(β̂y)
−1 = N

σ̂ 2
y ρ̂2

[
Ip + 1 − ρ̂2

ϕρ̂2
S(N)S

−1
(n)

]−1

S(N).

Indeed, replacing S(N)S
−1
(n) by its asymptotic limit Ip, at least provided that the distribution of the

predictors has two finite first moments, leads to the asymptotic approximation of V̂ar(β̂y)
−1

by nS(N)/σ̂
2
y K(ρ̂2). Moreover, the asymptotic expansion of the distribution of β̃y given in

Causeur [10] shows that it is not markedly different, even in small sample conditions, of the
distribution of β̂y , which proves the proposition. �

Note that, when n = N , K(ρ̂2) = 1. Both ŜSβy
and ŜS

∗
βy

coincide then with the classical
F -statistic used in the single-sampling framework.

The following proposition takes advantage of the preceding results to give an approximation
for the distribution of ŜSβy

in terms of classical distributions.
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PROPOSITION 2 Let us define the random variate T(n,N)(δ(n,N), ρ
2) as follows:

T(n,N)(δ(n,N), ρ
2) = n

[
1 + ϕ

ρ2

1 − ρ2

]
T1

T2 + ϕ2T3
,

where T1, T2 and T3 are mutually independent. In addition, T1 is distributed according to a
non-central χ2

p with non-centrality parameter δ(n,N)/K(ρ2) with δ(n,N) = nβ ′
yS(N)βy/σ

2
y and

T2 is distributed according to a χ2
n−p−2 distribution. Suppose now that B and S are independent

random variates following respectively a beta distributionB([n − p − 1]/2, [N − n]/2)and a
χ2

N−p−1, then T3 is conditionally distributed, given B and S, as the ratio between a non-central
chi-square variable with 1 degree of freedom and non-centrality parameter [ρ2/(1 − ρ2)]BS
and B.

ŜSβy
and T(n,N)(δ(n,N), ρ

2) have the same limiting distributions when n and N are large.

Proof First, it is deduced from proposition 1 that the asymptotic distributions of ŜSβy
and

ŜS
∗
βy

are the same. Moreover,

ŜS
∗
βy

= n

[
1 + ϕ

ρ2

1 − ρ2

]
T1

T2 + ϕ2T3
,

with T1 = nβ̂ ′
yS(N)β̂y/σ

2
y K(ρ2), T2 = [Y ′

(n)(P(n) − P ∗
(n))Y(n)]/σ 2

y (1 − ρ2)] and T3 = [Y ′
(n) P

∗
(n)

Y(n)/σ
2
y (1 − ρ2)]/[Z′

(n)P(n)Z(n)/Z
′
(N)P(N)Z(N)]. In the former definitions, P(n) and P(N) are

the orthogonal projectors onto the linear spaces orthogonal to the spaces spanned by the
columns of X(n) and X(N) respectively and P ∗

(n) = P(n)Z(n)Z
′
(n)P(n)/Z

′
(n)P(n)Z(n).

With the same arguments that were used to achieve proposition 1, T1 is shown to fol-
low asymptotically a noncentral χ2

p with non-centrality parameter δ(n,N)/K(ρ2). The former
statistic depending only on estimators of expectation parameters, it is independent of T2 and
T3. Moreover, the independence of T2 and T3 is made obvious by considering their con-
ditional joint distribution given the covariate and the predictors and the distribution of T2 is
straightforward deduced from the classical theory of the distributions of quadratic forms. Note
finally that [Y ′

(n)P
∗
(n)Y(n)/σ

2
y (1 − ρ2)] is distributed as a χ ′2

1 variate with non-centrality param-
eter [ρ2/(1 − ρ2)][Z′

(n)P(n)Z(n)/σ
2
z ]. Finally, it is deduced from Johnson et al. [11, p. 349]

that B = Z′
(n)P(n)Z(n)/Z

′
(N)P(N)Z(N) and S = Z′

(N)P(N)Z(N)/σ
2
z are independently distributed

according to a B([n − p − 1]/2, [N − n]/2) and a χ2
N−p−1 respectively. �

The former proposition provides calculation tools to derive approximations of the quantiles
or the probability distribution function of ŜSβy

by means of Monte-Carlo simulations. This
is therefore very useful to maximize the power of the present test with respect to the sample
sizes. This point is addressed in the next section. Note that δ(n,N) is a non-centrality parameter,
which expression is similar to the equivalent parameters encountered when testing the global
significance of the parameters in the classical framework. By the way, if n = N , the distribution
of (1/p)T(n,N)(δ(n,N), ρ

2) coincides with the non-central Fisher distribution involved for the
same test in a single sampling context.

Example In the simulation feature introduced above, the quantiles of the distribution given
in proposition 3.2 are plotted in figure 2 against the theoretical quantiles of a χ2

2 distribution,
together with the quantiles of ŜSβy

. Obviously, this figure confirms the good approxima-
tion of the distribution of ŜSβy

by the distribution of T(n,N)(σ
2
y , ρ2) even in small-sample

conditions.
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Figure 2. Approximation of the quantiles of ŜSβy by the quantiles of T(n,N)(σ
2
y , ρ2).

4. Optimal sampling designs

In the single-sampling context, where the sample size is say m, the power of the F-test is defined
with respect to a given standardized distance from zero δ = β ′

yS(m)βy/σ
2
y of the vector of

expectation parameters. This distance from zero, that appears in the non-centrality parameter
of the F-distribution under the alternative hypothesis, is chosen as the minimal value over which
the test is expected to reject the null hypothesis with a high probability. The task consisting
in giving a relevant value for δ is by the way much easier in the case of a one-way analysis of
variance model where it can be expressed more intuitively in terms of the sum of the squares
of the marginal effects parameters.

Let cy be the unitary experimental cost for the joint measurements of the outcome and
the predictors. It is interesting to keep in mind that double-sampling designs are beneficial
in the situations where cy is much larger than cz, namely the unitary experimental cost for
the measurement of the covariate and the predictors. The global cost for a regression experi-
ment involving a single sample, which size is m, is therefore mcy. Under these experimental
conditions, the power of the F-test for the significance of βy is denoted πm(δ).

Now, let cyz denote the unitary experimental cost for the joint measurements of the out-
come, the covariate and the predictors. Note that, in many situations where the covariate is an
intermediate measurement of the outcome, cyz = cy . The global cost for a double-sampling
design is therefore cyzn + cz(N − n). The issue is now to provide the double-sampling design
which maximizes the power π(n,N)(δ) of the test subject to the following restriction on the
subsequent experimental cost:

cyzn + cz(N − n) = mcy.

In other words, the object is to seek for the optimal sampling design among those which
experimental cost is equivalent to a single-sampling strategy with m experimental units.
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Figure 3. Powers for the optimal double-sampling tests.

On the basis of the approximation provided in proposition 2, the power π(n,N)(δ) can be eval-
uated by Monte-Carlo simulations. Given δ, the non-centrality parameter δ(n,N) that appears
in the distribution of T(n,N)(δ(n,N), ρ

2) can be approximated by Nδ/K(ρ2) for large N and m.
Therefore, as for the optimization of double-sampling designs with respect to the efficiency
of estimation, a prior estimation of ρ2 is also needed here to obtain the optimal sample sizes.

In order to illustrate the derivation of optimal double-sampling designs, consider the fol-
lowing situation: the unitary costs involving the outcome are supposed to be cyz = cy = 20
and cz = 4. For equally spaced value of δ between 0 and 4, the optimal double-sampling
design, with the same experimental cost as the single sampling design with m = 10, is cal-
culated. Figure 3 shows the power functions at level α = 0.05 for different values of ρ. For
large values of ρ, the figure shows that important gains in terms of power of the test can be
expected from a double-sampling strategy here. However, when ρ becomes poorer, the optimal
double-sampling design coincides with the single-sampling feature.

Conversely, suppose now that the objective power is fixed to 0.9 for a given δ, say δ = 1.
By a single-sampling approach, the problem is quite usual and consists in solving the following
equation inm:πm(0.1) = 0.9.Transposed in the double-sampling context, the issue is similarly
to find (n, N) such that π(n,N)(0.1) = 0.9. In the situations presented above, the solutions are

Table 2. Experimental cost needed to reach the power 0.9 with δ = 1 by single-sampling and double-sampling
strategies.

Single Double-sampling tests
sampling

test ρ = 0.95 ρ = 0.90 ρ = 0.80 ρ = 0.70 ρ = 0.60

Sample sizes m = 17 (n, N) = (n, N) = (n, N) = (n, N) = (n, N) =
(6, 28) (8, 26) (10, 28) (12, 26) (14, 24)

Cost 340 208 232 272 292 320
(−39%) (−32%) (−20%) (−13%) (−6%)
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given in table 2. Here again, the results show that, provided cz is low enough, the double-
sampling approach can help saving experimental cost relative to the single-sampling plan.

5. Discussion

The present paper gives the asymptotic distribution of a test statistic for General Linear
Hypotheses in a double-sampling context. Such a result is first useful after a double-sampling
experiment to complete the analysis based on estimates by tests of the significance of the
predictors. Moreover, in situations where measurements of the outcome are very expensive
but can be approximated by a cheaper and highly correlated version, sampling designs aiming
either at a reduction of the global experimental cost or at an improvement of the power of the
test can be deduced from a closed form expression of the asymptotic distribution of the test
statistic in terms of classical distributions.

The double-sampling framework and its multivariate monotone extension are particularly
studied patterns of missing data because they enable explicit expressions for the maximum-
likelihood estimators of the parameters of a joint multinormal distribution.

The present results take advantage of this desirable property to achieve testing procedures,
at least in the case of a two-phase sampling. For convenience, the results are indeed presented
in the case of only one covariate but they can straightforward be extended to a multivariate
context on the basis of Causeur and Dhorne [6]. However, for more complex sampling schemes
in the presence of many covariates such as the monotone designs proposed by Causeur [7],
the joint distribution of the variance parameters is far more tedious to be obtained in terms of
known distributions. Equivalent studies in the former context are however worthwhile to face
specific applications for example to time series or growth curve modelling where monotone
patterns of missing data are encountered.
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