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ABSTRACT   

In this paper we address the problem of crosstalk reduction for autostereoscopic displays. Crosstalk refers to the 

perception of one or more unwanted views in addition to the desired one. Specifically, the proposed approach consists of 

three different stages: a crosstalk measurement stage, where the crosstalk is modeled, a filter design stage, based on the 

results obtained out of the measurements, to mitigate the crosstalk effect, and a validation test carried out by means of 

subjective measurements performed in a controlled environment as recommended in ITU BT 500-11. Our analysis, 

synthesis, and subjective experiments are performed on the Alioscopy® display, which is a lenticular multiview display.  

Keywords: 3D Digital Signal Processing, Autostereoscopic Display, Lenticular array Display, Crosstalk 

 

1. INTRODUCTION  

A 3D imaging system tries to mimic the behavior of the human visual system by using stereo cameras which capture a 

scene from slightly different positions. A 3D rendering system presents two slightly different images to the left and the 

right eye in such a way that the human visual system gets a perception of depth due to stereopsis. More in detail, the 3D 

rendering systems can be classified as either stereoscopic, which require viewing glasses such as anaglyphic lenses, 

polarized glasses for passive systems, or liquid crystal shutter glasses for active systems, or autostereoscopic displays, 

where the 3D effect is reproduced by using a set of images each of which can be seen from a particular viewing angle. 

The image selection can be performed by means of a different number of techniques, like parallax barriers and lenticular 

lenses. 

In this paper we focus on the crosstalk effect in autostereoscopic displays. Crosstalk refers to the perception of one or 

more unwanted views in addition to the desired one [1]. The crosstalk effect has been investigated for autostereoscopic 

displays in [2] where it has been pointed out that the crosstalk can be beneficial in some circumstances. A methodology 

to measure the crosstalk effect with a camera in dependence of the viewing angle has been demonstrated in [3].  

In [4] the authors demonstrated the measurement and the reduction of crosstalk on a time-sequential 3D display with 

shutter glasses using a CRT display. They used a psychophysical comparison experiment to measure the crosstalk and 

they subtracted the unintended crosstalked signal from the displayed signal in order to reduce the crosstalk. The 

calculations have been done in terms of pixel values. 

It was reported in [5] that crosstalk of up to 15% does not have an effect on visual strain and perceived depth. However, 

the visual quality perceived by the observers might be affected as a pretest showed. In autostereosopic displays, the 

amount of crosstalk is related to the displayed disparity. For a disparity of zero, i.e. objects that appear in the display 

plane, the crosstalk may actually lead to an enhanced spatial resolution or at least to a higher brightness as was 

mentioned in [2]. The larger the disparity gets, the more the content of adjacent views differs spatially and thus the more 



 

 
 

 

ghosting is perceived. With high frequency content, the ghosting may even lead to a loss of the 3D effect because the 

observer fails to fuse the views. This may be seen as one reason why some displays apply lowpass filtering to objects 

which was investigated by the authors previously [6]. 

Autostereosopic lenticular displays split the native resolution of the displays into a number of views. Each subpixel, e.g. 

the red, green and blue component of each pixel, belongs to a different view. One advantage of the Alioscopy® display 

is that the subpixel allocation scheme has been published [7]. This allows specifying exactly the content that is displayed 

on each view enabling the research presented in this paper. 

The paper follows the three basic steps that were necessary: In Section 2 the measurement of the crosstalk is performed. 

The parameterized algorithm for the crosstalk mitigation is explained in Section 3. An extensive subjective experiment 

has been conducted to assess the performance of the proposed filter algorithm. The observers voted for their preference 

in terms of Quality of Experience (QoE). The setup and the results are explained in Section 4. Conclusions are drawn in 

Section 5. 

2. MEASUREMENT OF CROSSTALK  

The measurement was performed by means of a subjective comparison experiment. The display was calibrated with an 

XRite i1display calibration device. The sharpness parameter of the display was set to zero in order to avoid clipping at 

high luminance values. If not otherwise noted, the explanations assume monocular viewing. Throughout the 

measurements one eye was always covered by a plastic eye shield. 

The Alioscopy® screen has eight distinct views which will be termed view 1 to view 8 in the following. The display has 

a native viewing distance of 4m that results from the opening angle of the viewing cones. At other distances, the viewer 

sees several views at the same time at different spatial locations, e.g. on the left of the screen view 4 and view 5 on its 

right side. The observer looked through a tube of 30cm length and a radius of 2.5cm which was installed at a comfortable 

viewing height. At the start of the measurement, the tube was aligned by the observer in order to perceive only one 

specific view number and it was fixed afterwards. In the following explanation, it will be assumed that view 4 is seen by 

the observer. A sketch of the setup is shown on the left side of Figure 1a.  

The sketch also indicates the position of the viewing cones or views. In order to address the view positions, the content 

of each of the eight views has to be combined into a single HDTV image. This mixing step is explained in detail in [7]. 

For the first part of the experiment, a diagonal bar test pattern with a uniform border was used as displayed in Figure 1b. 

The test pattern has 3 distinct brightness values and it was displayed on at least 2 of the 8 views but with different 

brightness settings for each view as follows. For the alignment of the gaze directing tube, the test pattern was displayed 

on view k=4 with a white border y4b=255 and on all other views the border was left black.  

Tables

Display

Tube
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d=4m

Views

1 8 7 6 5 4 3 2 1 8
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Figure 1:  Experiment room setup (a) and displayed test pattern (b) 



 

 
 

 

 
In the first experiment, two views were used: View 4 and one of its adjacent views, for example view 5. For the adjacent 

view, y5a=0 was set and { }224,...,32,05 ∈cy was selected in a random permutation. For the central view, 

{ }192,...,32,04 ∈cy  was again randomly set. The observer was asked to interactively adjust y4a by using up/down keys 

in order to obtain a homogeneous gray screen. The difference between the selected value and y4c indicated the equivalent 

brightness of the central screen for the crosstalk perceived from the adjacent view. In Figure 2a, an example is shown. 

The measured data is plotted in pixel values showing the relationship between y5c and y4c as inputs on the x- and y-axis 

and the chosen value for y4a on the z-axis. It can be seen that on the left side of the mesh plot, the input and the output are 

linear with a gradient close to one. This corresponds to the situation, when there is no luminance from the adjacent view 

and the observer only chooses the matching value for the gray bars on the same screen. The right edge of the mesh grid 

shows the situation, when the only light source is coming from the crosstalk of the adjacent view. It can be seen that the 

amount of luminance corresponds to a value of up to 92 thus 36% of the available 8 bit range. 

In order to see the amount of crosstalk, it is necessary to convert the digital values into physical luminance values, e.g. 

measured in candela per square meter as shown in Figure 2b. The x- and y-axis are unchanged; the z-axis now displays 

the crosstalk, e.g. the difference between the expected luminance from the current view y4c and the choice of the observer 

y4a. The surface is approximately flat except for measurement noise and clipping effects at the farthest corner. Please 

note that part of the measurement noise is due to the logarithmic quantization of luminance that results from the linear 

quantization of eight bit for the display’s input signal.   

The crosstalk that is seen in Figure 2b can be modeled in a first approximation by a single degree of freedom which is 

the gradient of the plane. It is mandatory that the plane is fixed at zero as there should be no crosstalk when there is no 

light coming from the adjacent view. A least mean squares fit for several observers was used to determine the gradient 

for the crosstalk. It indicates the attenuation of light energy that can be seen from an adjacent view, in this case from 

view 4 when view 5 is illuminated. The gradient is stored in a two-dimensional matrix A which is indexed by the views, 

in this case a45=0.1 

 

  

(a) (b) 

Figure 2: Measured Crosstalk from one adjacent view: (a) resulting observer choice in dependence of displayed 

pixel values and (b) amount of crosstalk measured in luminance for displayed luminances 

 
Several experiments were performed by using the described setup. They indicated that the gradient does not depend on 

the view numbers, e.g. the crosstalk is symmetric and view independent. Moreover, it was verified that the crosstalk is 

additive in the luminance domain, e.g. light emitted by the two adjacent views is perceived equal to light emitted by only 

one adjacent view at twice the luminance level. The measurement was also performed on views that were disconnected, 

e.g. by looking at view 4 while illuminating view 6, 7 or 8. For each measurement the gradient was calculated. 



 

 
 

 

The amount of perceived luminance Lvp for each view v can thus be generated by using the displayed luminance in each 

view Lvd by multiplication with the corresponding gradient. By using the two vectors Lp = [ L1p, L2p, … L8p]
T 

 and Ld = 

[L1d, L2d, … L8p]
T
, the matrix of gradients A and the 8x8 identity matrix as E the crosstalk can be modeled as: 

 

     dp LAEL ⋅+= )(        (1) 

The measurement on the display led to the following circulant Toeplitz matrix for the approximated crosstalk 

coefficients: 
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3. REDUCTION OF CROSSTALK 

In order to reduce the crosstalk, it is advantageous to work in the luminance domain because the operations stay linear. 

The computation of luminance from the digital input values usually requires several steps and a detailed knowledge 

about the display used, e.g. its white point, gamma value, reflectance and maximum brightness [8,9]. However, for 

simplification of the implementation it was decided to use only the gamma curve and to process the red, green and blue 

component independently. This simplification is mainly possible because the relevant steps of the algorithm are linear. 

Taking the red component for an input pixel ri as an example, and knowing that the display was calibrated with 2.2=γ , 

the luminance for red was calculated as: 

     �
�

	


�

�
=

255

i
ri

r
L

γ

       (3) 

The generic reduction of crosstalk can be directly derived from Eq. 1. Because Lp represents the luminance that it 

appears after the crosstalk, it resembles what the viewer perceives. Conversely, Lp should contain the information of Li 

that was intended for display to the viewer. The signal that is displayed on the screen is represented by Ld and can be 

adjusted in order to improve the quality. Accordingly, the luminance that should be sent to the display can be calculated 

by rewriting Eq. 1 to 

rird LAEL ⋅+= −1)(       (4) 

The implementation of this obvious solution fails because the display can only represent a certain range of values. In 

particular, due to the structure of the crosstalk matrix A, negative values for Lrd occur frequently, indicating that the 

amount of crosstalk from other views is larger than the value that should be displayed. Three solutions are proposed 

which can be used in any combination.  

The first solution is to avoid negative values for Ld by shifting and compressing the input value range Li. Thus, a 

footroom of displayable luminance is created that allows for virtually negative luminance values. This operation is done 

on the 8 bit input data values rather than on the luminance signal because the compression and shift leads to less visual 

distortions. The parameter β denotes the shift in terms of black level on the 8 bit input data in 
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The advantage of this approach is that even in high contrast areas, the crosstalk can be reduced. The disadvantage is that 

the contrast of the image is reduced which results in a poor image quality. As was mentioned earlier the crosstalk from a 

single view already reaches 36% of the available input range. In order to eliminate the crosstalk even in the worst case 

173=β has to be chosen. 



 

 
 

 

The second solution is a best-effort crosstalk reduction. By introducing a multiplicative factor ]1,0[∈α for the crosstalk 

coefficient matrix, the amount of crosstalk reduction can be controlled and negative values can be avoided. Eq. 4 thus 

becomes: 

rird LAEL ⋅+= −1)( α       (6) 

The factor α depends on the input vector Lri and thus changes for each pixel. The advantage of this solution is that it can 

always be applied. The disadvantage is that it fails to reduce the crosstalk especially in image regions where a high 

contrast is perceived. Unfortunately, those regions suffer particularly from crosstalk as the human visual system relies on 

edges for the estimation of depth by stereopsis. 

The third solution is to allow for a certain interval of virtually negative luminance values. As the values cannot be 

displayed on the screen, they are mapped to zero. The implementation results in an enhancement of the second solution. 

The factor α in Eq. 6 is chosen iteratively in order not to exceed the allowed interval. The lower luminance threshold is 

termed Lmin. The advantage of this solution is that it can be applied in high-contrast areas. The disadvantage is that for 

large values of Lmin artifacts can be seen.  

A block diagram of the complete algorithm that combines all three solutions is shown in Figure 3. The algorithm 

simplifies for example to the first solution if Lmin is set to zero and 0=β . As the algorithm is applied to each color 

component of each pixel, for performance reasons a fixed set of 17 matrices was computed as 
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Figure 3: Block diagram for the reduction of crosstalk 

 

4. SUBJECTIVE EXPERIMENT 

The algorithm has two parameters: the dark level increase β and the minimum allowed but clipped luminance Lmin. The 

preference of the observers for the choice of these parameters was evaluated in a subjective experiment. The test was 



 

 
 

 

performed on still images which were displayed by a PC on the calibrated Alioscopy screen. As the difference between 

parameters was sometimes very subtle, a paired comparison method was used. Using a side-by-side comparison was 

dismissed because the display is very sensitive to the observers viewing angle, e.g. there may always be less crosstalk on 

the left side of the display. Instead, the paired comparison method was implemented by viewing one image at a time with 

the observer being able to switch freely between the two images before giving his pinion. 

It was anticipated from [2] that the amount of disparity would influence the decision of the subjects in the way that less 

crosstalk reduction might be preferred for small disparities. When using 3D images, each image would contain different 

levels of depth and it would be difficult to provide a systematic analysis. Thus, 2D images were displaced in depth by 

setting the disparity of the complete image to a specific value. When displayed on the screen, the image appeared to be 

moved in front or in the back of the screen. Five different disparities were used, starting from 12 pixels crossed disparity 

to 18 pixels uncrossed disparity with a step size of 6; zero disparity was not included. Correspondingly, the image 

appeared to be 31cm or 16cm in front of the screen or 18cm, 37cm or 59cm behind it. 

   
Chinatown Crowdrun Game 

   
Gate Rennes Yamaha 

Figure 4: Test images 

 

The six images used in the experiment are shown in Figure 4. They were selected based on their features, e.g. spatial 

frequency, contrast, and brightness. Additionally, several types of content were represented, e.g. text, faces and computer 

generated content. The size of the source images is 960x1080 pixels, a gray border was added and the images were 

centered in the middle of the screen. 

The crosstalk reduction algorithm features two free parameters which were evaluated with two values each, resulting in 

four conditions. The image without any crosstalk reduction was included in order to provide a reference. Following the 

notation used by the Video Quality Experts Group (VQEG) in their testplans, e.g. [10], those five conditions will be 

termed Hypothetical Reference Circuits (HRC) and they are summarized in Table 1. 



 

 
 

 

 

Table 1: Evaluation of algorithm parameters 

HRC Lmin β  

0 Reference 

1 0 0 

2 0 20 

3 20 0 

4 20 20 

 

In total, the subjective experiment contained 6 contents, 5 contents and 5HRCs, thus 150 different images. They were 

evaluated in 300 paired comparisons per observer. The experiment was performed with 31 naïve observers. 

Table 2 shows the percentage of preference for each algorithm to each other algorithm. The last column shows the mean 

value of the preference for each algorithm. The most often preferred algorithm is HRC3 which outperforms the 

reference, HRC1 and HRC2 in more than 90% of the presentations and HRC4 still in 76%. Accordingly HRC4 is the 

second best, followed by HRC1.  

Table 2: Preference of Algorithms in percent 

 HRC0 HRC1 HRC2 HRC3 HRC4 Mean Preference 

HRC0  17 46 5 19 22 

HRC1 83  82 5 46 54 

HRC2 54 18  8 4 21 

HRC3 95 95 92  76 90 

HRC4 81 54 96 34  66 

 

The votes have also been analyzed using the Thurstone case 4 model according to [11,12]. The Thurstone analysis 

assumes a Gaussian distribution for the observer’s opinion on each HRC. Based on the paired comparisons, the distance 

between each of the HRCs is calculated and transformed into a scale value. Consequently, the paired comparison results 

can be seen as the outcome of a statistical experiment on the Gaussian distributions. The Thurstone scale values and their 

95% confidence intervals for the HRC evaluation are shown in  

Figure 5. The analysis shows the same ranking and the 95% intervals indicate that the quality difference was significant 

except for HRC0 and HRC2. In Figure 6 the details for each disparity level are given. Although the difference between 

the algorithm in HRC4 and the reference HRC0 gets smaller for disparity -6 and 6, the crosstalk reduction is still 

preferred by the observers. 

 

Figure 5: Thurstone analysis for comparison of crosstalk algorithms in the subjective experiment 



 

 
 

 

 

 
Figure 6: Thurstone analysis differentiating between disparities 

 

In terms of algorithm parameters it seems not beneficial to perform the crosstalk reduction at the expense of an increased 

dark level. In HRC2 when 20=β  was chosen, the algorithm performs worse than without the dark level increment in 

HRC1. The same applies to HRC4 and HRC3. The usage of the negative luminance threshold seems to be appreciated as 

HRC4 is judged best.  

A drawback of the application of the crosstalk reduction in the proposed way is that the transition between the display 

cones is no longer smooth. The reduction of crosstalk is strongest in the center of each view and thus, when the observer 

moves, he perceives different levels of crosstalk. Thus, the display behaves as if it contained discrete views instead of 

being continuous. 

Only a single value for each algorithm parameter was evaluated. The number of combinations for the paired comparisons 

and the limited duration of the test session did not allow further investigations. However, it should be considered 

necessary to further tune the two parameters in order to improve the algorithm. The application to images which contain 

depth information should also be evaluated. However, the fact that the algorithm performed well for all disparities 

indicates that a gain can always be achieved. 

5. CONCLUSION  

For displaying 3D content, autostereoscopic displays are advantageous because they do not require the viewer to wear 

glasses which is often prohibited, e.g. in a telephone conference environment. However, the low resolution of the 

displays per view and the amount of crosstalk limits their current usage.  

In this contribution a way to mitigate the effect of crosstalk was presented. First, we proposed a method to measure the 

amount of crosstalk on a lenticular array display. As the method works by visual comparison, it does not require 

expensive measurement equipment. Second, we addressed the problem of interview dependency on a multiview display 

by using a linear model in the luminance domain. The algorithm was motivated and described in detail. A way to 

implement this algorithm effectively was introduced. Finally, it was demonstrated that the processed images are 

preferred by the viewers in a subjective experiment when asked for their preference in terms of quality of experience.  

In a next step, further investigations on the tuning of the algorithm parameters are necessary. Moreover, the way of 

processing results in discrete views which leads to a reduced motion parallax effect on the display. 
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