
Task: UFL

Uniform �ow

Stage CSPC 2006. Day Fourth. Source �le ufl.* 2006.17.06

Available memory: 32MB.

Imagine a system of n junctions, numbered from 1 to n, connected with undirected pipes in which
water �ows. The junction number one is source, the n-th one is sink. Every pipe connects exactly
two distinct junctions and is assigned one number � its size, that is the maximum velocity of water
�owing in it. The water �ow must adhere to the regular conservation principle: for every junction,
except source and sink, the amount of water �owing into the junction is equal to the amount of
water �owing out of it.

Now we add one more limitation: for each pair (J1, J2) of junctions the sum of water velocities
over all the pipes on an arbitrary path from J1 to J2 is constant (for this pair of junctions). We
calculate the sums in such a way, that if the water �ows against direction of the path from J1 to J2,
its velocity is negated.

You job is to calculate the maximal �ow in the network.

Task

Write a program, that:

• reads the description of the network from standard input,

• calculates the maximal �ow,

• writes the result on standard output.

Input

The �rst line of the standard input contains one natural number n � the number of junctions in
the network (2 ≤ n ≤ 100). The second line contains one natural number m (1 ≤ m ≤ 5 000) � the
number of pipes in the network. The next m lines contain the descriptions of the pipes. Each pipe
is represented by three integers ai, bi, ci. ai and bi are the numbers of junctions connected by the
pipe and ci (0 ≤ ci ≤ 10 000) is its size. There can be multiple pipes between a pair of junctions.

Output

The �rst line of standard output should contain exactly one �oating point value � the maximal
achievable �ow. The number must match the exact result with the maximal absolute di�erence of
10−3.

The SVIO library has no functionality for writing �oating point numbers. Do not

use SVIO for this task.

1



Example

For the input data:
4

6

1 3 2

1 2 3

1 2 2

2 4 5

2 3 2

3 4 5

the correct result is:
5.200000

Remark

To avoid rounding problems, we suggest you use long double (C/C++) or extended (Pascal) data
types.

2


