
HAL Id: hal-00466871
https://hal.science/hal-00466871

Preprint submitted on 25 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of distributed multi-periodic systems to achieve
consistent data matching

Nadège Pontisso, Philippe Quéinnec, Gérard Padiou

To cite this version:
Nadège Pontisso, Philippe Quéinnec, Gérard Padiou. Analysis of distributed multi-periodic systems
to achieve consistent data matching. 2010. �hal-00466871�

https://hal.science/hal-00466871
https://hal.archives-ouvertes.fr

Analysis of Distributed Multi-Periodic Systems

to Achieve Consistent Data Matching
(NOTERE 2010 extended version)

Nadège Pontisso, Philippe Quéinnec and Gérard Padiou
Institut de Recherche en Informatique de Toulouse

Université de Toulouse, France

Email: {nadege.pontisso, queinnec, padiou}@enseeiht.fr

Abstract—Distributed real-time architecture of an embedded
system is often described as a set of communicating components.
Such a system is data flow (for its description) and time-triggered
(for its execution). This work fits in with these problematics
and focuses on the control of the time compatibility of a set
of interdependent data used by the system components.

The architecture of a component-based system forms a graph
of communicating components, where more than one path can
link two components. These paths may have different timing
characteristics but the flows of information which transit on these
paths may need to be adequately matched, so that a component
uses inputs which all (directly or indirectly) depend on the same
production step. In this paper, we define this temporal data-
matching property, we show how to analyze the architecture to
detect situations that can cause data matching inconsistencies,
and we describe an approach to manage data matching that
uses queues to delay too fast paths and timestamps to recognize
consistent data.

Index Terms—Distributed system, component-based architec-
ture, real-time, data consistency

I. INTRODUCTION

Distributed systems are now often built by assembling

components which are independently developed or off-the-

shelf, and the designer is faced with various challenges,

especially when real-time is involved [1]. Various techniques

have been proposed to solve interconnection difficulties [2],

such as wrapping to expose a regular interface. In a real-time

context, these components must be appropriately scheduled

using periods, deadlines, priorities, etc [3]. Nevertheless, some

problems remain when multiple paths connect two compo-

nents. Indeed, the correct behavior of a component depends

on correct or valid inputs. Independently of the semantic

constraints of the inputs (e.g. belonging to a specific range

of values), the time validity is also an important aspect in

embedded systems. This time validity is often described in

terms of availability (having inputs at the right time to start

a task) and freshness (having recent enough inputs). Some

works have studied the case where a component uses several

inputs and these inputs respect a time consistency constraint

such as having been produced at the same time. But this

constraint is not sufficient: in a complex architecture, an

intricate component graph leads to several paths between two

components. In such a case, inputs of a component depend

on the outputs of the same component (a source) by several

paths. As a path links several components which consume and

produce data, this dependency is not on the source value itself,

but on the step at which it was produced. Our work fits in this

problematic: how can the inputs of a component be consistent

with regard to the production step of another component in

the situation where several independent paths link these two

components?

The data consistency is achieved by delaying fast paths

until an adequate matching of inputs is possible. We approach

this problem by analyzing the component graph to identify

structures where two components are linked by several paths.

If two paths have a really asymmetric nature, buffers are

used to introduce a delay on the fastest path. In the general

case, queues are used to keep data until the slowest data have

arrived. As all values are not necessarily useful, we introduce

filtering queues which keep only part of their inputs. We

present results on the size of the required queues. These results

are obtained in the context of periodic components, but make

neither assumptions nor constraints on the scheduling.

The paper is organized as follows. Related works are

presented in section II. Section III introduces an extensive

example, describes what is a consistent data matching, and

defines the computation and communication model. In sec-

tion IV, we present the analysis of the component graph.

Section V describes data consistency management, the queue

size computations, and the application on the example.

II. RELATED WORKS

In a real-time system, the freshness of data is a standard

property. Freshness means that the system uses values which

are as recent as possible, or in a specific domain of time

validity. But this freshness property is not enough for some

applications. Let’s consider a toy example (figure 1). This

system computes 2x + 3x, where x comes from an initial

component C1, C2 and C3 are used for multiplication, and a

last component C4 adds the results of theses multiplications.

When C1 emits a flow of values, C4 must not carelessly

mix values coming from C2 and C3 but has to add values

corresponding to the same x. If it behaves like this, we say

that C4 does a consistent data matching. If C2 computation

takes twice as much time as C3, using freshness only (using

the most recent values which reach C4) leads to inconsistent

results.

Fig. 1. Computation of 2x + 3x

Such a system fits well in the synchronous dataflow (SDF)

paradigm [4], [5]. SDF is a special case of dataflow, where

a program is represented by a directed graph in which each

node (called block) represents a computation and each edge

specifies a FIFO buffer. In the SDF paradigm, the execution of

a block is enacted when it has enough inputs. The objective of

the static analysis of a SDF program is to find the necessary

buffers between blocks and a scheduling such that a block is

executed when its inputs are available.

Data matching is not the goal of SDF graphs. In this

toy example, as the system is pure dataflow, consistent data

matching can be obtained using SDF analysis. However, SDF

theories cannot be used if the system is not a pure data

flow system, that is to say if the components are fired based

on conditions other than token availability. Particularly, SDF

cannot be used if the components are time-triggered.

Moreover, forcing a scheduling to solve this data matching

problem may be incompatible with other constraints, such

as resources consumption or CPU availability, which are

traditionally solved by scheduling analyzes: our goal is to

analyze a system without considering a scheduling or a specific

scheduler, neither do we want to compute a scheduling.

In the field of dataflow or database, studies mainly focus

on the freshness of data (for instance [6], [7], or [8] for an

extensive list of references). In [9], the authors determine

an algorithm which computes which data need to be up-to-

date taking data relationships into consideration. In [10], the

variables semantics and their timed validity domain are used to

optimize the transaction scheduling in databases. In [11], OCL

constraints are used to define the validity domain of variables,

and a variation of TCTL is used to check the system behavior

and to prevent a value from being used out of its validity

domain. However, these works do not consider consistency of

sets of values.

In [8], the authors introduce a “mutual consistency” between

objects in a database. They recognize that guaranteeing indi-

vidual freshness of objects is insufficient as objects may be

related to one another, and that the system should present a

logically consistent view of the objects. Their work deals with

non-preemptible periodic transactions, and they seek either the

right periods and relative deadlines which would guarantee

mutual consistency, or if a given set of transactions with their

known parameters guarantee mutual consistency. In a sense,

they are looking for a correct scheduling of actions so that

mutual consistency is preserved. Our work differs from their

in that we make similar assumptions concerning the scheduling

but have no influence on it.

In [12], the authors do a similar work distinguishing image

objects and derived objects. Image objects are periodically

sampled from outside sensors and derived objects are com-

puted from the values of a set of objects. To capture a mutual

consistency constraint on the set of values used to compute

a derived object, they introduce the notion of dispersion.

The age of a derived object is defined by the ages of the

used objects to compute it, and not by the date at which

the computation occurs. Given a set of periodic preemptible

transactions which read image or derived objects and update

derived objects, their goal is to find which concurrency control

strategy performs the best. Again, the goal is to find a correct

scheduling of the transactions.

Consistency in distributed systems is also an old problem.

However it is mainly done from a logical point of view, yield-

ing causal or total order of operations to ensure consistency of

values. Some works exist which introduce real-time constraints

in broadcasting. For instance ∆-causal protocols ensure the

causal consistency of messages arriving by ∆. Research on this

topic [13] has concentrated on adaptation issues (adjusting ∆)

and optimizing the transmission (reducing the bandwidth

overhead by minimizing piggybacking information). The goal

of ∆-causality is to favor latency even if ignoring a too late

message leads to breaking causality chains. In our case, we

seek a consistent matching of messages travelling by different

paths. Latency is imposed by the slowest path, and messages

on faster paths are delayed to enable this matching.

Our work differs from the works presented above mainly be-

cause our goal is not to compute a system scheduling to solve

our problem of data matching. Neither do we consider that we

know the final scheduling of components or their implantation

(for example, the number of CPU). This approach allows to

manage systems composed by black boxes that we cannot

constrain to have a “good” behavior, for example, we cannot

constraint when the components read their inputs. Moreover,

even with a configurable system, acting on scheduling can be

insufficient to solve data matching problems.

Prior work was done considering same frequency compo-

nents [14] and it used solutions similar to SDF. In this paper,

we consider multiple frequency systems, and it brings forth

radically different solutions. An outline of the general analysis

was presented in [15]. This paper differs by considerably

enhancing this analysis, especially with regard to the filtering

queues. Moreover, the full genuine example has not been

published before.

III. CONSISTENT DATA MATCHING

A. Application Example

Our application example comes from the FUEGO project.

The component graph has been developed in collaboration

with Thales Alenia Space. FUEGO objective is to detect fires

and eruptions, and to observe their evolutions. The system

has been conceived as a constellation of satellites in low earth

orbit. Each satellite is equipped with an observation instrument

(a narrow area sensor) and with a detection instrument (a wide

Fig. 2. Application: A Fire Detection Satellite

Name
Period
(in ms)

Minimal
Execution

Time

Maximal
Execution

Time

GPS 1000 100 200

Position computation 60 20 40

Alert management 1000 50 200

Wide area instrument 100 60 70

Image composition 1000 200 400

Coordinate computation 1000 100 500

Amplitude computation 1000 20 30

Nature computation 1000 30 40

Hot point management 1000 50 200

Flying over date
computation

1000 30 30

Request management 1000 50 150

Gyroscope 60 20 30

Star tracker 120 40 60

Attitude computation 60 20 30

TABLE I
APPLICATION EXAMPLE PARAMETERS

area sensor) which is pointed in front of the satellite. The

detection instrument detects fires or eruptions. In such a case,

an alarm is sent to a ground mission center and the satellite is

requested to do an observation of the zone as soon as possible.

A ground control center gathers all observations requests and

allocate them between the satellites of the constellation.

We only study the system part in relation with the wide area

detection instrument (figure 2). The GPS allows to compute the

satellite position. The wide area sensor takes pictures which

are linked to compose an image of a wide area. The data sent

by the gyroscope and the star tracker are used to compute the

satellite attitude (the angle the satellite makes with the earth).

The hot point coordinate computation is made using the

image, the satellite position, and its attitude. Having detected

a hot point, the system computes its amplitude and its nature

(fire or eruption). The coordinate of the hot point, its nature

and its amplitude are analyzed by the hot point management

component. It records it if this point is new or if it has evolved.

The amplitude and the coordinate of the hot point and the

position that the satellite had when this point was detected are

sent to the ground by the alert management component.

Using the hot point parameters and the actual parameters

of the satellite, a component computes the date when the

observation instrument flies over the hot point. This date, the

point nature, and its coordinates are stored by the request man-

agement component. It schedules the hot point observations

the satellite has to achieve. Table I displays the parameters of

our system. In the numeric applications in this paper, we use

null communication times between components to simplify the

presentation. The actual analysis uses non null values.

B. Example of Data Matching Problem

In figure 2, the alert management has to send to the ground

a message composed of three values: the coordinates of the de-

tected hot point, its amplitude, and the position that the satellite

had when this point was detected. The coordinate computation

needs the satellite position to produce the coordinates. The

amplitude computation needs the coordinates, hence it also

indirectly depends on the satellite position. Thus, the alert

management uses three values which depend on the position

produced by the position computation component. This set of

three values is considered as consistent if they depend on a

same computation step of the position computation.

C. Consistency Formalization

We consider a distributed computation which is modelled by

sending events (noted s), delivery events (noted d) and internal

events (noted i). We note sC , dC or iC an event occurring on

a component C. We note dC′

a delivery event corresponding

to the reception of a message coming from the component C ′

and dC′

C a delivery event occurring on C and corresponding

to a message coming from C ′. The internal events correspond

to computation steps and we consider that their durations are

(logically) null. We note ≺ the relation of temporal precedence

between events on a same component.

1) Direct Influence Relation: The direct influence rela-

tion → is defined by:

• For a message m, the sending influences its delivery

s(m) → d(m).

• an internal event influences the sendings that directly

follow until the next internal event:

∀sC , iC : iC ≺ sC ∧ 6∃i′C : iC ≺ i′C ≺ sC ⇒ iC → sC

• the last delivery coming from a given component

influences the following internal events until the next

delivery coming from the same component:

∀dC′

C , iC : dC′

C ≺ iC ∧ 6∃DC′

C : dC′

C ≺ DC′

C ≺ iC ⇒ dC′

C → iC

2) Influence Relation: The influence relation, noted →∗, is

constructed by transitive closure of →.

This influence relation is stronger than the usual causality

relation (also called happened-before relation): if a influences

b then a causally precedes b; the converse is not necessarily

true. The influence relation is closer to a memory model

description of a distributed system than to a message passing

one.

3) Influence Past: We define the influence past of an event

i as the set of internal events that influence i added to itself:

past(i)
∆

= {i′ | i′ →∗ i} ∪ {i}

4) Strictly Consistent Execution: We note S|C, the set of

events from the set S which occur on component C. An

internal event set is consistent if it contains at most one internal

event by component. An execution is strictly consistent if the

influence past of each internal event is a consistent event set:

∀i : ∀C : cardinality(past(i)|C) ≤ 1

5) Relaxed Consistency: We consider that each com-

ponent has a real-time clock. We note date(i), the

time at which the internal event i occurs. We call

span(S) the maximum time span between events in S:

span(S) = maxi1,i2∈S(date(i1) − date(i2). A τ -relaxed

consistent execution is such that:

∀i : ∀C : span(past(i)|C) ≤ τ

A 0-relaxed consistent execution is actually a strictly consis-

tent execution. Note that in this definition, we use the date

of events which are all on the same component: a global

synchronous clock is never required.

6) Consistent Data matching: If we consider data instead of

events, we say that a value d produced by an execution step S
influences a value d′ produced by a step S′ if the internal event

corresponding to S influences the one corresponding to S′. A

data set is consistent if the union of the influence pasts of

the internal events which produce the data is consistent. A

component does a consistent data matching if its inputs form

a consistent data set for each execution step.

D. Model

We solve our data matching problem in a general setting

that does not depend on an effective scheduling or a particular

scheduler. We define a general abstract model that grabs just

enough requirements to solve our problem without restricting

too much the systems where the solution is applied.

1) Computation Model: Components are time triggered and

we impose that they have a fixed period. Different components

may have different periods. During one step of its period,

the component reads exactly once every input port, then it

performs its computation, and then it writes exactly once every

output port. The only requirement is that a component finishes

its step before the end of its period. These weak assumptions

allow to fully abstract any scheduling considerations. A com-

ponent step can be instantaneous or can take as long as the

full period. Preemption may split it into pieces. In consecutive

periods, component steps may have different durations or

different relative start times. Different readings of one step

can be done instantaneously or separately, and similarly for

writings.

2) Communication Model: In the same spirit, we make

few assumptions about communication. We assume that com-

munication is FIFO and reliable. We use a minimum and a

maximum communication time. These boundaries are defined

for each couple of components and can vary in the system. By

allowing null values, we model a non-transactional memory.

On the other hand, non-null values model a communication

network. The strict upper bound is natural in a real-time

context, for instance when communication is performed via

a synchronous bus.

3) Model Parameters: To analyze a system queue sizes,

some parameters are useful. The mandatory parameters are:

• TC : the period of component C;

• ∆CC′ : a maximum communication delay between com-

ponents C and C ′. An upper bound is sufficient.

Optional parameters are (may be set as zero if unknown):

• eC : a lower bound of the execution time of a step of

component C;

• δCC′ : a minimum communication delay between com-

ponents C and C ′. A lower bound is sufficient.

IV. SYSTEM ANALYSIS

A. Graph Analysis

To be able to analyze the system, we analyze the component

graph as an oriented graph. We are able to easily found

problematic configurations searching for subgraphs that we

called spindles which detect that several paths exist between

two components.

1) Graph Properties:

Simple Path: A path is a sequence of nodes where there

exists an edge between two consecutive nodes. We call a

simple path, a path in which all nodes are distinct.

Separated Paths: Two simple paths with the same ex-

tremities are separated if and only if their sequences do not

have any nodes in common except the initial and final nodes.

2) Spindle: A spindle between two nodes is the set of all

simple paths connecting these nodes such that at least two

separated paths exist in this set. The initial node of these

paths is called the source, and their final node the sink. In

figure 2, the set of the three simple paths between the position

computation component and the alert management is a spindle.

Fig. 3. tmax Evaluation

An inconsistent data matching can occur between a compo-

nent couple (C, C ′) if and only if there is a spindle between

them.

B. Spindle Analysis

When spindles are found, we analyze how their paths

influence the data used by the sink components.

1) Maximum Path Time: Let’s consider a path P =
(C1, C2, ..., Cn). We note tmax(P) the maximum time be-

tween the beginning of the execution of C1, which sends a

value v, and the use by Cn of a value influenced by v through

the path P .

To find the maximum path time, the worst case is when each

component uses data at the beginning of its period and sends

data at the end, and when the phase difference maximizes the

lag between the sending and the use of a value.

The maximum time t′max between the beginning of the

execution of C1, which sends a value a to C2 and the use

by C2 of this value through the path P depends on the time

during which C2 can use a. As we see in figure 3,

t′max = 2TC1
+ ∆C1C2

First, C1 executes a step S1 which lasts one period and

produces the value a. This value can be used by C2 after a

delay ∆C1C2
and until it receives a new value. A new value b

is produced by C1 at the end of the step S2. This new value is

available for C2 after a delay ∆C1C2
. We place C2 such that it

starts a step at this moment. Thus, at the same time, C2 starts

a step and a new value is available. As we do not know what

happens exactly, we choose the worst case for t′max, which is

that C2 starts its computation without reading the value b.

The maximum time between the beginning of the execution

of C1, which sends a value v, and the use by Cn of a value

influenced by v through the path P is:

tmax(P) =
n−1
∑

i=1

(2TCi
+ ∆CiCi+1

)

2) Minimum Path Time: Let P = (C1, C2, ..., Cn) be

a path. We note tmin(P) the minimum time between the

beginning of the execution of C1, which sends a value v, and

the use by Cn of a value influenced by v through the path P .

tmin(P) is the sum of the minimum execution times and the

minimum communication delays along the path.

tmin(P) =

n−1
∑

i=1

(eCi
+ δCiCi+1

)

3) Maximum Gap Between Two Input Data: Let’s consider

a spindle between Cα and Cβ composed of two paths: PA =
(Cα, C2, ...Cn−1, Cβ) and PB = (Cα, C ′

2, ...C
′
m−1, Cβ). PA

has a size of n and PB a size of m. Cn−1 sends a value A to

Cβ and C ′
m−1 sends a value B.

Cβ uses the values A and B. They are influenced by values

produced by Cα. We analyze the time gap between the starting

time of the step of Cα which produced the value which

influences A and the starting time of the step of Cα which

produced the value which influences B.

The maximum gap, noted gapAB , is obtained when A is

produced using the maximum path time and B using the

minimum path time. Moreover, A is read by Cβ at the

beginning of its period and B is read as later as possible.

gapAB = tmax(PA) + Tβ − eβ − tmin(PB)

Note that gapAB 6= gapBA. To analyze a spindle, we have

to know the two values gapAB and gapBA.

V. DATA MATCHING MANAGEMENT

Analyzing every spindle in the component graph, we are

able to know the worst gap that we can have between two

data. For the analyzed application, the designer has to know

if this gap is acceptable. If not, the objective is to reduce it.

A. Imposed Delay

Reducing gapAB can be achieved by introducing a delay

into the path PB in order to increase tmin(B). To reach this

effect, queues are set on the sink component input. For every

execution step, the sink uses the queue head. Data entering

the queue take time to propagate to the head depending on

the size of the queue. This approach is not so far from an

SDF solution.

This lag increases tmin(B) (therefore decreasing gapAB)

but it also increases tmax(B), and so it increases gapBA. We

have to take care of these two effects before using an imposed

delay. Moreover, we are never able to guarantee that the set

used by the sink component is strictly consistent.

B. Timestamping

To compose a consistent set with a given consistency

tolerance, the sink component must be able to select which

data it needs among the received ones. Queues are used on the

inputs of the sink, and for each step, the sink has the choice

among the data kept in the queues. Thus, the sink needs to

know the influence past of a value, which is the same as the

influence past of the internal event which has produced this

value.

1) Marks: A mark is a couple 〈Component Id, value〉,
where values are taken from any infinite set. Each component

has a logical clock H(C) that marks the data produced by the

component. This clock “counts” the number of computation

steps executed by the component. Thereby, one mark, noted

Mi, corresponds to a unique internal event i, and conversely.

2) Timestamps: A timestamp is a set of marks that holds the

influence past of an event. The timestamp carried by the event

a is noted Ea. The folowing timestamping rules are used:

• The set Input(iC) is composed by all the delivery

events which were used to compute the internal event

iC :

Input(iC) = {dC′

C : (dC′

C ≺ iC ∧ 6∃DC′

C : dC′

C ≺ DC′

C ≺ iC)}

• The timestamp of a delivery event is equal to the corre-

sponding sending timestamp.

• The timestamp of a sending event is equal to the times-

tamp of the most recent internal event that precedes it.

• The timestamp of an internal event i of a component C
is equal to the union of timestamps of the delivery events

used during this computation step, added to its own mark.

Ei =
⋃

d∈Input(i)

Ed ∪ {〈C, H(C)〉}

and H(C) is incremented.

Lemma 1 (Marks and Timestamps):

Ei = {Mi} ∪ {Mj | j →∗ i}

Proof: We note, where i and i′ are internal events:

i
1
7→ i′

∆

= ∃s, d : i → s → d → i′

i
n
7→ i′

∆

= ∃i′′ : i
1
7→ i′′ ∧ i′′

n−1
7→ i′

By the stamping rules :

Ei = {Mi} ∪
⋃

j | j
1
7→i

Ej

= {Mi} ∪
⋃

j | j
1
7→i

{Mj} ∪
⋃

j | j
2
7→i

Ej

...

= {Mi} ∪
⋃

n≥k≥1

⋃

j|j
k
7→i

{Mj} ∪
⋃

j | j
n+1
7→ i

Ej

All 7→ chains are bounded (initial event)

= {Mi} ∪
⋃

k≥1

⋃

j|j
k
7→i

{Mj}

= {Mi} ∪ {Mj | j →∗ i}
2

Theorem 1: The timestamps encode the influence relation:

i →∗ i′ ⇔ Ei Ei′

Proof: The direct implication is deduced from the stamp-

ing rules and the transitivity of →∗:

If i → s → d → i′, then from the stamping rules:

⇒ Ei′ = {Mi′} ∪ Ei ∪ X
Mi′ is unique and only come from i′.

As i′ 6→∗ i ∧ i 6= i′, Mi′ /∈ Ei

⇒ Ei Ei′

Using the transitivity of →∗:

i →∗ i′ ⇔ i → ... → i′ ⇒ Ei Ei′

The reverse implication comes from the stamping rules and

lemma 1:

Ei Ei′ ⇒ Mi Ei′ (lemma 1)

⇔ Mi {Mi′} ∪ {Mj | j →∗ i′} (lemma 1)

A mark is unique and i 6= i′ ⇒ Mi 6= Mi′

⇔ Mi {Mj | j →∗ i′}
⇒ ∃j : Mi = Mj ∧ j →∗ i′

A mark is unique:

⇔ i →∗ i′

. 2

Theorem 2: We note (E|C), the set of marks generated

by a component C contained in the set E. An execution is

consistent if and only if there does not exist several marks

coming from a same component in the timestamp of each

internal event:

Consistent execution
∆

= ∀i : ∀C : cardinality(Ei|C) ≤ 1

Proof:

Ei = {Mi′ | i′ →∗ i} ∪ {Mi}
= {Mi′ | i′ →∗ i ∨ i′ = i}
= {Mi′ | i′ ∈ past(i)}

As two distinct events cannot generate the same mark, the

number of marks and the number of events are equal:

card({Mi′ | i′ ∈ past(i)}|c) = card(past(i)|c)
(with or without the restriction on c), and so

card(Ei|c) = card(past(i)|c)

The condition is equivalent to the consistency condition de-

fined above.
2

3) Relation to Other Encodings: Our work is in the same

spirit as classical works by Lamport [16] and Mattern [17],

which encode the causality relation in distributed computing.

However, our influence relation is different from the usual

causality relation, and we use a different encoding. The local

clock does not act like a Lamport clock (the local clock is not

updated using the message timestamp) and the piggybacked

timestamps are not Fidge-Mattern vector clocks (we can have

more than one mark from the same component).
4) Mark Generators and Controllers: An inconsistent data

matching can occur between a component couple (C, C ′) if

and only if there is a spindle between them. Consequently, to

reduce the number of used marks, only spindle sources are

mark generators. Moreover, only sinks are controllers, that is

to say components that check the consistency between the

marks coming from their spindle source.

C. Queue Handling

Data can be used as component inputs only when they

make a consistent data set. It implies that data coming using

the faster paths have to wait for the appropriate marked data

coming through the slower paths. This requires to use queues

on component inputs to store data coming faster. We analyze

the necessary queue sizes in the field of relaxed data matching.

As strict consistency is a relaxed consistency of tolerance 0,

the results apply to strict data matching.
In the context of relaxed data matching, we use filtering

queues. A filtering queue stores data it receives following a

given rhythm, for example the queue stores one value out of

three. The flexibility of relaxed data matching is exploited to

reduce the queue sizes using filtering queues. A regular queue

is a filtering queue with a rhythm of 1.
To manage the queues, we choose to keep a value until a

more recent value is used. When a value is used, older data

are erased but the used one remains buffered. If the frequency

of the receiver component is higher than the sender one, the

receiver uses the same value for several steps.
In the general case, for a given spindle, the sink has an

arbitrary number of inputs involved in this spindle. To find

the necessary queue sizes on each input, we analyze the paths

two by two. For each couple, the queue sizes of the two inputs

are obtained. Then, for each input, we keep the highest queue

size that was obtained from the analysis.
In the following, let’s consider a spindle between Cα and

Cβ composed of two paths: P1 = (C ′
1, C

′
2, ..., C

′
n) and P2 =

(C1, C2, ..., Cm) where C ′
1 = C1 = Cα and C ′

n = Cm = Cβ .

We tolerate a gap of τ between the step starting times of Cα

that produce values the Cβ inputs are influenced by.
1) Queue Requirements: First, we have to find where we

need a queue.

• If tmax(P1) > tmin(P2) + τ , then it means that the path

P2 can be shorter than the path P1 and that the tolerance

is not sufficient to reduce this gap. So we need a queue

between Cm−1 and Cβ .

• If tmax(P2) > tmin(P1) + τ , then we need a queue

between C ′
n−1 and Cβ .

• If both conditions are true then we need both previous

queues. In this case, P1, as well as P2, can outperform

the other path.

For the communication between components where the

receiver is not a spindle sink, we use a buffer of size one.

Each new coming value replaces the previous one.
2) Queue Size Evaluation: Let’s suppose that tmax(P1) >

tmin(P2) + τ . The required and sufficient filtering queue size

between Cm−1 and Cβ must be determined. The objective

is to determine the maximum number of data that must be

buffered waiting for a consistent data set to be constructed.

We seek this maximum size such that, when the queue is full

and a new value comes, it is guaranteed that the consistent

value corresponding to the oldest value v will never arrive.

Thus, v is useless and can be removed.
The required queue size between Cm−1 and Cβ corresponds

to the maximum number of data that can be stored in the queue

Fig. 4. Example of Spindle

Fig. 5. Behavior of a Filtering Queue

between two data removals by Cβ .The worst case happens

when the maximum path time is made by P1 and where P2

takes as little time as possible.

Let’s assume that Cβ uses a regular queue for the path P1

and a filtering queue for the path P2. This filtering queue has

a size of N ′ (N ′ ≥ 2) and it stores one value out of R.

We use a simple example to present the characteristics of

filtering queues. Figure 4 displays a spindle between the com-

ponents C1 and C4, and the parameters of the components. We

use simplified parameters to make easier the illustration. The

input of C4 coming from C3 uses a filtering queue. We analyze

the black path, and we consider that the communication times

between two components are equal to 1 and that the filtering

queue stores one value out of three.

Figure 5 illustrates the biggest gap that we can have between

two step starting times of the source which produce values that

influence two consecutive values in the filtering queue. The tail

of an arrow corresponds to the time when a value is produced

and its head the time when it is read by another component, or,

concerning the value produced by C3, the time when the value

is recorded into the queue. The biggest gap is found when the

first queue value comes from a source step as old as possible

and the second value from a step as recent as possible.

If we consider the path P2 = (C1, ..., Cm−1, Cβ) with a

filtering queue which stores one value out of R between Cm−1

and Cβ , the biggest gap between two consecutive data is:

gapfilter(P2) =

m−2
X

i=1

[2TCi
+ ∆CiCi+1

] + (R + 1)TCm−1

−eCm−1
−

m−2
X

i=1

[eCi
+ δCiCi+1

]

= tmax(P) − tmin(P) + (R − 1)TCm−1

−(∆Cm−1Cβ
− δCm−1Cβ

)

If τ is the expected tolerance, we can find the necessary

recording rhythm R of the queue. The relation between τ and

R is provided by the gapfilter computation. To manage a

tolerance of τ , we need that:

gapfilter(P2) ≤ 2τ

The rhythm R of the filtering queue must respect:

R ≤ max(1,
2τ−tmax(P)+tmin(P)+∆Cm−1Cβ

−δCm−1Cβ

TCm−1

+ 1)

If the rhythm of the filtering queue does not respect this

condition, it is impossible to manage a relaxed consistency

of tolerance τ .
Knowing the value of R, we compute the necessary queue

size. When the sink reads a value in the filtering queue at
time t, the oldest value it can use is influenced by a value
produced by a source step which necessarily started before
t − toldmin(P2):

toldmin(P2) =

m−2
X

i=1

[eCi
+ δCiCi+1

] + (R − 1)TCm−1
+ eCm−1

+(N ′ − 2)RTCm−1
+ eCm−1

+ δCm−1Cβ

toldmin(P2) = tmin(P2) + eCm−1
+ (N ′R − R − 1)TCm−1

At time t, in the worst case, on the path P1, the sink has a

value influenced by a value produced by a source step which

started at t − tmax(P1).
To manage data matching, we have to provide a correspond-

ing value coming from the path P2. Considering relaxed data

matching, this corresponding value must be influenced by a

source value which was produced by a source step which

started between (t − tmax(P1) − τ) and (t − tmax(P1) + τ).
The minimum queue size is obtained when:

toldmin = tmax(P1) − τ

The necessary queue size of the filtering queue is:

N ′ =

⌈

tmax(P1)−τ−tmin(P2)−eCm−1
+(R+1)TCm−1

RTCm−1

⌉

This queue size allows to store enough data between Cm−1

and Cβ to guarantee a data matching with values coming from

the path P1. But we have also to take into account the worst

data utilization case of the sink. The worst case happens when

the data are used at the beginning of a Cβ period and when

the use of a new data is done as late as possible, that is to say

when the component has only its execution time left. So, in

the worst case, a data is erased 2TCβ
− eCβ

after its last use.

If 2TCβ
−eCβ

> RTCm−1
, we have to add space to store the

data that can come into the queue between two sink readings.

The final necessary queue size N is:

N =

⌈

tmax(P1)−τ−tmin(P2)−eCm−1
+(R+1)TCm−1

RTCm−1

+
2TCβ

−eCβ

RTCm−1

⌉

With strict consistency and a regular queue, R = 1 and

τ = 0. The necessary queue size becomes:

N =

‰

tmax(PA) − tmin(PB) + 2TCβ
− eCβ

− eCm−1

TCm−1

ı

+2

D. Application Example Analysis

We apply the previous results on the application example

figure 2. For the spindles where the path temporal parameters

are not very different, the necessary queues have an average

size of 6. But the necessary queue size can be very large

depending on the system parameters. If we want a strict

consistency in the spindle between the position computation

and the alert management, we found that we need a size of 102

on the alert management input which is directly linked with the

position computation. This happens because we have a large

difference between the period of the position computation

(60 ms) and the one of alert management (1 second). Actually,

we do not need to send the precise position with the alert

sent to the ground. We place a filtering queue between the

position computation and the alert management. If we tolerate

a gap τ of 300 ms, we can have a recording rhythm of 9. The

necessary queue size is 12. We can compare this result with

the size of 102 that we need for the same spindle for strict

data matching.

In some case, freshness has priority like in the spindle

between the environment and the attitude computation. To

compute the attitude as precisely as possible, the component

has to use the most recent data coming from the gyroscope

and the star tracker. Selecting data considering the matching

on the environment has no sense here.

If the queue sizes are unacceptable with regard to the

resource constraints, the architecture has to be modified. Very

large queue sizes are a hint which points to an architectural

problem. For example, if we want a strict consistency between

the position computation and the alert management, this leads

to a very large queue. Instead of having a direct link between

this two components, the data sent by the hot point coordinate

computation can be composed of the coordinate and the

position value. Thus, we can erase the link between the

position computation and the alert management, and eliminate

the spindle.

VI. CONCLUSION

In this article, we identify an important aspect of

component-based distributed systems that is not treated in

other works: matching of interdependent data. Our analysis

is done as soon as the components, their characteristics, and

their relations are known, but we consider few constraints on

the system scheduling, so this allows us to analyze systems

early in their development process.

We first detect the configurations that cause data matching

problems, and then we propose a method to manage data

matching using a timestamping mechanism to identify depen-

dencies between data. We propose a notion of relaxed data

matching and compute the necessary sizes of the queues we

have to use on component inputs to manage these constraints.

As strict data matching is a special case of relaxed data

matching, the results are applicable to strict data matching.

In some systems, the computed queue sizes are too large

with regards to the resource constraints. If this situation

happens, it means that the paths are too much unbalanced. It

identifies that an architecture redesign is needed. On the other

hand, if the queue sizes are acceptable, it means that data

matching is guaranteed whatever the final system scheduling

is. An open question is how more precise information about the

scheduler can be used to reduce the queue sizes, for instance

by asserting that certain inconvenient executions are actually

prevented from happening. An other question is whether a

less regular recording rhythm such as (m, k)-firm [18] may be

more efficient and more suitable to model real-time network

communication.

REFERENCES

[1] A. Möller, M. Åkerholm, J. Fredriksson, and M. Nolin, “Evaluation of
component technologies with respect to industrial requirements,” in 30th

EUROMICRO conference. IEEE Computer Society, 2004, pp. 56–63.
[2] C. Szyperski, Component Software – Beyond Object-Oriented Program-

ming, 2nd ed. Addison-Wesley, 2002.
[3] J. W. Liu, Real-Time Systems. Prentice Hall, 2000.
[4] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of

embedded software from synchronous dataflow specifications,” Journal

of VLSI Signal Processing Systems, vol. 21, pp. 151–166, 1999.
[5] C. Fong, “Discrete-time dataflow models for visual simulation in

Ptolemy II,” Master’s thesis, Electronics Research Laboratory, University
of California, Berkeley, 2001.

[6] K. Ramamritham, S. H. Son, and L. C. DiPippo, “Real-time databases
and data services,” Real-Time Systems, vol. 28, no. 2-3, pp. 179–215,
2004.

[7] M. Xiong, S. Han, and K. Lam, “A deferrable scheduling algorithm for
real-time transactions maintaining data freshness,” in 26th IEEE Real-

Time Systems Symposium (RTSS 2005), 2005, pp. 27–37.
[8] A. K. Jha, M. Xiong, and K. Ramamritham, “Mutual consistency in

real-time databases,” in 27th IEEE Real-Time Systems Symposium (RTSS

2006), 2006, pp. 335–343.
[9] T. Gustafsson and J. Hansson, “Data freshness and overload handling in

embedded systems,” in 12th IEEE Conference on Embedded and Real-

Time Computing Systems and Applications (RTCSA 2006), 2006, pp.
173–182.

[10] M. Xiong, R. Sivasankaran, J. Stankovic, K. Ramamritham, and
D. Towsley, “Scheduling transactions with temporal constraints: Ex-
ploiting data semantics,” in 17th IEEE Real-Time Systems Symposium

(RTSS’96), 1996, pp. 240–253.
[11] S. Anderson and J. K. Filipe, “Guaranteeing temporal validity with

a real-time logic of knowledge,” in 23rd Conference on Distributed

Computing Systems (ICDCS 2003). IEEE Computer Society, 2003,
pp. 178–183.

[12] X. C. Song and J. W. S. Liu, “Maintaining temporal consistency:
Pessimistic vs. optimistic concurrency control,” IEEE Transactions on

Knowledge and Data Engineering, vol. 7, no. 5, pp. 786–796, 1995.
[13] R. Baldoni, R. Prakash, M. Raynal, and M. Singhal, “Efficient ∆-causal

broadcasting,” International Journal of Computer Systems Science and

Engineering, vol. 13, no. 5, pp. 263–269, 1998.
[14] N. Pontisso, G. Padiou, and P. Quéinnec, “Real time data consistency in

component based embedded systems,” in 8th International Conference

on New Technologies in Distributed Systems (NOTERE ’08). ACM,
2008, pp. 1–6.

[15] N. Pontisso, P. Quéinnec, and G. Padiou, “Temporal data matching in
component based real time systems,” in IEEE Symposium on Industrial

Embedded Systems SIES2009, Jul. 2009, pp. 62–65.
[16] L. Lamport, “Time, clocks and the ordering of events in a distributed

system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.
[17] F. Mattern, “Virtual time and global state in distributed systems,” in In-

ternational Workshop on Parallel and Distributed Algorithms. Elsevier,
1989, pp. 215–226.

[18] N. Jia, Y.-Q. Song, and R.-Z. Lin, “Analysis of networked control
system with packet drops governed by (m,k)-firm constraint,” in 6th

IFAC international conference on fieldbus systems and their applications

(FeT’2005). Elsevier, 2005, pp. 63–70.

