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ABSTRACT 1. INTRODUCTION

In this paper, we present the conceptTaine Sequence Summa- Domains such as medicine, the WWW, business or finance gen-
rization to support chronology-dependent applications on massive erate and store on a daily basis massive amounts of data. This data
data sources. Time sequence summarization takes as input a timés represented as a collection of time sequences of events where
sequence of events that are chronologically ordered. Each event iseach eventis described as a set of descriptors taken from various de
described by a set of descriptors. Time sequence summarizationscriptive domains and associated with a timestamp. These archives
produces a concise time sequence that can be substituted for théepresent valuable sources of insight for analysts to browse, an-
original time sequence in chronology-dependent applications. We alyze and discover golden nuggets of knowledge. For instance,
propose an algorithm that achieves time sequence summarizatiorPiologists could discover disease risk factors by analyzing patient
based on a generalization, grouping and concept formation processhistory [27], web content producers and marketing people are in-
Generalization expresses event descriptors at higher levels of abierested in profiling client behaviors [23], traders investigate fi-
straction using taxonomies while grouping gathers similar events. nancial data for understanding global trends or anticipating market
Concept formation is responsible for reducing the size of the input moves [29]. However, analysts are overloaded with the size of this
time sequence of events by representing each group created by onéata and increasingly need methods and tools allowing exploratory
concept. The process is performed in a way such that the over-Visualization, query or analysis.

all chronology of events is preserved. The algorithm computes the As an example, Google has developed Google Finance [1]. In
summary incrementally and has reduced algorithmic complexity. & user-defined timeline, Google Finance provides analysts with a
The resulting output is a concise representation, yet, informative tool to browse through companies’ stock values while visualizing
enough to directly support chronology-dependent applications. We background information about the companies. This background in-

validate our approach by summarizing one year of financial news formation is provided in the form of a sequence of chronologically
provided by Reuters. ordered news events that appeared at some interesting moments,

e.g., during price jumps. We call applications, such as Google Fi-
Categories and Subject Descriptors _nancg, that rely on the chronological_ order of the data to be mean-

ingful: Chronology-dependemtpplications.
E.4 [Coding and Information Theory]: Data Compaction and In this context, we observed that sequences of events relating to
compression; 1.5.3Fattern Recognitior]: Clustering—Algorithms  an entity A occurring in ashortperiod of time are likely to relate to

a same topic, e.g., events about Lehman Brothers mid-September
General Terms 2008 relate to its bankruptcy. This observation shows that it could
be more practical and meaningful for the analyst to navigate in the
chronology of events througbummarizedevents that gather sev-
eral events about a same topic, el@hman Brothers’s Backruptcy
Keywords rather than the entire set of individual events. At the same time, the
analyst should be given the possibility to browse the details of these
summarized events for a more in-depth analysis. This existing ex-
ample puts forward the need for a data representation where mul-
tiple events describing a same topic are grouped while preserving
Permission to make digital or hard copies of all or part of thighknfor the overall chronology of events’ topic. o
personal or classroom use is granted without fee providetidbpies are During the past decade, semantic data summarization has been
not made or distributed for profit or commercial advantage aatidbpies addressed in various areas such as databases, data warehatases, d
bear this notice and the full citation on the first page. Toyooiberwise, to treams, etc., to represent data in a more concise form by using its
republish, to post on servers or to redistribute to listguies prior specific semantics [10, 11, 14, 5, 13, 22]. However, including tihee di-

permission and/or a fee. L o . e .
CIKM'09, November 2-6, 2009, Hong Kong, China. mension into the summarization process is an additional constraint

Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00. that requires the chronology of events’ topic to somehow be pre-
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served. Forinstance, the sequefloehman Brothers’s Bankruptcy topic, grouping is performed on generalized events whose general-
Lehman Brothers's Rescuenly makes sense because the events ized descriptors are similar. TSaR’s grouping process gathers gen-
related to thdBankruptcyneed to occur before thHiRescuean hap- eralized events in a way that respects the chronology of topics in the
pen. We name this type of data transformation, based on the data’'snput time sequence. For this purposéleanporal Localityis de-
semantic content and temporal characterisiiocee Sequence Sum-  fined so that temporally close events can be gathered. Temporal lo-
marization A time sequence summarizer should take as input a cality is a term borrowed from Operating systems research [8] and
time sequence of events, where each event is described by a setlefined in Section 4.3. It can intuitively be understood as the fact
of descriptors, and output a time sequence of summarized eventsthat a series of eventtosein time have high probability of relating
The produced summarized time sequence should have the follow-to a same topic. However, events relating to different topics might
ing properties: locally overlap in that period, e.g., due to network delays. Thus,
1. Brevity: The number of summarized events in the output time defining a temporal locality allows TSaR to gather these overlap-
sequence should be reduced in comparison to the number of eventping events into their corresponding topics. Finally, each group is
in the input time sequence. represented by a concept. In total, higher numerosity reduction can
2. Substitution principle: A chronology-dependent application  be achieved while the chronology of topics in the input time se-
that performs on a time sequence of events should be capable ofguence is preserved.
performing seamlessly if the input time sequence is replaced by its
summary. TSaR summaries are built in an incremental way by processing
3. Informativeness: Summarization should reduce time sequen- an input time sequence of events in a one-pass manner. The algo-
ces of events in a way that keeps the semantic content available torithm has small memory and processing footprints. TSaR main-
and understandable by the analyst without the needésumma- tains in-memory a small structure that holds a limited number of
rization. grouped events, i.e., grouped events that fit into the temporal lo-
4. Accuracy and usefulnessThe input time sequence of events  cality. TSaR’s algorithmic complexity is linear with the number of
should not be overgeneralized to preserve descriptive precision andevents in the input time sequence.
keep the summarized time sequence useful. However, ensuring
high descriptive precision of events in the summarized time se- We validate these characteristics with a set of experiments on real

guence requires trading off theevity property of the summary. world data. We performed experiments using one year of English
5. Chronology preservation: The chronology of summarized financial news events obtained from Reuters’s. These archives con

events in the output time sequence should refleattleeall chrono- tain after cleaning and preprocessing approximately 1.28M events

logy of events in the input time sequence. split over 34458 time sequences. Each event in the time sequences

6. Computational scalability: Time sequence summaries are is a set of words that precisely describes the content of the corre-
built to support chronology-dependent applications and, thus their sponding news article. Our extensive set of experiments on sum-
construction should not become a bottleneck. Applications such asmarizing this data shows that TSaR has (i) interesting numerosity
data mining might need to handle very large and long collections reduction capabilities, e.g., compression ratio ranges from 10% to
of time sequences of events, e.g., news feeds, web logs or markeB2%, and (ii) low and linear processing cost.
data, to rapidly discover knowledge. Therefore, the summarization
process should have low processing and memory requirements. Roadmap. The rest of the paper is organized as follows. Sec-

Designing a time sequence summary that displays all these prop-tion 2 presents related work. Section 3 formalizes the concept of
erties is a challenging task. There exists a bulk of work for design- Time Sequence Summarizati®ection 4 presents the novel tech-
ing summariedn different areas such as datastreams, transaction nique we contribute in the paper. Section 5 discusses the experi-
databases, event sequences or relational databases. Howewer, to ttmentation we performed on financial news data. We conclude and
best of our knowledge, this research corpus does not addreds simu discuss future work in Section 6.

taneously all six mentioned properties.
2. RELATED WORK

Our work relates to lines of research, where a concise repre-
e - . ] sentation of massive data sources is desirable for storage or for
that satisfies all six mentioned properties to support chronology- . . ; )
dependent applications. Our contributions are as follows: kpowledge discovery in constralned. processing and memory en-

: : vironments. Related research domains are those where summaries

Th.e\glr?]eglgg i;?}rgaslsrifr':g:orgg?meessgujgﬁfesol;n;\?;irtlsz?;'gqimeare built from sequences of objects ordered by their time of occur-
sequence oquummarized evgnts where: (i()qevents oceuiosain fence. In this context, and in the light of the requirements men-
€ . . : . 8 tioned in the introduction, we examine summarization techniques
time and relating to a same topic are gathered into a same summa- -
. .. . . produced for datastreams, transaction databases and event-sequen
rized event and (ii) each summarized event is representedty-a

ceptformed from the underlying events. For example, assume the ces. This study, however, do not encompass time series summa-
ceptiof ying ) ) pie, rization as time series summarization rely on methods that only
input time sequence of events i$t;,Easy subprime logn(tz,Interest

rate increasg (t3,Housing market collapgg. A valid time sequence consider numerical data.
5 ,g . ap q Datastreams.Datastreams is a domain characterized by data of
summary could be{(t: ,Subprime crisiy.

. Rizati infinite size and eventually generated at very high rates. The com-
e We propose dime Seql_Jence Sum zat_lon_(TSaR) algo . mon assumptions are that (i) any processing should be performed
rithm. TSaR relies on the ideas of Generalization and Merging, . : o :
. ; . . - in a single pass and (ii) input data can not be integrally stored. Such
introduced by Han et al. for discovering knowledge in relational

) nstraints have motivated researchers to represent input streams in
databases [10, 11]. TSaR is a 3-step process that uses backgroun . ; o
knowledge in the form of taxonomies, supposedly given by the an- more concise form to support analysis applications, e.g., (approx

alyst to generalize event descriptors at higher levels of abstraction imate) continuous queries answering, frequent items counting, ag-
Assuming events occurringjosein time might relate to a same ‘gregation, clustering, etc.. Techniques proposed maintain in mem-

ory small structures, e.g., samples, histograms, quantiles or syn-

Contributions. In this paper, we present the conceptTaie
Sequence Summarizatiand propose a summarization technique



opses, for streams afumericaldata (we refer the reader to [9] a way that preserves the overall chronology of topics in the time
for a more complete review). In contrast with numerical data that sequence. Finally, each formed group is represented by a concept,
is defined on continuous and totally ordered domains, categoricali.e., a set of descriptors, formed from the underlying events’ de-
descriptors are defined on discrete and partially ordered domains.scriptors. The output can then be directly interpreted by a human
Therefore, descriptors can not be handled and reduced in the sameanalyst or piped to any chronology-dependent application.

way as numerical data using conventional datastreaming summa-

rization techniques, e.g, min/max/average functions. 3. TIME SEQUENCE SUMMARY
To the best of our knowledge, small interest has been given to In thi . . . | i Il th
designing summaries[4, 22] for categorical datastreams. Aggarwal n this section, we give a running toy example to iliustrate all the
! : concepts presented in this paper. We also introduce the basic ter-

et al. [4] proposed a clustering method for categorical datastreams. . . : .
- : : minology used throughout the rest of the discussion and formalize
The approach relies on the ideacofoccurrencef attribute values ) L
ethe concept offime Sequence Summarization

to build statistical summaries and gather input data based on thes
statistics. However, the clusters built do not reflect the chronology 3.1 Toy examp|e
of the input data and require pre-processing before analysis. We
proposed in previous work an approach to summarize datastreamsbl
using a conceptual summarization algorithm [20]. The summary
produced does not reflect the chronology of the input data and can
not be dire;tly exploited by chronplogy—dependen@ applications. by its date of presentation. For simplicity, the set of descriptors
Transaction dgtabase _summarlzatlon.Transactlon glatabases describing an event is taken from one single descriptive domain,
.(TDB.’) are coIIchon; oftime sequences where each time sequencenamely, the paper'®pic. Without loss of generality, this discus-
Is alist of chronologically or(_jered |tems¢_ats. A bulk of Work [6, 24, sion is valid for any number of descriptive domains. This exam-
25, 28] has focgsed on creating summaries for transaction da.tabasesIe is purposely unrelated to the application domain we provide in
Chandola etals approach [6]. and SUM.M.ARY [25]_ar(_e techniques Section 5. It illustrates all the concepts introduced and shows the
that rely on closed frequent itemset mining to buildiaforma- genericity of our approach
tive representation that covers the entire TDB. Building these sum- '
maries require multiple passes over the input TDB and the output is

To illustrate the ideas exposed in this paper, we generate in Ta-
e 1 a simple toy example with a time sequence extracted from

conference proceedings. The author N. Koudas is associated with
a time sequence where each event is one publication timestamped

a set of frequent itemsets. This output does not endorse the substi- Table 1: Time sequences of conference proceedings

tution principal and does not reflect the chronology of transactions Author Date | Descripiors

of the input TDB. HYPER [28] summarizes a TDB as a set of hy- N. Koudas| JUNO5 | z; = {Datastreams, Aggregation}

perrectangles that covers the database. HYPER's output set of hy- AUGO6 | =z, = {Datastreams, Top-k query}

perrectangles requires preprocessing before chronology-depen AUGO6 | z3 = {Top-k query

applications can exploit the summary and hyperrectangles are com- ggggg i4 = Igﬁ]'zgg%ry STECTon GUETy
: - S . A - = ]

puted in polynomial time. But, designing a time sequence summa; SEPO7 | 20 = [Clustering]

rizer requires a single pass over the data and the output to preserve
the chronology of transactions. Wan et al. [24] summarize a TDB
into the compact form of a CT-tree specifically to support Sequen- 3.2 Terminolo

tial Pattern Mining (SPM). The output tree structure allows SPM ) gy . . .

to perform but looses the chronology of transactions of the input L€t €2 be the universe of discourse, i.e., the set of all descrip-
TDB. tors that could describe an event in a time sequence of events.

Event sequence summarization.Kiernan and Terzi [16] rely ¢! = U4 Da is organized into several descriptive domains
on the Minimum Description Length (MDL) principle to produce cor_respondlng to each domaihthat interests the analyst, e.g., the
in a parameter-free way a comprehensive summary of an event se{OPicOf research papers. .
quence, where events are taken from &edf m different event We refer to a part of, i.e., a subset of descriptors taken from
types. The authors segment the input event sequence timeline into/2110Us descriptive domains, #smset: ¢ P(€2). Given anobject

k segments. Summarization is achieved by describing each seg-Of interest(e.g., “N. Koudas”), arevent es defined by an itemset
mentS; with a local modell/; that is a partition of where groups % that describes (e.g., {DatastreamsAggregatiof) and is asso-

X,; € M; gather event types of similar rate of appearanc;in  ciated with aimestamgt (e.g.,t ="JUNOS"). We assume the data
Each event grouX;; € M; is then associated with a probability of NPt for time sequence summarization, also cafted data, is a
appearance(X.;) of X;; in S;. However, the output summary can collection of time sequences of events as defined in Definition 1.
not be directly piped to a chronology-dependent application and o )

needs some form afesummarizationHence, the authors’ defini- ~ Deéfinition 1 (Time Sequence of events)

tion of summarization does not endorse the substitution principle A time sequence of events= ((z1,1), ..., (#m, tm)), also called

and one can not seamlessly substitute the original event sequencéMe sequenceor short, is a series of events;, ¢;), with 1 < j <
for the summary. mandz; € P(Q2), ordered by increasing timestamp We denote

by S = {z1,...,zm} the support multi-set of. A time sequence

The TSaR approach builds on top of the ideas in Attribute Ori- $ Verifies:V(z;, zx) € $?, j < k & t; < tx. We denote by[T]
ented Induction (AOI) [10, 11]. The TSaR process is splitinto three the set of timestamps of elementsin
sub-routines that allow input time sequences to be processed in an
incremental way: (i) generalization, (ii) grouping and (iii) concept
formation. Generalization transforms event descriptors into a more
abstract but informative form. Then, grouping gathers generalized
events that are semantically close, i.e., having similar generalized
descriptors, and chronologically close. Grouping is performed in

This definition of a time sequence and the total order on times-
tamps allow us to equivalently write:
§= <($1,t1), SRR (Im7tm)> = s= {(‘Tﬁtj)}vl <j<m

By convention, we further simplify the notation of a time se-
guence and note = (z1,...,zm) Where each:;, 1 < 7 < m,is
an itemset and all itemsets are sorted by ascending indgxThis



simplification of the notation allows us to interchangeably use the
term eventto refer to the itemset; in event(z;,t;). We denote
by S(€2) the set of time sequences((2).

This notion of time sequence can be generalized and used to de-

fine a sequence of time sequences that we hereafteseatind-
order time sequenceSecond-order time sequences are more for-
mally defined in Definition 2.

Definition 2 (Second-order time sequence)

A second-order time sequence definedXdis a time sequence=
{(y:, ;) } where each evetti;, t;) is itself a regular time sequence
of events defined di. Events(y;, t;) in 5, wherey; = {(z;,t;)},
are ordered thanks to the minimum timestamp va&Jue min{¢; }.
Tr21e set of second-order time sequences define@® adenoted
S*(Q).

An example of second-order time sequence from Table 1 for au-
thor N. Koudascan be defined as follows: = ((y1,t1), (y2,t5),
(ys. 14))) where:

o y1=((xz1={Datastreams, Aggregation}; =JUNO5) andt’=t;=JUNO5
o yo=((x2,t2), (x3,t3), (4,ta), (z5,t5))) andt'2 =min {t2,...,t5}
i.e.,t5,=AUGO06, where:

—xo={Datastreams, Top-k query} and=AUG06

—x3={Top-k query} andt3=AUG06

—x4={Top-k query} andt,=SEP06

—x5={Join query, Selection query} ang=SEP06
o y3=((z¢={Clustering}, ts=SEP07) andt},=t¢=SEPQ07

A second-order time sequence can be obtained from a time se-

quences as defined in Definition 1 by the means of a fornchfs-
tering based on the semantiasd temporal information of events
zi,; in s. We refer the reader to the following surveys for more

objects that are close from temporal view point are grouped. Con-
sequently, local rearrangement of the objects on the timeline should
also be allowed.

In a nutshell, the objective of time sequence summarization is to
find thebestmethod for grouping events based on their semantic
content and their proximity on the timeline. This general defini-
tion of time sequence summarization can partially encompass some
previous works such as Kiernan and Terzi's research on large even
sequences summarization [16]. Indeed, the authors perform sum-
marization by partitioning an event sequeistimto k segmentss;,

1 < i < k; this segmentation can be understood as organiging
into a second-order time sequenge whereC' is their segmenta-

tion method, e.g., Segment-DP. Note that the authors’ segmenta-
tion method does not allow any form of event rearrangement on the
timeline. Then, each segmef$if is described by a set of event type
groups{ X, ; } where eachX; ; groups event types of similar ap-
pearance rate. Thus, the model used to describe each segmentis a
probabilistic model. To this point, our definition of a time sequence
summary fully generalizes Kiernan and Terzi's work. However, the
authors add for eacl; ; its probability of appearangg(X; ;) in

S;. By doing so, the authors do not support the substitution prin-
ciple and thus do not completely respect our definition of a time
sequence summary.

4. THE TSAR APPROACH

In this section we presenflame Sequence SumaRzation tech-
nigue called TSaR. The basic principle of TSaR is illustrated in Fig-
ure 1. The idea is to gather events whose descriptors are similar at
some high level of abstraction and that appear close in time. This is
done in three steps: (i) reduce the data’s domain of representation

indepth on clustering [15, 26]. Reversely, a time sequence can beby generalizing descriptors to a user defined level of abstraction,

obtained from a second-order time sequehbg means otoncept
formation[18, 19] computed from time sequenagsn s.

3.3 Time sequence summary

We formally define in Definition 3 the concept of a time se-
guence summary using the concepts introduced previously.

Definition 3 (Time sequence summary)

Given a time sequence = {(z;,t;)} € S(€), using clustering
terminology, we define the time sequence summasy dénoted
x(s) = (8%, 83) € S*(Q) x S(Q), as follows:

o 52 = {(:1)} is the second-order time sequence where
eventsy; € s¢ are clusters obtained thanks to a form of
clusteringC that relies on the events:;, t;) semantic and
temporal information.

o siy = {(z},t;)} is the time sequence of concepsformed
from clustersy; € sz.. M is the model chosen to character-
ize each clustey; € sZ,, i.e., to build the concepts.

Hence,s% and s}, can be understood as thextensionand the
intention respectively, of the summagys).

We defined time sequence summarization using clustering ter-
minology as the underlying ideas are similar, i.e., grouping objects
based on theiproximity. The novelty of time sequence summaries

relies on the fact that events are clustered thanks to their semantic

and temporal information. Conventional clustering methods mostly
rely on the joint features of the objects considered and their proxim-

(i) group identical sets of descriptors within a certain sliding time
window then (iii) represent each group with a single set of descrip-
tors, a.k.a. concept.

Time Sequence
SummaRization (TSaR)
N
(. {AL})

Generalization
(1, { Ay, As})

+ {82 Ag))

a4

(. {AD)

(t3, {as. ag})
(4, {as. a0})
Raw data A

Generalized events

Temporal parameter I:>

© {{Ah{AD

s, {{An Adk, (A AD) |

Grouped events

- Phase 3:
Concept formation

Figure 1: TSaR summarization process

In practice, the process is parametrized by three inputs: (i) do-
main specific taxonomies, (ii) a semantic accuracy parameter and
(i) a temporal precision parameter. The generalization process in

ity is evaluated thanks to a distance measure, e.g., based on entropphase 1 takes as input a time sequence, domain specific taxonomies

or semantic distances. Similarly, in time sequence summarization,
a form of temporal approximation should also be applicable so that

and the user defined semantic accuracy parameter. It outputs a
time sequence of generalized events where event descriptors are ex-



pressed at higher levels of taxonomy. This output is then fed to the Definition 4 (Generalization of a Time Sequence)
grouping process in phase 2 where identical generalized events aréGiven a generalization vecta# and a set of taxonomiel, we
grouped together. The overall chronology of events is preserved by define a parametric generalization functigry that operates on a

grouping only generalized events present in a same temporal local-time sequence = (z1, ..., z,) as follows:

ity (as defined in Section 4.3). Phase 3 forms a concept to represent

each group. Here, since all sets of descriptors in a group are iden- po: S(Q) — SO , ,
tical, one instance of the group is selected to represent the group. § = po(s) = (21,....a0)

. !
We will detail these steps in the following sections. suchthatvi € {1.n}, z; Ely 2}

- For example, given theopic taxonomy in Figure 2 the gener-
alized version of Table 1 with a generalization vecfor= (1) is
) Datamining shown in Table 2. We can notice that the y relation also allows to
reduce itemsets’ cardinality. IndeddatastreamsandTop-k query
both generalize int@O. As a result, in N. Koudas’s time sequence,

Anonymization  Privacy Aggregation the event {Datastreams, Top-k query} is generalized into {QO}.

}

_Topic

Queries

From the analyst's view point} represents the semantic accu-
Query Quary. Compression Segmentation racy he desires for each descriptive domain. If he is interested in
rewritting o Summarization e the minute details of a specific domain, e.g., a pagep, he can
’ O e —— setd to a low value, e.g#{topic] = 0 or¥[topic] = 1. Otherwise,
Skyline Join Top-k Selection Datastreams Frequent P71 he can set) to higher values for a more abstract description of the
ey qvery - query itemset domain. Once the input time sequence has undergone generaliza-
] ) . tion, the output undergoes a grouping process as described in the
Figure 2: Taxonomy for the topic domain following section.

4.3 Grouping phase

Here, we detail the grouping phase responsible for gathering
generalized events. This phase relies on two concepts: (i) second-
order time sequence as defined in Definition 2 andT@inporal
locality. We define this notion of temporal locality hereafter.

4.1 Preliminaries

In this work, we assume that each descriptive donfain on
which event descriptors are defined, is structured into a taxonomy
Ha € H =|J 4 Ha, defining a generalization-specialization rela-
tionship between descriptors 8f4. The taxonomyH 4 provides a
partial ordering<4 over D4 and is rooted by the special descrip- 4 3 1 Temporal locality
torany_A, i.e.,Va € Da,a <4 any_A. For convenience, we
assume in the following that the descriptory _A belongs taD 4.

The partial ordering< 4 on D 4 defines a cover relatioq 4 that
corresponds to direct links between items in the taxonomy. Hence
we haveV(z,y) € D%, = <a y = 3(y1,y2,...,y%) € D}
such thatr <4 y1 <a ... <a yr <a y. The length of the path
from z to y is £(z,y) = k + 1. In other words, we need + 1
generalizations to reachfrom x in H4. For example, given the
topic taxonomy in Figure 2, it takes 2 generalizations to reach the
conceptQueriesfrom the conceplop-k query

In practice, we assume these taxonomies are available to the an
alyst. We believe this assumption is realistic as there exists nu-
merous domain specific ontologies available, e.g., WordNet [3] or
Onto-Med for medicine, as well as techniques that allow the auto-
matic generation of taxonomies [17, 21].

In many research areas, it is assumed that a sequence of events
generatedlosein time have high probability of relating to a same
topic. This notion oftemporal localityis borrowed from Operat-

"ing systems research [8]. For examp|Baper deadlineAuthors
notification Camera-ready papéris a chronology of events de-
scribing theConference submissidopic. However, in a time se-
qguence, events describing different topics can eventually be inter-
twined, e.g., due to network delays. Thus, definirtgraporal lo-
cality for grouping events of a time sequence allows to capture the
following notions: (i) sequentiality of events for a given topic and
(i) chronology between topics.

Temporal locality is measured as the time differedge on a
temporal scald’, between an incoming event and previously group-
ed events, hereafter callgtbupsfor short. The temporal scale may
be defined directly through the timestamps or by a number of inter-
4.2 Generalization phase mediate groups since we assume they are chronologically ordered.

Here, we detail the generalization phase that uses taxonomies to¥hile grouping, an incoming event can only be compared to pre-
represent the input data at higher levels of abstraction. We assumed/ious groups within a distance (dr < w). Indeed,w acts as a
values in(2 are partially ordered by the partial order relatian, sliding window on the time sequence of groups and corresponds to
so, thanks to this relation, we can define a containment relétion  the analyst's estimation of the temporal locality of events. In other
over subsets df, i.e., P(€2). words,w can be understood as the temporal precision loss the an-

V(z,y) € P(Q)?, (zCy) <= alyst is ready to tolerate for rearranging and regrouping incoming
(View, I €y, JA€ A, (i<a )V (i=1)) events.
For generalization, we need to replace event descriptors with up- ' NiS temporal window can be defined as a duration, e.g=
per terms of the taxonomies. We cg#neralization vectoon 2, one month, or as a number of groups, elg+ 2. Definingw as
denotedy € N?, a list of integer valuesd defines the number of @ number of groups is useful in particular when considering bursty
generalizations to perform for each descriptive domaiminWe sequences, i.e., sequences where the arrival rate of eventsénune

denote by[A] the generalization level for the domain Equipped The downside of this approach is the potential grouping of events
with this generalization vectal, we are now able to define a re-  gistant in time. However, this limitation could be solved by defin-
strictiont | » of the containment relation above: ing w as both a duration and a constraint on the number of groups.
Y(z,y) € P(Q)?, (xClyy) < (W €z 3 cy,3dAc A, As some domains, e.g. Finance, give more importance to the most
recent information, we choose in our work to express our scale as
(i <a 1) A (LG ") =9[A]) v ((€G,3") < I[A]) A (7 = any_A)))) a number of groups in order to handle bursts of events.



4.3.2 Grouping process

. . . . . Table 2: Generalized events withy = (1)
The grouping process is responsible for gathering generalized

) - Author Date ltemset
events relating to a same topic w.r.t. the temporal parametét N. Koudas | JUNO5 | «/ = {QO, DM}
produces a second-order time sequence of groups defined as fol- AUGO6 | =), = {QO}
lows: AUG06 | =% ={QO0}
SEPO06 | z, ={QO}
Definition 5 (Grouping of a time sequence) SEPO6 | = ={QO}
Given a sliding temporal window, we define a parametric group- SEPO7 | ; = {DM}

ing functiony,, that operates on a time sequencas follows: .
9 v P g Table 3: Grouped events withw = 1

Yot S(Q) — S%Q) Author Date | Sequence
s — hu(s) = (i = (z1, 1), . .., N. Koudas | JUNO5 | 41 = {QO, DMJ}
(T s tma))s 1)y - s (Yns th)) AUGO06 | > = {{Q0},{Q0}{QO}{QO}}
SEPO7 | y3 = DM}
such that:
(Part) Vk € [w,n], Up_p<icpvi ©Sandy;Ny; =0 Table 4: Summary with w = 1
whenl < i< j < n: 5 —i<w Author Date Iltemset
(Cont)  (wiyCwir), 1<T<g<my 1<i<n N. Koudas| JUNOS | zj ={QO, DM}

AUGO6 | 5 ={QO}

) ! ; )
(TLOC) (dT(tlqut'L) S 'LU), 1 S ? S n, 1 S q S m; SEPO7 93§ — {DM}

(Max) VTiq € Yi, VTjr €Y;,1 <1 <7< mn,
(i Exjr) = (dr(tyr, t;) > w),

1<g<my, 1<r<m;

Here, concept formation is achieved thanks to the projection op-

Property(Part) ensures that the support multi-setotontiguous  €ratorr defined in Definition 6. Intuitivelyr represents each time
time sequences ity (s), €.9., (Y1, - .., Yuw)s (Y2, .-, Yuwi1), €IC sequencg; in second-order time sequengg by a single concept,
..., is a non-overlapping part . This is a direct consequence of ~ Calledrepresentative event;, contained iny;. Consequentlyr
grouping events that relate to a same topic within a same temporalProduces froms, a regular time sequeneg, = 7 (s¢,) thatis the
locality. Property(Cont) gives a containment condition on events intention of the summary, also calleepresentative sequencén
of every time sequence ith, (s). Given a time sequencg in addition, this operator is responsible for reducing the numerosity
Yuw(s), all eventsz; ; € y; are comparable w.rt. the containment of events in the output time sequence, w.r.t. the original number of
relationC. andz; ; is the greatest event, i.ez; ; contains all other ~ €Ventsin the input time sequence.
events iny;. Property(TLoc)defines a temporal locality constraint

on events that are grouped into a same time sequgnoey)., (s). Definition 6 (Projection of a Second-Order Time Sequence)
(TLoc)ensures thag; only groups eventée; ;, ¢;,;) that are within We define the projection of a second-order time sequepce=
a distancelr inferior tow from timestampt, = min(y;[T)), i.e., ((yr = ((@1.1,t1,1)5 - s @1,my s tma )} 81)s - - -5 (Yns £)) @S
dr(t;;,t;) < w. Property(Max) guaranties that the joint condi- o2
tions(Cont)and(TLoc)are maximally satisfied. T8 (QQ) — S(%)

sg = w(sgy) ={(®11,t,1), - (Bngng s tong )

In the grouping function),,, the temporal locality parameter

controls how well the chronology of groups should be observed.  £rom our toy example in Table 3, N. Koudas's representative
When a small temporal window is chosen, a very strict order- sequence is therefore:

ing of topics in the output time sequence is required. Incoming 2\ _ / / R, .

events can only be grouped with the latest groupsy K 1 only W(fi)(yl)«j(gf );tll,)l’ (Z({Zgg: %,3,;}(;(3;/)’;323 ZV?SL%5

contiguous events are eligible for grouping. Table 3 gives the ex- m(y2) = zl — 2 —{QO}and ¢, — ;2 = AUGO6

pected output when performing grouping on Table 2 witk= 1. o r(ys) = ot — 6 — {DM} and " t6 = SEPO7

For example, note that in N. Koudas’s generalized time sequence, 3 3
when eventr; = {QO} is consideredy; can only be compared 4.5 The summarization process

to wﬁgfgslg:og?ém: ér{a?vaiyngc])\\/iv}}i i:ok:ogsrgrlljptlﬂgor dering require- In TSaR, summarization is achieved by the association of the
9 P ’ g req three functions presented in the previous section, namely, the gen-

ment Is _relaxed. This means that a Iarge_number of groups Canerallzatlon, grouping and projection functiopsy andr respec-
be considered for grouping for each incoming event. As a conse- s L . ) -

. . . tively. The summarization function is formally defined in Defini-
quence, the minute details of the chronology of topics may be lost tion 7

but higher numerosity reduction could be achieved.

The second-order time sequence output by the grouping function o ) o )
1, can be understood as the extension of the summarysi.eas Definition 7 (Time Sequence SumnaRization (TSaR) function)
defined in Section 3.3. The intention of the summary, and thus the __ ) ) )
reduced version of the input time sequence, is obtained thanks toGiven a time sequencedefined ort?, a set of taxonomiel de-

the concept formation phase as presented in the following section. fined over?, a user defined generalization vectdfor taxonomies
in H and a user defined sliding temporal windawy the summary

4.4 Concept formation phase of s is the combination of a generalizatign, followed by a group-

The concept formation phase is responsible for generating ing ¢, and a projectionr:
the intenti'on of the summary, from the time sequence of gregps Yow: S(Q) — S2(Q)x sQ
obtained in the grouping phase. In the TSaR approach, we gather s = Xo,w(s) = (s&, M)
generalized events that have identical sets of descriptors. There- " Cr oM
fore, this phase is straightforward. wheresZ, = 1 0 py(s) andsy, = w(sg).

~



Algorithm 1 TSaR’s pseudo-code
1. INPUT: ¢, taxonomiesH, w, time sequence of events
2. LOCAL: W FIFO list containing thev last groups
3. OUTPUT: Summarg;,
4. for all incoming event{zy+1,tn+1) € sdo

The association of the generalization and grouping function,
andt respectively, outputs the extension of the summary, d%.,
The reduced form of the summary, i.e., its intentidp, is a time
sequence obtained by forming concepts from groups.ithanks
to the projection operator. The extension of the summagy,

then satisfies the conditions of the generalization-grouping process. 5. {// Generalization using}

The (Cont) property ofq)., is then enforced by the generalization 6. 2], , « @y(xni1)

phasepy of events ins. Note that every element in the reduced 7. {// Grouping}

form of the summarized time sequence, i, is an element of 8. if 3(yx,t,) € W, wherex/, | C yy then

o (s). In other wordssy, is a representative subsequence of the 9, Yk — Yk Uz, (I 5,41 is grouped intay}
generalized sequence af 10. else

From a practical view point, the analyst and applications are 11.
only given the intention forns}, of s’s time sequence summary 12,

if |W| < w {// Case wherd¥ is full} then
PopW's 1% groupy;—, addn (y;—.) into s,

X9,w(s). Indeed s}, is the most compact form of the summary. In = 13. end if

addition, s}, is a time sequence that can seamlessly repiaared 14. W — WU {(xp41,tnt1)} {// Updating W}
be directly processed by any chronology-dependent application that15.  end if

performs ons. Thus,s}, is the most useful form from application  16. end for

view point. In the following, we will interchangeably use the term  17. {// Add all groups inl¥’ into s},}

summaryto designate the intentios},; of a summary. 18. while W # 0 do

Let us give an illustration of a summary with our toy example. 19.  PopiW’s 1°* groupy;, addn(y;) into s},
The representative sequences extracted from Table 3 are give Ta20. end while
ble 4. Here, we achieve the dual goal of numerosity reduction 21. return s%,
(from 6 events to 3) and domain reduction (from 6 descriptors to
2). These compression effects are obtained thanks to the user de-
fined parameters, i.e., the generalization vedtand the temporal
sliding windoww, that control the trade-off between resp. semantic
accuracy vs. standardization and time accuracy vs. compression.

and mainly depends on the number of taxonomies and their size.
b is the cost to scan the finite list of groupsiivi. However,a is
a cost that can be reduced by precomputing the generalization of
. each descriptive domain and storing the results in a hashtable in-
4.6 The TSaR algorlthm dex. b is a cost that is negligible since the temporal windaws
From an operational view point, our implementation of TSaR is used are small, e.g., mostly < 25 in our experiments. Hence, we
shown in Algorithm 1. The summary is computed through an incre- satisfy the memory and processing requirements presented earlier.
mental algorithm that generalizes and appends incoming events one
at a time into the current output summary. In other words, assume
the current summary i€y, = x9,» ((z1,...,2a)) = (7(y1), ..., 5. EXPERIMENTS
m(y;)) and the incoming event i&n41,tn+1). The algorithm
computesyy,w ({x1, ..., Tn,Tnt+1)) With a local update ta},,
i.e., changes are only made within the lasgroupsy; —w, - - ., y;.
More precisely,(zn+1,tnt+1) is generalized intdz;, 1, tnt1)
(line 6). Then, assuming we dend® = {yx}, 1 < j—w <
k < j the set of groups that are included in temporal window
TSaR checks ifr;,  ; is included in a groupy, € W. x4, is
either incorporated into a group if its ¥-generalized version sat-
isfies the(Cont) condition (line 8 to 9), or it initializes a new group
{(Wj+1,t;41 = tng1)} in W (line 11 to 14). Once all input events
are processed, the lastgroups contained if” are projected and
added to the output summasy; (line 18 to 20). The final output
summary is then returned and/or stored in a database.

In this section we validate our summarization approach through
an extensive set of experiments on real-world data from Reuter's
financial news archives. First, we describe the data and how tax-
onomies are acquired for the descriptive domains of the news. We
summarize the raw data with different temporal windawsand
show the following properties of the TSaR algorithm: (i) low pro-
cessing cost, (i) linearity and (iii) compression ratio.

Our experiments were performed on a Core2Duo 2.0GHz laptop,
2GB of memory, 4200rpm hard drive and running Windows Vista
Pro. The DBMS used for storage is PostgreSQL 8.0 and all code
was written in C#.

5.1 Financial news data and taxonomies

Memory footprint. TSaR requiresv groups to be maintained

in-memory for summarizing the input time sequence. The algo-

rithm’s memory footprint is finite@(1)) and bound by the width
of w and the average size of an event’s set of descriptors. The

In financial applications, traders are eager to discover knowledge
and eventual relationships between live news feeds and market data
in order to create new business opportunities [29]. Reuters has been
generating and archiving such data for more than 10 years. To ex-

overall process memory footprint is obtained by adding the cost periment and validate our approach in a real-world environment,

necessary to maintain in-memory the output time sequefcand

we used one year of Reuters’s news articles (2003) written in En-

the taxonomies and/or hashtable index to compute descriptors’ gen-glish. The unprocessed data set comes as a log of 21,957,500 en-

eralization. Howevers}; can be projected and written to disk at

tries where each entry includes free text and a set 80 attribute-

regular intervals. Therefore, TSaR’s overall memory footprint re- value pairs of numerical or categorical descriptors. An example
mains constant and limited compared to the amount of RAM now of raw news event is given in Table 5. As provided by Reuters,

available on any machine.

the data can not be processed by the TSaR algorithm. Hence, the

Processing cost.TSaR performs generalization, grouping and news data was cleaned and preprocessed into a sequence of events
concept formation on the fly for each incoming event. The process processable by TSaR.

has an algorithmic complexity linear with the number of events

O(n). The processing cost is weighted by a constant eost

Among all the information embedded in Reuters’s news articles
we focused on 3 main components for representing the archive as a

a x b. a is the cost for generalizing an event’s set of descriptors time sequence:



Taxonomy generation . -
WordNet & Ct}enerated Taxonomy 5.2 Summarization
The TSaR algorithm takes as input taxononfies, a generaliza-

1> 1

: ; ( M—% ) tion vectord, temporal window parametes and a time sequence.

E I u]z:t;rzl::i?m ][ Ompam] C;Itr:;jizi:l ] The expected output is a more concisg representation of the input
: | ‘ <ulep sequence where the descriptive domains and the number of input
gl v S events are reduced.

z- ’
Commerce 2  Mercantilism

== Commercialism

PN

]
enterprise
Business
enterprise

" Gimt e Collestive Table 5: Example of raw news event:
Occupation >[—‘ﬁ Timestamp 01 Jan 2004
— Business e Topic code EUROPE USA Bank INS NL
ense Dutch bank ABN AMRO said on Wednesday it had refa-

Business Bus‘gnes_s Free text | ched a preliminary agreement to sell its U.S.-based Rro-
l concern l mg__aﬁ_lfﬁjn_gg___]_ fessional Brokerage business to Merrill Lynch & Co. .|..
Enteprie Table 6: Semantic accuracy
— S —7
GlaLm n:n Coll:ctive v ‘Q | -
(0) | 1208 | N/A
_ _ _ ) (1) | 50 1
Figure 3: Taxonomy generated for thebusiness domain ) [ 20 | 0.40
(3) | 13 [0.26

e Timestamp: This value serves for ordering a news article within
a time sequence. :

¢ Topic_codes: When news articles are writteypic_codesre 2.2.1 Quallty meas.ure )
added to describe their content. There are in total 715 different ~The quality of the algorithm can be evaluated by several differ-
codes relating to 20 different topics. We used 7 of the most popular €nt methods. First, we could evaluate the summarization algorithm
topics to describe the data, i.e., {Location, Commodities, Economy W-I-t. the application that it is meant to support, e.g., Sequential
Central Banking and Institution, Energy, Equities, Industrial sector, Pattern Mining (SPM). In this case, the summary can be evaluated
General news}. based on its ability to increase the quality of the output knowledge

e Free text: This textual content is a rich source of information Or increase the speed of the mining process (a preliminary study is
from which precise semantic descriptors can be extracted. Give 5Proposed in our technical report). _ _
additional topics, namely, {Business, Operation, Economics, Gov- ~ S€cond, we can measure the semantic accuracy of summarized
ernment, Finance}, we used the WordNet [3] ontology to extract event descriptors in the summaryﬁproduced. This accuracy can be
additional descriptors from this content. evaluated thanks to the ratio = L1, where( is the set of de-

. - . . . 1€
Extracting pertinent des_cnptors from fre_e textisanon tn\_/lal task scriptors in the raw data andl is the set of generalized descriptors
w.r.t. the need for organizing the descriptors extracted into tax-

onomies. Research in Natural Language Processing (NLP) couldIn the output summary. The higher the better the semantic accu-

) . racy. In addition to the semantic accuracy of the summary, we can
be leveraged to tag texts based on their corpus, e.g., using Term 4 y Y,

Frequency-Inverse Document Frequency (TF-IDF) weights as do ?Ls(?urerl:?; u;e %txsit}e’n;pgr?l iczlfr;%pg& tg(s;a‘fﬁ;f,oie’lg;\fdn; tme
in [12] or using online resources such as Open C_a|a|s [2].' . How- temporal windowi¥’, we define a temporal rearrangement penalty
ever, creating taxonomies from the tags extracted is not trivial and cost for grouping an incoming event with a groupy; € W
requires prior knowledge on the descriptors. The paradox lies in We denote this penalty cogt (z;). Cy(x:) expressesj the nu.m-
the fact that these descriptors are not known in advance. We chosg - ¢ rearrangements necessalry onT th:a timeline so that eyent
to use the WordNet [3] ontology as a guide for extracting descrip- can be grouped with; in window WW'. C, (z;) penalizes incoming
tors and structuring them into taxonomies thanks to the hierarchical eventsz. that are gréuped with the' olaerzgroug,sin W: on the
organization already existing in WordNet. This choice leaves room other ha:nd ify; is the most recent group i, no penalty’/ 0CCUrS

for improvement by leveraging more complex techniques for both C. (z:) is fo’rm;IIy defined as follows: ' '
extracting descriptors from the free text and structuring these de- """ '

scriptors. For example, automatic approaches [17] or hierarchical { C,. =0, if (By; € W,z; Cy;)V
sources such as Wikipedia [21, 7] could also be used. However, Fy; e W,z Cy; A Bk > j,y € W)
such research is out of the scope of this paper. Cr =m, if Jy; € W, Cy; A

In total, we preprocessed the input archive into a sequence of | 1 <m <w-—1, m=|{yx € W,k > j}|.
1,283,277 news events.Each news event is described on the 12 de- .
scriptive domains selected earlier and several descriptors from each  The total temporal rearrangement penalty cost for summarizing
domain can be used. We generated a taxonomy for each of these® INt0 sis, denoted’. (s3y), is thenCs (s3,) = 3 i, Cr(z:). This
descriptive domains. As the domains of topic_code themes are penalty cost should then be normalized so that our_results are com-
limited in size and already categorized, corresponding taxonomies Parable. Hence, we choose to compute the relative temporal ac-
were manually generated. Descriptive domains extracted from the cUracy of the summaries. We normalize all temporal rearrange-
free text were generated using the WordNet ontology as shown in Ment cost by the maximum cost obtained in our experiments, i.e.,
Figure 3. In a nutshell, for a given subject, elmusinessits senses CT(XB%IOO(S))' . . .
are used as intermediary nodes in the taxonomy. If there are several Finally, we also evaluate the summarization algorithm on its nu-
synonyms for one sense, e.gCdmmercial enterpriseBusiness merosity reduction capability by repo*rtlng itbmpression ratio
enterprisg, one is arbitrarily chosen, e.gCommercial enterprise ~~ CR. CR is defined asiCR = 1 — ‘S‘ﬁ:l where|seq| is the
Specialized descriptors are then used as lower level descriptors. number of events in a time sequeneg. The highelC R, the bet-




ter. We decide to usé R as it was also used by Kiernan and Terzi's
in [16] and we weight the”' R with the summaries’ semantic and
temporal accuracyy andg, respectively.
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5.2.2 Experimental results

We start by setting the generalization vector= (1), i.e., all
descriptors are generalized once, and {1, 2, 3,4, 5, 10, 15, 20,
25,50, 100} where the maximum value = 100 was chosen to
represent a very strong temporal relaxation. Figure 4 gives the pro-
cessing time of the TSaR algorithm with different temporal win-
dows. For the sake of readability, we only display the plots for tem-
poral windowsw € {1,5,100}. These plots show that the TSaR
algorithm is linear in the number of input events for temporal win-
dowsw of any size. In addition, we can observe that processing
times are almost constant whatever the temporal window consid-
ered. The slight variation observed in between different values of
w have two complementary explanations. First, it is more costly to
scan large windows during grouping. Second, a larger window

allows to maintain more groups in-memory and, so, requires less
1/O operations for writing into storage.

We compute the CR of the summaries built with different gen-
eralization vectorgd € {(0), (1), (2), (3)}. The results are given
in Figure 5. Note that the best compression ratio achieved with
9 = (0) is only 0.39. For a given temporal windaw, relaxing the
precision of the data by generalizing each descriptor once, twice or
three times allows an average gain in compression capabilities of
46.15%, 94.87% and 133.33% respectively. In other other words,
the compression ratio is approximatively doubled when increasing
the generalization level. Another interesting observation is that for
all 9, the plots show that highest numerosity reduction is achieved
with larger temporal windows while processing times are almost
constant, as shown in Figure 4. This observation is very helpful
from user view point for setting the summarization parameters
andw. In effect, as processing times are almost constant whatever
the temporal window considered, the user needs only to express
the desired precision in terms of (i) semantic accuracy for each de-
scriptive domain and (ii) temporal locality without worrying about
processing times.

Table 6 gives the semantic accuracy of the summaries produced
and Figure 6 gives their temporal accuracy. Note in Table 6 that
the number of descriptors in the raw data, i®e.~ (0), is 1208.
When summarizing each descriptive domain once, dte= (1),
the number of descriptors in the summaries drops to 50. This loss
of semantic information can be explained by the fact the data was
preprocessed using the WordNet ontology and the taxonomies were
also generated from the WordNet ontology. Numerous descriptors
extracted from the free text are in fact synonyms and are easily
generalized into one common concept. Consequently, the concepts
obtained withd = (1) should be considered as better descriptors
than the raw descriptors. Hence, we choose to computging as
baseline|§/\ = 50, as shown in Table 6. In this case, each time
¥ is increased, the semantic accuracy is approximatively halved.
This observation is consistent with our previous observation on the
average compression gain.

Figure 6 gives the relative temporal accuracy of each summary.
Higher levels of generalization reduce the temporal accuracy of the
summaries. This phenomenon is due to the fact that more generic
descriptors allow more rearrangements for grouping events. How-
ever, the temporal accuracy remains high, ize.0.80, for small
and medium sized temporal windows, i.,< 25. The temporal
accuracy only deteriorates with large windows, iwe.> 25. This
result means that the analyst can achieve high compression ratios
without sacrificing the temporal accuracy of the summaries.

However, guaranteeing ti@R with TSaR is a difficult task, if
not impossible, as its depend on the input parameters and on the
data’s distribution. In addition, the analyst needs to weight the se-
mantic and temporal accuracy he is ready to trade off for higher
CR. Guaranteeing th€' R becomes an optimization problem that
requires the algorithm to self-tune the input parameters and take
into account the analyst's preferences.

6. CONCLUSION AND FUTURE WORK

Massive data sources appear as collections of time sequences of
events in a number of domains such as medicine, the WWW, busi-
ness or finance. A concise representation of these time sequences of
events is desirable to support chronology-dependent applications.
In this paper, we have introduced the concepfliohe Sequence
Summarizatiorio transform time sequences of events into a more
concise but informative form, using the data’s semantic and tempo-
ral characteristics.



We propose dime Sequence SumaRization (TSaR) algorithm [8] P. J. Denning. The locality principl€ommun. ACM
that transforms a time sequence of events into a more reduced and 48(7):19-24, 2005.
concise time sequence of events using a generalization, grouping [9] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining

and concept formation principle. TSaR expresses input event de- data streams : A revievBIGMOD, 34(2), 2005.

scriptors at higher levels of abstraction using taxonomies and re- [10] J. Han, Y. Cai, and N. Cercone. Knowledge discovery in
duces the size of time sequences by grouginglar events while databases: An attribute-oriented approactProc. of VLDB
preserving the overall chronology of events. The summary is com- 1992.

puted in an incremental way and has an algorithmic complexity lin- [11] J. Han and Y. Fu. Exploration of the power of

ear with the number of input events. The output is directly under- attribute-oriented induction in data miningdvances in

standable by a human operator and can be used, without the need  kpowledge Discovery and Data Mining996.

for desum_ma_rizatiqrby chronologyjdepen(je_nt applicgtions. On_e [12] A.Hotho and G. Stumme. Conceptual clustering of text
such application could be conventional mining algorithms to dis- clusters. IrProc. of FGML Workshop2002.

coverhigh order knowledgeWe have validated our algorithm by ’
performing an extensive set of experiments on one year of Reuters’
financial news archives using our prototype implementation.

TSaR summaries are built using background knowledge in the
form of taxonomies and the semantic and temporal precision of the - . 4 .
output summary are controlled by user defined parameters. One compression and pattern extraction with fascicles2dpc. of
direction in our future work is to render the generalization, group- VLDB, 1_999' .
ing and concept formation process more flexible. We would like [1°] A.K.Jain, M. N. Murty, and P. J. Flynn. Data clustering: a
to allow automatic tuning of the input parameters with regard to an review.ACM Computer Surve1(3), 1999. .
objective to achieve, e.g., a compression ratio. The problem then[16] J. Kiernan and E. Terzi. Constructing comprehensive
turns into an interesting optimization issue between semantic accu- summaries of large event sequencesiioc. of KDD, 2008.
racy vs. standardization and time accuracy vs. compression. Also,[17] K. Krishnapuram and K. Kummamuru. Automatic taxonomy
much research in the temporal databases and datastreaming have ~ generation: Issues and possibilities Froc. of IFSA 2003.
worked under the assumption that analysts are more interested in18] R. S. Michalski. Knowledge acquisition through conceptual
recent data and desire high precision representations for new data clustering: A theoretical framework and algorithm for

[13] H. Jagadish, R. Ng, B. Ooi, and A. Tung. ltcompress: an
iterative semantic compression algorithmHAroc. of ICDE
2004.

[14] H. V. Jagadish, J. Madar, and R. T. Ng. Semantic

items while older data can become obsolete. Works in temporal partitioning data into conjunctive conceplisternational
databases have introduced the concept of decay functions to model Journal of Policy Analysis and Information Systems
ageing data. We would also like to extend TSaR in future work by 4:219-243, 1980.
introducing decay functions to further reduce descriptive domains [19] R. S. Michalski and R. Steppearning from observation:
and data compression of older or obsolete information. conceptual clusteringl980.

[20] Q.-K. Pham, N. Mouaddib, and G. Raschia. Data stream
7. ACKNOWLEDGEMENTS synopsis using saintetiq. Proc. of FQA$2006.

We would like to thank Sherif Sakr, Juan Miguel Gomez and [21] S.P. Ponzetto and M. Strube. Deriving a large scale

Themis Palpanas for their many helpful comments on earlier drafts taxonomy from wikipedia. IrProc. of AAAI Conference on
of this paper. This work was supported by the ADAGE project, the Avrtificial Intelligence 2007.
Atlas-GRIM group, the University of Nantes, the CNRS and the [22] R. Saint-Paul, G. Raschia, and N. Mouaddib. General
region Pays de la Loire. purpose database summarizationPhoc. of VLDB 2005.

[23] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web
8. REFERENCES usage mining: Discover and applications of usage patterns

from web dataSIGKDD Explor. News).1(2):12-23, 2000.

[24] Q. Wan and A. An. Compact transaction database for
efficient frequent pattern mining. Froc. of ICGG 2005.

[25] J. Wang and Karypis. On efficiently summarizing categorical

[1] Google finance. http://finance.google.com.
[2] Open calais. http://www.opencalais.com.
[3] Wordnet. http://wordnet.princeton.edul/.

[4] C. C. Aggarwal, J. Han, J. Wang, and P. S. @n Clustering databases{nowledge and Information Syster8$1):19—-37,
Massive Data Streams: A Summarization Paradigm 2006.
volume 31 ofAdvances in Database Systepages 9-38. [26] T. Warren Liao. Clustering of time series data—a survey.
2007. _ _ _ Pattern Recognitio38(11):1857—1874, 2005.

[5] S. Babu, M. Garofalakis, and R. Rastogi. Spartan: A [27] A. Wright, T. N. Ricciardi, and M. Zwickc. Application of

model-based semantic compression system for massive data

information-theoretic data mining techniques in a national
tables. InProc. of SIGMOD 2001.

ambulatory practice outcomes research networRrte. of

[6] V. Chandola and V. Kumar. Summarization - compressing AMIA Annual Symposiun2005.
data into an informative representation Aroc. of ICDM [28] Y. Xiang, R. Jin, D. Fuhry, and F. F. Dragan. Succint
2005. ) . . summarization of transactional databases: An overlapped
[7] K. Chandramouli, E. Izquierdo, T. Kliegr, J. Nemrava, and hyperrectangle scheme. Rroc. of KDD, 2008.

V. Svatek. Wikipedia as the premiere source for targeted [29] D. Zhang and K. Zhou. Discovering golden nuggets: data
hypernym discovery. IWBBT workshop at ECML/PKDD mining in financial applicationEEE TSMC, Part C:

2008. Applications and Review84:513-522, 2004.



