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ABSTRACT
In this paper, we present the concept ofTime Sequence Summa-
rization to support chronology-dependent applications on massive
data sources. Time sequence summarization takes as input a time
sequence of events that are chronologically ordered. Each event is
described by a set of descriptors. Time sequence summarization
produces a concise time sequence that can be substituted for the
original time sequence in chronology-dependent applications. We
propose an algorithm that achieves time sequence summarization
based on a generalization, grouping and concept formation process.
Generalization expresses event descriptors at higher levels of ab-
straction using taxonomies while grouping gathers similar events.
Concept formation is responsible for reducing the size of the input
time sequence of events by representing each group created by one
concept. The process is performed in a way such that the over-
all chronology of events is preserved. The algorithm computes the
summary incrementally and has reduced algorithmic complexity.
The resulting output is a concise representation, yet, informative
enough to directly support chronology-dependent applications. We
validate our approach by summarizing one year of financial news
provided by Reuters.

Categories and Subject Descriptors
E.4 [Coding and Information Theory ]: Data Compaction and
compression; I.5.3 [Pattern Recognition]: Clustering—Algorithms

General Terms
Algorithms, Experimentation, Performance, Theory
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1. INTRODUCTION
Domains such as medicine, the WWW, business or finance gen-

erate and store on a daily basis massive amounts of data. This data
is represented as a collection of time sequences of events where
each event is described as a set of descriptors taken from various de-
scriptive domains and associated with a timestamp. These archives
represent valuable sources of insight for analysts to browse, an-
alyze and discover golden nuggets of knowledge. For instance,
biologists could discover disease risk factors by analyzing patient
history [27], web content producers and marketing people are in-
terested in profiling client behaviors [23], traders investigate fi-
nancial data for understanding global trends or anticipating market
moves [29]. However, analysts are overloaded with the size of this
data and increasingly need methods and tools allowing exploratory
visualization, query or analysis.

As an example, Google has developed Google Finance [1]. In
a user-defined timeline, Google Finance provides analysts with a
tool to browse through companies’ stock values while visualizing
background information about the companies. This background in-
formation is provided in the form of a sequence of chronologically
ordered news events that appeared at some interesting moments,
e.g., during price jumps. We call applications, such as Google Fi-
nance, that rely on the chronological order of the data to be mean-
ingful: Chronology-dependentapplications.

In this context, we observed that sequences of events relating to
an entityA occurring in ashortperiod of time are likely to relate to
a same topic, e.g., events about Lehman Brothers mid-September
2008 relate to its bankruptcy. This observation shows that it could
be more practical and meaningful for the analyst to navigate in the
chronology of events throughsummarizedevents that gather sev-
eral events about a same topic, e.g.,Lehman Brothers’s Backruptcy,
rather than the entire set of individual events. At the same time, the
analyst should be given the possibility to browse the details of these
summarized events for a more in-depth analysis. This existing ex-
ample puts forward the need for a data representation where mul-
tiple events describing a same topic are grouped while preserving
the overall chronology of events’ topic.

During the past decade, semantic data summarization has been
addressed in various areas such as databases, data warehouses, datas-
treams, etc., to represent data in a more concise form by using its
semantics [10, 11, 14, 5, 13, 22]. However, including thetimedi-
mension into the summarization process is an additional constraint
that requires the chronology of events’ topic to somehow be pre-



served. For instance, the sequence〈Lehman Brothers’s Bankruptcy,
Lehman Brothers’s Rescue〉 only makes sense because the events
related to theBankruptcyneed to occur before theRescuecan hap-
pen. We name this type of data transformation, based on the data’s
semantic content and temporal characteristics,Time Sequence Sum-
marization. A time sequence summarizer should take as input a
time sequence of events, where each event is described by a set
of descriptors, and output a time sequence of summarized events.
The produced summarized time sequence should have the follow-
ing properties:

1. Brevity: The number of summarized events in the output time
sequence should be reduced in comparison to the number of events
in the input time sequence.

2. Substitution principle: A chronology-dependent application
that performs on a time sequence of events should be capable of
performing seamlessly if the input time sequence is replaced by its
summary.

3. Informativeness:Summarization should reduce time sequen-
ces of events in a way that keeps the semantic content available to
and understandable by the analyst without the need fordesumma-
rization.

4. Accuracy and usefulness:The input time sequence of events
should not be overgeneralized to preserve descriptive precision and
keep the summarized time sequence useful. However, ensuring
high descriptive precision of events in the summarized time se-
quence requires trading off thebrevityproperty of the summary.

5. Chronology preservation: The chronology of summarized
events in the output time sequence should reflect theoverallchrono-
logy of events in the input time sequence.

6. Computational scalability: Time sequence summaries are
built to support chronology-dependent applications and, thus their
construction should not become a bottleneck. Applications such as
data mining might need to handle very large and long collections
of time sequences of events, e.g., news feeds, web logs or market
data, to rapidly discover knowledge. Therefore, the summarization
process should have low processing and memory requirements.

Designing a time sequence summary that displays all these prop-
erties is a challenging task. There exists a bulk of work for design-
ing summariesin different areas such as datastreams, transaction
databases, event sequences or relational databases. However, to the
best of our knowledge, this research corpus does not address simul-
taneously all six mentioned properties.

Contributions. In this paper, we present the concept ofTime
Sequence Summarizationand propose a summarization technique
that satisfies all six mentioned properties to support chronology-
dependent applications. Our contributions are as follows:
•We give a formal definition ofTime Sequence Summarization.

The time sequence summary of a time sequence of events is a time
sequence of summarized events where: (i) events occurringclosein
time and relating to a same topic are gathered into a same summa-
rized event and (ii) each summarized event is represented by acon-
ceptformed from the underlying events. For example, assume the
input time sequence of events is:〈(t1,Easy subprime loan),(t2,Interest
rate increase),(t3,Housing market collapse)〉. A valid time sequence
summary could be:〈(t′1,Subprime crisis)〉.
• We propose aTime Sequence SummaRization (TSaR) algo-

rithm. TSaR relies on the ideas of Generalization and Merging,
introduced by Han et al. for discovering knowledge in relational
databases [10, 11]. TSaR is a 3-step process that uses background
knowledge in the form of taxonomies, supposedly given by the an-
alyst to generalize event descriptors at higher levels of abstraction.

Assuming events occurringclosein time might relate to a same

topic, grouping is performed on generalized events whose general-
ized descriptors are similar. TSaR’s grouping process gathers gen-
eralized events in a way that respects the chronology of topics in the
input time sequence. For this purpose, aTemporal Localityis de-
fined so that temporally close events can be gathered. Temporal lo-
cality is a term borrowed from Operating systems research [8] and
defined in Section 4.3. It can intuitively be understood as the fact
that a series of eventsclosein time have high probability of relating
to a same topic. However, events relating to different topics might
locally overlap in that period, e.g., due to network delays. Thus,
defining a temporal locality allows TSaR to gather these overlap-
ping events into their corresponding topics. Finally, each group is
represented by a concept. In total, higher numerosity reduction can
be achieved while the chronology of topics in the input time se-
quence is preserved.

TSaR summaries are built in an incremental way by processing
an input time sequence of events in a one-pass manner. The algo-
rithm has small memory and processing footprints. TSaR main-
tains in-memory a small structure that holds a limited number of
grouped events, i.e., grouped events that fit into the temporal lo-
cality. TSaR’s algorithmic complexity is linear with the number of
events in the input time sequence.

We validate these characteristics with a set of experiments on real
world data. We performed experiments using one year of English
financial news events obtained from Reuters’s. These archives con-
tain after cleaning and preprocessing approximately 1.28M events
split over 34458 time sequences. Each event in the time sequences
is a set of words that precisely describes the content of the corre-
sponding news article. Our extensive set of experiments on sum-
marizing this data shows that TSaR has (i) interesting numerosity
reduction capabilities, e.g., compression ratio ranges from 10% to
82%, and (ii) low and linear processing cost.

Roadmap. The rest of the paper is organized as follows. Sec-
tion 2 presents related work. Section 3 formalizes the concept of
Time Sequence Summarization. Section 4 presents the novel tech-
nique we contribute in the paper. Section 5 discusses the experi-
mentation we performed on financial news data. We conclude and
discuss future work in Section 6.

2. RELATED WORK
Our work relates to lines of research, where a concise repre-

sentation of massive data sources is desirable for storage or for
knowledge discovery in constrained processing and memory en-
vironments. Related research domains are those where summaries
are built from sequences of objects ordered by their time of occur-
rence. In this context, and in the light of the requirements men-
tioned in the introduction, we examine summarization techniques
produced for datastreams, transaction databases and event sequen-
ces. This study, however, do not encompass time series summa-
rization as time series summarization rely on methods that only
consider numerical data.

Datastreams.Datastreams is a domain characterized by data of
infinite size and eventually generated at very high rates. The com-
mon assumptions are that (i) any processing should be performed
in a single pass and (ii) input data can not be integrally stored. Such
constraints have motivated researchers to represent input streams in
a more concise form to support analysis applications, e.g., (approx-
imate) continuous queries answering, frequent items counting, ag-
gregation, clustering, etc.. Techniques proposed maintain in mem-
ory small structures, e.g., samples, histograms, quantiles or syn-



opses, for streams ofnumericaldata (we refer the reader to [9]
for a more complete review). In contrast with numerical data that
is defined on continuous and totally ordered domains, categorical
descriptors are defined on discrete and partially ordered domains.
Therefore, descriptors can not be handled and reduced in the same
way as numerical data using conventional datastreaming summa-
rization techniques, e.g, min/max/average functions.

To the best of our knowledge, small interest has been given to
designing summaries[4, 22] for categorical datastreams. Aggarwal
et al. [4] proposed a clustering method for categorical datastreams.
The approach relies on the idea ofco-occurrenceof attribute values
to build statistical summaries and gather input data based on these
statistics. However, the clusters built do not reflect the chronology
of the input data and require pre-processing before analysis. We
proposed in previous work an approach to summarize datastreams
using a conceptual summarization algorithm [20]. The summary
produced does not reflect the chronology of the input data and can
not be directly exploited by chronology-dependent applications.

Transaction database summarization.Transaction databases
(TDB) are collections of time sequences where each time sequence
is a list of chronologically ordered itemsets. A bulk of work [6, 24,
25, 28] has focused on creating summaries for transaction databases.
Chandola et al.’s approach [6] and SUMMARY [25] are techniques
that rely on closed frequent itemset mining to build aninforma-
tive representation that covers the entire TDB. Building these sum-
maries require multiple passes over the input TDB and the output is
a set of frequent itemsets. This output does not endorse the substi-
tution principal and does not reflect the chronology of transactions
of the input TDB. HYPER [28] summarizes a TDB as a set of hy-
perrectangles that covers the database. HYPER’s output set of hy-
perrectangles requires preprocessing before chronology-dependent
applications can exploit the summary and hyperrectangles are com-
puted in polynomial time. But, designing a time sequence summa-
rizer requires a single pass over the data and the output to preserve
the chronology of transactions. Wan et al. [24] summarize a TDB
into the compact form of a CT-tree specifically to support Sequen-
tial Pattern Mining (SPM). The output tree structure allows SPM
to perform but looses the chronology of transactions of the input
TDB.

Event sequence summarization.Kiernan and Terzi [16] rely
on the Minimum Description Length (MDL) principle to produce
in a parameter-free way a comprehensive summary of an event se-
quence, where events are taken from setE of m different event
types. The authors segment the input event sequence timeline into
k segments. Summarization is achieved by describing each seg-
mentSi with a local modelMi that is a partition ofE where groups
Xij ∈ Mi gather event types of similar rate of appearance inSi.
Each event groupXij ∈Mi is then associated with a probability of
appearancep(Xij) ofXij in Si. However, the output summary can
not be directly piped to a chronology-dependent application and
needs some form ofdesummarization. Hence, the authors’ defini-
tion of summarization does not endorse the substitution principle
and one can not seamlessly substitute the original event sequence
for the summary.

The TSaR approach builds on top of the ideas in Attribute Ori-
ented Induction (AOI) [10, 11]. The TSaR process is split into three
sub-routines that allow input time sequences to be processed in an
incremental way: (i) generalization, (ii) grouping and (iii) concept
formation. Generalization transforms event descriptors into a more
abstract but informative form. Then, grouping gathers generalized
events that are semantically close, i.e., having similar generalized
descriptors, and chronologically close. Grouping is performed in

a way that preserves the overall chronology of topics in the time
sequence. Finally, each formed group is represented by a concept,
i.e., a set of descriptors, formed from the underlying events’ de-
scriptors. The output can then be directly interpreted by a human
analyst or piped to any chronology-dependent application.

3. TIME SEQUENCE SUMMARY
In this section, we give a running toy example to illustrate all the

concepts presented in this paper. We also introduce the basic ter-
minology used throughout the rest of the discussion and formalize
the concept ofTime Sequence Summarization.

3.1 Toy example
To illustrate the ideas exposed in this paper, we generate in Ta-

ble 1 a simple toy example with a time sequence extracted from
conference proceedings. The author N. Koudas is associated with
a time sequence where each event is one publication timestamped
by its date of presentation. For simplicity, the set of descriptors
describing an event is taken from one single descriptive domain,
namely, the paper’stopic. Without loss of generality, this discus-
sion is valid for any number of descriptive domains. This exam-
ple is purposely unrelated to the application domain we provide in
Section 5. It illustrates all the concepts introduced and shows the
genericity of our approach.

Table 1: Time sequences of conference proceedings
Author Date Descriptors

N. Koudas JUN05 x1 = {Datastreams, Aggregation}
AUG06 x2 = {Datastreams, Top-k query}
AUG06 x3 = {Top-k query}
SEP06 x4 = {Top-k query}
SEP06 x5 = {Join query, Selection query}
SEP07 x6 = {Clustering}

3.2 Terminology
Let Ω be the universe of discourse, i.e., the set of all descrip-

tors that could describe an event in a time sequence of events.
Ω =

⋃

ADA is organized into several descriptive domainsDA

corresponding to each domainA that interests the analyst, e.g., the
topicof research papers.

We refer to a part ofΩ, i.e., a subset of descriptors taken from
various descriptive domains, asitemsetx ∈ P(Ω). Given anobject
of interest(e.g., “N. Koudas”), anevent eis defined by an itemset
x that describese (e.g., {Datastreams, Aggregation}) and is asso-
ciated with atimestampt (e.g.,t =“JUN05”). We assume the data
input for time sequence summarization, also calledraw data, is a
collection of time sequences of events as defined in Definition 1.

Definition 1 (Time Sequence of events)
A time sequence of eventss = 〈(x1, t1), . . . , (xm, tm)〉, also called
time sequencefor short, is a series of events(xj , tj), with1 ≤ j ≤
m andxj ∈ P(Ω), ordered by increasing timestamptj . We denote
byS = {x1, . . . , xm} the support multi-set ofs. A time sequence
s verifies:∀(xj , xk) ∈ S2, j < k ⇔ tj < tk. We denote bys[T ]
the set of timestamps of elements inS.

This definition of a time sequence and the total order on times-
tamps allow us to equivalently write:
s = 〈(x1, t1), . . . , (xm, tm)〉 ⇔ s = {(xj , tj)}, 1 ≤ j ≤ m

By convention, we further simplify the notation of a time se-
quence and notes = 〈x1, . . . , xm〉 where eachxj , 1 ≤ j ≤ m, is
an itemset and all itemsetsxj are sorted by ascending indexj. This



simplification of the notation allows us to interchangeably use the
term eventto refer to the itemsetxj in event(xj , tj). We denote
by S(Ω) the set of time sequences inP(Ω).

This notion of time sequence can be generalized and used to de-
fine a sequence of time sequences that we hereafter callsecond-
order time sequence. Second-order time sequences are more for-
mally defined in Definition 2.

Definition 2 (Second-order time sequence)
A second-order time sequence defined onΩ is a time sequences =
{(yi, t

′
i)} where each event(yi, t

′
i) is itself a regular time sequence

of events defined onΩ. Events(yi, t
′
i) in s, whereyi = {(xj , tj)},

are ordered thanks to the minimum timestamp valuet′i = min{tj}.
The set of second-order time sequences defined onΩ is denoted
S2(Ω).

An example of second-order time sequence from Table 1 for au-
thor N. Koudascan be defined as follows:s = 〈(y1, t

′
1), (y2, t

′
2),

(y3, t
′
3))〉 where:

• y1=〈(x1={Datastreams, Aggregation},t1=JUN05)〉 andt′1=t1=JUN05
• y2=〈(x2, t2), (x3, t3), (x4, t4), (x5, t5))〉 andt′2 = min {t2, . . . , t5}

i.e.,t′2=AUG06, where:
−x2={Datastreams, Top-k query} andt2=AUG06
−x3={Top-k query} andt3=AUG06
−x4={Top-k query} andt4=SEP06
−x5={Join query, Selection query} andt5=SEP06

• y3=〈(x6={Clustering}, t6=SEP07)〉 andt′3=t6=SEP07
A second-order time sequence can be obtained from a time se-

quences as defined in Definition 1 by the means of a form ofclus-
tering based on the semanticsand temporal information of events
xi,j in s. We refer the reader to the following surveys for more
indepth on clustering [15, 26]. Reversely, a time sequence can be
obtained from a second-order time sequences by means ofconcept
formation[18, 19] computed from time sequencesyi in s.

3.3 Time sequence summary
We formally define in Definition 3 the concept of a time se-

quence summary using the concepts introduced previously.

Definition 3 (Time sequence summary)
Given a time sequences = {(xi, ti)} ∈ S(Ω), using clustering
terminology, we define the time sequence summary ofs, denoted
χ(s) = (s2C , s

⋆
M ) ∈ S2(Ω)× S(Ω), as follows:

• s2C = {(yi, t
′
i)} is the second-order time sequence where

eventsyi ∈ s2C are clusters obtained thanks to a form of
clusteringC that relies on the events(xi, ti) semantic and
temporal information.

• s⋆
M = {(x⋆

i , t
′
i)} is the time sequence of conceptsx⋆

i formed
from clustersyi ∈ s2C . M is the model chosen to character-
ize each clusteryi ∈ s2C , i.e., to build the concepts.

Hence,s2C and s⋆
M can be understood as theextensionand the

intention, respectively, of the summaryχ(s).

We defined time sequence summarization using clustering ter-
minology as the underlying ideas are similar, i.e., grouping objects
based on theirproximity. The novelty of time sequence summaries
relies on the fact that events are clustered thanks to their semantic
and temporal information. Conventional clustering methods mostly
rely on the joint features of the objects considered and their proxim-
ity is evaluated thanks to a distance measure, e.g., based on entropy
or semantic distances. Similarly, in time sequence summarization,
a form of temporal approximation should also be applicable so that

objects that are close from temporal view point are grouped. Con-
sequently, local rearrangement of the objects on the timeline should
also be allowed.

In a nutshell, the objective of time sequence summarization is to
find thebestmethod for grouping events based on their semantic
content and their proximity on the timeline. This general defini-
tion of time sequence summarization can partially encompass some
previous works such as Kiernan and Terzi’s research on large event
sequences summarization [16]. Indeed, the authors perform sum-
marization by partitioning an event sequenceS into k segmentsSi,
1 ≤ i ≤ k; this segmentation can be understood as organizingS
into a second-order time sequences2C whereC is their segmenta-
tion method, e.g., Segment-DP. Note that the authors’ segmenta-
tion method does not allow any form of event rearrangement on the
timeline. Then, each segmentSi is described by a set of event type
groups{Xi,j} where eachXi,j groups event types of similar ap-
pearance rate. Thus, the model used to describe each segment is a
probabilistic model. To this point, our definition of a time sequence
summary fully generalizes Kiernan and Terzi’s work. However, the
authors add for eachXi,j its probability of appearancep(Xi,j) in
Si. By doing so, the authors do not support the substitution prin-
ciple and thus do not completely respect our definition of a time
sequence summary.

4. THE TSAR APPROACH
In this section we present aTimeSequence SummaRization tech-

nique called TSaR. The basic principle of TSaR is illustrated in Fig-
ure 1. The idea is to gather events whose descriptors are similar at
some high level of abstraction and that appear close in time. This is
done in three steps: (i) reduce the data’s domain of representation
by generalizing descriptors to a user defined level of abstraction,
(ii) group identical sets of descriptors within a certain sliding time
window then (iii) represent each group with a single set of descrip-
tors, a.k.a. concept.

Figure 1: TSaR summarization process

In practice, the process is parametrized by three inputs: (i) do-
main specific taxonomies, (ii) a semantic accuracy parameter and
(iii) a temporal precision parameter. The generalization process in
phase 1 takes as input a time sequence, domain specific taxonomies
and the user defined semantic accuracy parameter. It outputs a
time sequence of generalized events where event descriptors are ex-



pressed at higher levels of taxonomy. This output is then fed to the
grouping process in phase 2 where identical generalized events are
grouped together. The overall chronology of events is preserved by
grouping only generalized events present in a same temporal local-
ity (as defined in Section 4.3). Phase 3 forms a concept to represent
each group. Here, since all sets of descriptors in a group are iden-
tical, one instance of the group is selected to represent the group.
We will detail these steps in the following sections.

Figure 2: Taxonomy for the topic domain

4.1 Preliminaries
In this work, we assume that each descriptive domainDA, on

which event descriptors are defined, is structured into a taxonomy
HA ∈ H =

⋃

AHA, defining a generalization-specialization rela-
tionship between descriptors ofDA. The taxonomyHA provides a
partial ordering≺A overDA and is rooted by the special descrip-
tor any_A, i.e., ∀a ∈ DA, a ≺A any_A. For convenience, we
assume in the following that the descriptorany_A belongs toDA.

The partial ordering≺A onDA defines a cover relation<A that
corresponds to direct links between items in the taxonomy. Hence,
we have∀(x, y) ∈ D2

A, x ≺A y ⇒ ∃(y1, y2, . . . , yk) ∈ Dk
A

such thatx <A y1 <A . . . <A yk <A y. The length of the path
from x to y is ℓ(x, y) = k + 1. In other words, we needk + 1
generalizations to reachy from x in HA. For example, given the
topic taxonomy in Figure 2, it takes 2 generalizations to reach the
conceptQueriesfrom the conceptTop-k query.

In practice, we assume these taxonomies are available to the an-
alyst. We believe this assumption is realistic as there exists nu-
merous domain specific ontologies available, e.g., WordNet [3] or
Onto-Med for medicine, as well as techniques that allow the auto-
matic generation of taxonomies [17, 21].

4.2 Generalization phase
Here, we detail the generalization phase that uses taxonomies to

represent the input data at higher levels of abstraction. We assumed
values inΩ are partially ordered by the partial order relation≺A,
so, thanks to this relation, we can define a containment relation⊑
over subsets ofΩ, i.e.,P(Ω).

∀(x, y) ∈ P(Ω)2, (x ⊑ y) ⇐⇒
(

∀i ∈ x, ∃i′ ∈ y, ∃A ∈ A, (i ≺A i′) ∨ (i = i′)
)

For generalization, we need to replace event descriptors with up-
per terms of the taxonomies. We callgeneralization vectoron Ω,
denotedϑ ∈ N

i, a list of integer values.ϑ defines the number of
generalizations to perform for each descriptive domain inA. We
denote byϑ[A] the generalization level for the domainA. Equipped
with this generalization vectorϑ, we are now able to define a re-
striction⊑↓ϑ of the containment relation above:

∀(x, y) ∈ P(Ω)2, (x ⊑↓ϑ y) ⇐⇒
(

∀i ∈ x, ∃i′ ∈ y, ∃A ∈ A,

(i ≺A i′) ∧
(

(ℓ(i, i′) = ϑ[A]) ∨ ((ℓ(i, i′) < ϑ[A]) ∧ (i′ = any_A))
)

)

Definition 4 (Generalization of a Time Sequence)
Given a generalization vectorϑ and a set of taxonomiesH, we
define a parametric generalization functionϕϑ that operates on a
time sequences = 〈x1, . . . , xn〉 as follows:

ϕϑ : S(Ω) −→ S(Ω)
s 7−→ ϕϑ(s) = 〈x′1, . . . , x

′
n〉

such that∀i ∈ {1..n}, xi ⊑↓ϑ x
′
i

For example, given thetopic taxonomy in Figure 2 the gener-
alized version of Table 1 with a generalization vectorϑ = 〈1〉 is
shown in Table 2. We can notice that the⊑↓ϑ relation also allows to
reduce itemsets’ cardinality. Indeed,DatastreamsandTop-k query
both generalize intoQO. As a result, in N. Koudas’s time sequence,
the event {Datastreams, Top-k query} is generalized into {QO}.

From the analyst’s view point,ϑ represents the semantic accu-
racy he desires for each descriptive domain. If he is interested in
the minute details of a specific domain, e.g., a paper’stopic, he can
setϑ to a low value, e.g.,ϑ[topic] = 0 orϑ[topic] = 1. Otherwise,
he can setϑ to higher values for a more abstract description of the
domain. Once the input time sequence has undergone generaliza-
tion, the output undergoes a grouping process as described in the
following section.

4.3 Grouping phase
Here, we detail the grouping phase responsible for gathering

generalized events. This phase relies on two concepts: (i) second-
order time sequence as defined in Definition 2 and (ii)Temporal
locality. We define this notion of temporal locality hereafter.

4.3.1 Temporal locality
In many research areas, it is assumed that a sequence of events

generatedclosein time have high probability of relating to a same
topic. This notion oftemporal localityis borrowed from Operat-
ing systems research [8]. For example,〈Paper deadline, Authors
notification, Camera-ready paper〉 is a chronology of events de-
scribing theConference submissiontopic. However, in a time se-
quence, events describing different topics can eventually be inter-
twined, e.g., due to network delays. Thus, defining atemporal lo-
cality for grouping events of a time sequence allows to capture the
following notions: (i) sequentiality of events for a given topic and
(ii) chronology between topics.

Temporal locality is measured as the time differencedT , on a
temporal scaleT , between an incoming event and previously group-
ed events, hereafter calledgroupsfor short. The temporal scale may
be defined directly through the timestamps or by a number of inter-
mediate groups since we assume they are chronologically ordered.
While grouping, an incoming event can only be compared to pre-
vious groups within a distancew (dT ≤ w). Indeed,w acts as a
sliding window on the time sequence of groups and corresponds to
the analyst’s estimation of the temporal locality of events. In other
words,w can be understood as the temporal precision loss the an-
alyst is ready to tolerate for rearranging and regrouping incoming
events.

This temporal window can be defined as a duration, e.g.,w =
one month, or as a number of groups, e.g.,w = 2. Definingw as
a number of groups is useful in particular when considering bursty
sequences, i.e., sequences where the arrival rate of events is uneven.
The downside of this approach is the potential grouping of events
distant in time. However, this limitation could be solved by defin-
ingw as both a duration and a constraint on the number of groups.
As some domains, e.g. Finance, give more importance to the most
recent information, we choose in our work to express our scale as
a number of groups in order to handle bursts of events.



4.3.2 Grouping process
The grouping process is responsible for gathering generalized

events relating to a same topic w.r.t. the temporal parameterw. It
produces a second-order time sequence of groups defined as fol-
lows:

Definition 5 (Grouping of a time sequence)
Given a sliding temporal windoww, we define a parametric group-
ing functionψw that operates on a time sequences as follows:

ψw : S(Ω) −→ S2(Ω)
s 7−→ ψw(s) = 〈(y1 = 〈(x1, t1), . . . ,

(xm1
, tm1

)〉, t′1), . . . , (yn, t
′
n)〉

such that:
(Part) ∀k ∈ [w, n],

⋃

k−w≤i≤k
yi ⊆ S andyi ∩ yj = ∅

when1 ≤ i < j ≤ n, j − i ≤ w
(Cont) (xi,q ⊑ xi,r) , 1 ≤ r < q ≤ mi, 1 ≤ i ≤ n
(TLoc)

(

dT (ti,q, t
′
i) ≤ w

)

, 1 ≤ i ≤ n, 1 ≤ q ≤ mi

(Max) ∀xi,q ∈ yi, ∀xj,r ∈ yj , 1 ≤ i < j ≤ n,
(xi,q ⊑ xj,r) =⇒

(

dT (tj,r, t
′
i) > w

)

,
1 ≤ q ≤ mi, 1 ≤ r ≤ mj

Property(Part)ensures that the support multi-set ofw-contiguous
time sequences inψw(s), e.g.,〈y1, . . . , yw〉, 〈y2, . . . , yw+1〉, etc
. . ., is a non-overlapping part ofS. This is a direct consequence of
grouping events that relate to a same topic within a same temporal
locality. Property(Cont) gives a containment condition on events
of every time sequence inψw(s). Given a time sequenceyi in
ψw(s), all eventsxi,j ∈ yi are comparable w.r.t. the containment
relation⊑ andxi,1 is the greatest event, i.e.,xi,1 contains all other
events inyi. Property(TLoc)defines a temporal locality constraint
on events that are grouped into a same time sequenceyi in ψw(s).
(TLoc)ensures thatyi only groups events(xi,j , ti,j) that are within
a distancedT inferior tow from timestampt′i = min(yi[T ]), i.e.,
dT (ti,j , t

′
i) ≤ w. Property(Max) guaranties that the joint condi-

tions(Cont)and(TLoc)are maximally satisfied.
In the grouping functionψw, the temporal locality parameterw

controls how well the chronology of groups should be observed.
When a small temporal windoww is chosen, a very strict order-
ing of topics in the output time sequence is required. Incoming
events can only be grouped with the latest groups. Ifw = 1 only
contiguous events are eligible for grouping. Table 3 gives the ex-
pected output when performing grouping on Table 2 withw = 1.
For example, note that in N. Koudas’s generalized time sequence,
when eventx′2 = {QO} is considered,x′2 can only be compared
to previous groupy1 = {{QO,DM}} for grouping.

When a large temporal window is chosen, the ordering require-
ment is relaxed. This means that a large number of groups can
be considered for grouping for each incoming event. As a conse-
quence, the minute details of the chronology of topics may be lost
but higher numerosity reduction could be achieved.

The second-order time sequence output by the grouping function
ψw can be understood as the extension of the summary, i.e.,s2C as
defined in Section 3.3. The intention of the summary, and thus the
reduced version of the input time sequence, is obtained thanks to
the concept formation phase as presented in the following section.

4.4 Concept formation phase
The concept formation phase is responsible for generatings⋆

M ,
the intention of the summary, from the time sequence of groupss2C
obtained in the grouping phase. In the TSaR approach, we gather
generalized events that have identical sets of descriptors. There-
fore, this phase is straightforward.

Table 2: Generalized events withϑ = 〈1〉
Author Date Itemset

N. Koudas JUN05 x′
1 = {QO, DM}

AUG06 x′
2 = {QO}

AUG06 x′
3 = {QO}

SEP06 x′
4 = {QO}

SEP06 x′
5 = {QO}

SEP07 x′
6 = {DM}

Table 3: Grouped events withw = 1
Author Date Sequence

N. Koudas JUN05 y1 = {{QO, DM}}
AUG06 y2 = {{QO},{QO},{QO},{QO}}
SEP07 y3 = {{DM}}

Table 4: Summary with w = 1
Author Date Itemset

N. Koudas JUN05 x⋆
1 = {QO, DM}

AUG06 x⋆
2 = {QO}

SEP07 x⋆
3 = {DM}

Here, concept formation is achieved thanks to the projection op-
eratorπ defined in Definition 6. Intuitively,π represents each time
sequenceyi in second-order time sequences2C by a single concept,
called representative event, xk contained inyi. Consequently,π
produces froms2C a regular time sequences⋆

M = π(s2C) that is the
intention of the summary, also calledrepresentative sequence. In
addition, this operator is responsible for reducing the numerosity
of events in the output time sequence, w.r.t. the original number of
events in the input time sequence.

Definition 6 (Projection of a Second-Order Time Sequence)
We define the projection of a second-order time sequences2C =
〈(y1 = 〈(x1,1, t1,1), . . . , (x1,m1

, t1,m1
)〉, t′1), . . . , (yn, t

′
n)〉 as:

π : S2(Ω) −→ S(Ω)
s2C 7−→ π(s2C) = 〈(x1,1, t1,1), . . . , (xn,n1

, tn,n1
)〉

From our toy example in Table 3, N. Koudas’s representative
sequence is therefore:
π(s2C) = 〈(π(y1), t

′
1), (π(y2), t

′
2), (π(y3), t

′
3)〉 where:

• π(y1) = x⋆
1 = x1 = {QO, DM} and t′1 = t1 = JUN05

• π(y2) = x⋆
2 = x2 = {QO} and t′2 = t2 = AUG06

• π(y3) = x⋆
3 = x6 = {DM} and t′3 = t6 = SEP07

4.5 The summarization process
In TSaR, summarization is achieved by the association of the

three functions presented in the previous section, namely, the gen-
eralization, grouping and projection functionsϕ, ψ andπ respec-
tively. The summarization function is formally defined in Defini-
tion 7.

Definition 7 (Time Sequence SummaRization (TSaR) function)

Given a time sequences defined onΩ, a set of taxonomiesH de-
fined overΩ, a user defined generalization vectorϑ for taxonomies
in H and a user defined sliding temporal windoww, the summary
of s is the combination of a generalizationϕϑ, followed by a group-
ingψw and a projectionπ:

χϑ,w : S(Ω) −→ S2(Ω)× S(Ω)
s 7−→ χϑ,w(s) = (s2C , s

⋆
M )

wheres2C = ψw ◦ ϕϑ(s) ands⋆
M = π(s2C).



The association of the generalization and grouping function,ϕ
andψ respectively, outputs the extension of the summary, i.e.,s2C .
The reduced form of the summary, i.e., its intentions⋆

M , is a time
sequence obtained by forming concepts from groups ins2C thanks
to the projection operatorπ. The extension of the summarysM

then satisfies the conditions of the generalization-grouping process.
The (Cont) property ofψw is then enforced by the generalization
phaseϕϑ of events ins. Note that every element in the reduced
form of the summarized time sequence, i.e.,s⋆

M , is an element of
ϕϑ(s). In other words,s⋆

M is a representative subsequence of the
generalized sequence ofs.

From a practical view point, the analyst and applications are
only given the intention forms⋆

M of s’s time sequence summary
χϑ,w(s). Indeed,s⋆

M is the most compact form of the summary. In
addition,s⋆

M is a time sequence that can seamlessly replaces and
be directly processed by any chronology-dependent application that
performs ons. Thus,s⋆

M is the most useful form from application
view point. In the following, we will interchangeably use the term
summaryto designate the intentions⋆

M of a summary.
Let us give an illustration of a summary with our toy example.

The representative sequences extracted from Table 3 are give Ta-
ble 4. Here, we achieve the dual goal of numerosity reduction
(from 6 events to 3) and domain reduction (from 6 descriptors to
2). These compression effects are obtained thanks to the user de-
fined parameters, i.e., the generalization vectorϑ and the temporal
sliding windoww, that control the trade-off between resp. semantic
accuracy vs. standardization and time accuracy vs. compression.

4.6 The TSaR algorithm
From an operational view point, our implementation of TSaR is

shown in Algorithm 1. The summary is computed through an incre-
mental algorithm that generalizes and appends incoming events one
at a time into the current output summary. In other words, assume
the current summary iss⋆

M = χϑ,w(〈x1, . . . , xn〉) = 〈π(y1), . . . ,
π(yj)〉 and the incoming event is(xn+1, tn+1). The algorithm
computesχϑ,w(〈x1, . . . , xn, xn+1〉) with a local update tos⋆

M ,
i.e., changes are only made within the lastw groupsyj−w, . . . , yj .

More precisely,(xn+1, tn+1) is generalized into(x′n+1, tn+1)
(line 6). Then, assuming we denoteW = {yk}, 1 ≤ j − w ≤
k ≤ j the set of groups that are included in temporal windoww,
TSaR checks ifx′n+1 is included in a groupyk ∈ W . x′n+1 is
either incorporated into a groupyk if its ϑ-generalized version sat-
isfies the(Cont)condition (line 8 to 9), or it initializes a new group
{(yj+1, t

′
j+1 = tn+1)} in W (line 11 to 14). Once all input events

are processed, the lastw groups contained inW are projected and
added to the output summarys⋆

M (line 18 to 20). The final output
summary is then returned and/or stored in a database.

Memory footprint. TSaR requiresw groups to be maintained
in-memory for summarizing the input time sequence. The algo-
rithm’s memory footprint is finite (O(1)) and bound by the width
of w and the average sizem of an event’s set of descriptors. The
overall process memory footprint is obtained by adding the cost
necessary to maintain in-memory the output time sequences⋆

M and
the taxonomies and/or hashtable index to compute descriptors’ gen-
eralization. However,s⋆

M can be projected and written to disk at
regular intervals. Therefore, TSaR’s overall memory footprint re-
mains constant and limited compared to the amount of RAM now
available on any machine.

Processing cost.TSaR performs generalization, grouping and
concept formation on the fly for each incoming event. The process
has an algorithmic complexity linear with the number of events
O(n). The processing cost is weighted by a constant costc =
a ∗ b. a is the cost for generalizing an event’s set of descriptors

Algorithm 1 TSaR’s pseudo-code

1. INPUT:ϑ, taxonomiesH, w, time sequence of eventss
2. LOCAL:W FIFO list containing thew last groups
3. OUTPUT: Summarys⋆

M

4. for all incoming event(xn+1, tn+1) ∈ s do
5. {// Generalization usingH}
6. x′n+1 ← ϕϑ(xn+1)
7. {// Grouping}
8. if ∃(yk, t

′
k) ∈W, wherex′n+1 ⊑ yk then

9. yk ← yk ∪ x
′
n+1 {// x′n+1 is grouped intoyk}

10. else
11. if |W | ≤ w {// Case whereW is full} then
12. PopW ’s 1st groupyj−w, addπ(yj−w) into s⋆

M

13. end if
14. W ←W ∪ {(x′n+1, tn+1)} {// UpdatingW }
15. end if
16. end for
17. {// Add all groups inW into s⋆

M }
18. while W 6= ∅ do
19. PopW ’s 1st groupyi, addπ(yi) into s⋆

M

20. end while
21. return s⋆

M

and mainly depends on the number of taxonomies and their size.
b is the cost to scan the finite list of groups inW . However,a is
a cost that can be reduced by precomputing the generalization of
each descriptive domain and storing the results in a hashtable in-
dex. b is a cost that is negligible since the temporal windowsw
used are small, e.g., mostlyw ≤ 25 in our experiments. Hence, we
satisfy the memory and processing requirements presented earlier.

5. EXPERIMENTS
In this section we validate our summarization approach through

an extensive set of experiments on real-world data from Reuter’s
financial news archives. First, we describe the data and how tax-
onomies are acquired for the descriptive domains of the news. We
summarize the raw data with different temporal windowsw and
show the following properties of the TSaR algorithm: (i) low pro-
cessing cost, (ii) linearity and (iii) compression ratio.

Our experiments were performed on a Core2Duo 2.0GHz laptop,
2GB of memory, 4200rpm hard drive and running Windows Vista
Pro. The DBMS used for storage is PostgreSQL 8.0 and all code
was written in C#.

5.1 Financial news data and taxonomies
In financial applications, traders are eager to discover knowledge

and eventual relationships between live news feeds and market data
in order to create new business opportunities [29]. Reuters has been
generating and archiving such data for more than 10 years. To ex-
periment and validate our approach in a real-world environment,
we used one year of Reuters’s news articles (2003) written in En-
glish. The unprocessed data set comes as a log of 21,957,500 en-
tries where each entry includes free text and a set of≈ 30 attribute-
value pairs of numerical or categorical descriptors. An example
of raw news event is given in Table 5. As provided by Reuters,
the data can not be processed by the TSaR algorithm. Hence, the
news data was cleaned and preprocessed into a sequence of events
processable by TSaR.

Among all the information embedded in Reuters’s news articles
we focused on 3 main components for representing the archive as a
time sequence:



Figure 3: Taxonomy generated for thebusiness domain

• Timestamp: This value serves for ordering a news article within
a time sequence.
• Topic_codes: When news articles are written,topic_codesare

added to describe their content. There are in total 715 different
codes relating to 20 different topics. We used 7 of the most popular
topics to describe the data, i.e., {Location, Commodities, Economy
Central Banking and Institution, Energy, Equities, Industrial sector,
General news}.
• Free text: This textual content is a rich source of information

from which precise semantic descriptors can be extracted. Give 5
additional topics, namely, {Business, Operation, Economics, Gov-
ernment, Finance}, we used the WordNet [3] ontology to extract
additional descriptors from this content.

Extracting pertinent descriptors from free text is a non trivial task
w.r.t. the need for organizing the descriptors extracted into tax-
onomies. Research in Natural Language Processing (NLP) could
be leveraged to tag texts based on their corpus, e.g., using Term
Frequency-Inverse Document Frequency (TF-IDF) weights as done
in [12] or using online resources such as Open Calais [2]. How-
ever, creating taxonomies from the tags extracted is not trivial and
requires prior knowledge on the descriptors. The paradox lies in
the fact that these descriptors are not known in advance. We chose
to use the WordNet [3] ontology as a guide for extracting descrip-
tors and structuring them into taxonomies thanks to the hierarchical
organization already existing in WordNet. This choice leaves room
for improvement by leveraging more complex techniques for both
extracting descriptors from the free text and structuring these de-
scriptors. For example, automatic approaches [17] or hierarchical
sources such as Wikipedia [21, 7] could also be used. However,
such research is out of the scope of this paper.

In total, we preprocessed the input archive into a sequence of
1,283,277 news events.Each news event is described on the 12 de-
scriptive domains selected earlier and several descriptors from each
domain can be used. We generated a taxonomy for each of these
descriptive domains. As the domains of topic_code themes are
limited in size and already categorized, corresponding taxonomies
were manually generated. Descriptive domains extracted from the
free text were generated using the WordNet ontology as shown in
Figure 3. In a nutshell, for a given subject, e.g.,business, its senses
are used as intermediary nodes in the taxonomy. If there are several
synonyms for one sense, e.g., {Commercial enterprise, Business
enterprise}, one is arbitrarily chosen, e.g.,Commercial enterprise.
Specialized descriptors are then used as lower level descriptors.

5.2 Summarization
The TSaR algorithm takes as input taxonomiesHA, a generaliza-

tion vectorϑ, temporal window parameterw and a time sequence.
The expected output is a more concise representation of the input
sequence where the descriptive domains and the number of input
events are reduced.

Table 5: Example of raw news event:
Timestamp 01 Jan 2004
Topic code EUROPE USA Bank INS NL

Dutch bank ABN AMRO said on Wednesday it had rea-
Free text ched a preliminary agreement to sell its U.S.-based Pro-

fessional Brokerage business to Merrill Lynch & Co. . . .

Table 6: Semantic accuracy
ϑ |Ω

′
| α

〈0〉 1208 N/A
〈1〉 50 1
〈2〉 20 0.40
〈3〉 13 0.26

5.2.1 Quality measure
The quality of the algorithm can be evaluated by several differ-

ent methods. First, we could evaluate the summarization algorithm
w.r.t. the application that it is meant to support, e.g., Sequential
Pattern Mining (SPM). In this case, the summary can be evaluated
based on its ability to increase the quality of the output knowledge
or increase the speed of the mining process (a preliminary study is
proposed in our technical report).

Second, we can measure the semantic accuracy of summarized
event descriptors in the summary produced. This accuracy can be

evaluated thanks to the ratioα = |Ω
′
|

|Ω|
, whereΩ is the set of de-

scriptors in the raw data andΩ
′
is the set of generalized descriptors

in the output summary. The higherα, the better the semantic accu-
racy. In addition to the semantic accuracy of the summary, we can
also measure its temporal accuracy. For this purpose, given a time
sequences = {xi}, 1 ≤ i ≤ n, temporal localityw > 1 and a
temporal windowW , we define a temporal rearrangement penalty
cost for grouping an incoming eventxi with a groupyj ∈ W .
We denote this penalty costCτ (xi). Cτ (xi) expresses the num-
ber of rearrangements necessary on the timeline so that eventxi

can be grouped withyi in windowW . Cτ (xi) penalizes incoming
eventsxi that are grouped with the older groupsyi in W ; on the
other hand, ifyi is the most recent group inW , no penalty occurs.
Cτ (xi) is formally defined as follows:














Cτ = 0, if (6 ∃yj ∈W,xi ⊑ yj) ∨
(∃yj ∈W,xi ⊑ yj ∧ 6 ∃k > j, yk ∈W )

Cτ = m, if ∃yj ∈W,xi ⊑ yj ∧
1 ≤ m ≤ w − 1, m = |{yk ∈W,k > j}|.

The total temporal rearrangement penalty cost for summarizing
s into s⋆

M , denotedCτ (s⋆
M ), is thenCτ (s⋆

M ) =
∑n

i=1 Cτ (xi). This
penalty cost should then be normalized so that our results are com-
parable. Hence, we choose to compute the relative temporal ac-
curacy of the summaries. We normalize all temporal rearrange-
ment cost by the maximum cost obtained in our experiments, i.e.,
Cτ (χ〈3〉,100(s)).

Finally, we also evaluate the summarization algorithm on its nu-
merosity reduction capability by reporting itscompression ratio

CR. CR is defined as:CR = 1 −
|s⋆

M
|−1

|s|−1
where |seq| is the

number of events in a time sequenceseq. The higherCR, the bet-



ter. We decide to useCR as it was also used by Kiernan and Terzi’s
in [16] and we weight theCR with the summaries’ semantic and
temporal accuracy,α andβ, respectively.

Figure 4: Processing time

Figure 5: Numerosity reduction

Figure 6: Temporal accuracy

5.2.2 Experimental results
We start by setting the generalization vectorϑ = 〈1〉, i.e., all

descriptors are generalized once, andw ∈ {1, 2, 3, 4, 5, 10, 15, 20,
25, 50, 100} where the maximum valuew = 100 was chosen to
represent a very strong temporal relaxation. Figure 4 gives the pro-
cessing time of the TSaR algorithm with different temporal win-
dows. For the sake of readability, we only display the plots for tem-
poral windowsw ∈ {1, 5, 100}. These plots show that the TSaR
algorithm is linear in the number of input events for temporal win-
dowsw of any size. In addition, we can observe that processing
times are almost constant whatever the temporal window consid-
ered. The slight variation observed in between different values of
w have two complementary explanations. First, it is more costly to
scan large windows during grouping. Second, a larger windoww

allows to maintain more groups in-memory and, so, requires less
I/O operations for writing into storage.

We compute the CR of the summaries built with different gen-
eralization vectorsϑ ∈ {〈0〉, 〈1〉, 〈2〉, 〈3〉}. The results are given
in Figure 5. Note that the best compression ratio achieved with
ϑ = 〈0〉 is only 0.39. For a given temporal windoww, relaxing the
precision of the data by generalizing each descriptor once, twice or
three times allows an average gain in compression capabilities of
46.15%, 94.87% and 133.33% respectively. In other other words,
the compression ratio is approximatively doubled when increasing
the generalization level. Another interesting observation is that for
all ϑ, the plots show that highest numerosity reduction is achieved
with larger temporal windows while processing times are almost
constant, as shown in Figure 4. This observation is very helpful
from user view point for setting the summarization parametersϑ
andw. In effect, as processing times are almost constant whatever
the temporal window considered, the user needs only to express
the desired precision in terms of (i) semantic accuracy for each de-
scriptive domain and (ii) temporal locality without worrying about
processing times.

Table 6 gives the semantic accuracy of the summaries produced
and Figure 6 gives their temporal accuracy. Note in Table 6 that
the number of descriptors in the raw data, i.e.,ϑ = 〈0〉, is 1208.
When summarizing each descriptive domain once, i.e.,ϑ = 〈1〉,
the number of descriptors in the summaries drops to 50. This loss
of semantic information can be explained by the fact the data was
preprocessed using the WordNet ontology and the taxonomies were
also generated from the WordNet ontology. Numerous descriptors
extracted from the free text are in fact synonyms and are easily
generalized into one common concept. Consequently, the concepts
obtained withϑ = 〈1〉 should be considered as better descriptors
than the raw descriptors. Hence, we choose to computeα using as
baseline|Ω

′
| = 50, as shown in Table 6. In this case, each time

ϑ is increased, the semantic accuracy is approximatively halved.
This observation is consistent with our previous observation on the
average compression gain.

Figure 6 gives the relative temporal accuracy of each summary.
Higher levels of generalization reduce the temporal accuracy of the
summaries. This phenomenon is due to the fact that more generic
descriptors allow more rearrangements for grouping events. How-
ever, the temporal accuracy remains high, i.e.,≥ 0.80, for small
and medium sized temporal windows, i.e.,w ≤ 25. The temporal
accuracy only deteriorates with large windows, i.e.,w ≥ 25. This
result means that the analyst can achieve high compression ratios
without sacrificing the temporal accuracy of the summaries.

However, guaranteeing theCR with TSaR is a difficult task, if
not impossible, as its depend on the input parameters and on the
data’s distribution. In addition, the analyst needs to weight the se-
mantic and temporal accuracy he is ready to trade off for higher
CR. Guaranteeing theCR becomes an optimization problem that
requires the algorithm to self-tune the input parameters and take
into account the analyst’s preferences.

6. CONCLUSION AND FUTURE WORK
Massive data sources appear as collections of time sequences of

events in a number of domains such as medicine, the WWW, busi-
ness or finance. A concise representation of these time sequences of
events is desirable to support chronology-dependent applications.
In this paper, we have introduced the concept ofTime Sequence
Summarizationto transform time sequences of events into a more
concise but informative form, using the data’s semantic and tempo-
ral characteristics.



We propose aTimeSequence SummaRization (TSaR) algorithm
that transforms a time sequence of events into a more reduced and
concise time sequence of events using a generalization, grouping
and concept formation principle. TSaR expresses input event de-
scriptors at higher levels of abstraction using taxonomies and re-
duces the size of time sequences by groupingsimilar events while
preserving the overall chronology of events. The summary is com-
puted in an incremental way and has an algorithmic complexity lin-
ear with the number of input events. The output is directly under-
standable by a human operator and can be used, without the need
for desummarization, by chronology-dependent applications. One
such application could be conventional mining algorithms to dis-
coverhigh order knowledge. We have validated our algorithm by
performing an extensive set of experiments on one year of Reuters’s
financial news archives using our prototype implementation.

TSaR summaries are built using background knowledge in the
form of taxonomies and the semantic and temporal precision of the
output summary are controlled by user defined parameters. One
direction in our future work is to render the generalization, group-
ing and concept formation process more flexible. We would like
to allow automatic tuning of the input parameters with regard to an
objective to achieve, e.g., a compression ratio. The problem then
turns into an interesting optimization issue between semantic accu-
racy vs. standardization and time accuracy vs. compression. Also,
much research in the temporal databases and datastreaming have
worked under the assumption that analysts are more interested in
recent data and desire high precision representations for new data
items while older data can become obsolete. Works in temporal
databases have introduced the concept of decay functions to model
ageing data. We would also like to extend TSaR in future work by
introducing decay functions to further reduce descriptive domains
and data compression of older or obsolete information.
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