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Abstract

Nous pŕesentons dans ces travaux le concept du “Résuḿe de Śequence Temporelle” dont le but est
d’aider les applications d́ependantes du tempsà passer̀a l’ échelle sur de grandes masses de données.
Un Ŕesuḿe de Śequence Temporelle s’obtient en transformant une séquence d’́ev́enements òu lesév́ene-
ments sont ordonńes chronologiquement. Chaqueév́enement est préciśement d́ecrit par un ensemble de
labels. Le ŕesuḿe produit est alors une séquence temporelle d’év́enements, plus concise que la séquence
originale et pouvant se substituerà l’originale dans les applications. Nous proposons un algorithme ap-
peĺe “TSaR” pour produire un tel ŕesuḿe. TSaR se base sur les principes de géńeralisation, de regroupe-
ment et de formation de concept. La géńeralisation permet d’abstrairèa l’aide de taxonomies les labels
qui décrivent leśev́enements. Le regroupement permet ensuite d’agglomérer lesév́enements ǵeńeralisés
qui sont similaires. La formation de concept réduit le nombre d’́ev́enements grouṕes-ǵeńeralisés dans
la séquence en représentant chaque groupe formé par un uniquéev́enement. Le processus est conçu
de manìere à préserver la chronologie globale de la séquence d’entŕee. L’algorithme TSaR produit
le résuḿe de manìere incŕementale et a une complexité algorithmique lińeaire. Nous validons notre
approche par un ensemble d’expériences sur une année d’actualit́es financìeres produites par Reuters.

Keywoards: Time sequences, Summarization, Taxonomies, Clustering

1 Introduction

Domains such as medicine, the WWW, business or finance generateand store on a daily basis mas-
sive amounts of data. This data is represented as a collection of time sequences of events where each
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event is described as a set of descriptors taken from variousdescriptive domains and associated with
a timestamp. These archives represent valuable sources of insight for analysts to browse, analyze and
discover golden nuggets of knowledge. For instance, biologists could discover disease risk factors by
analyzing patient history [28], web content producers and marketing people are interested in profiling
client behaviors [24], traders investigate financial data for understanding global trends or anticipating
market moves [30]. However, analysts are overloaded with the size of this data and increasingly need
methods and tools allowing exploratory visualization, query or analysis.

As an example, Google has developed Google Finance [1]. In a user-defined timeline, Google Finance
provides analysts with a tool to browse through companies’ stock values while visualizing background
information about the companies. This background information is provided in the form of a sequence
of chronologically ordered news events that appeared at some interesting moments, e.g., during price
jumps. We call applications, such as Google Finance, that rely on the chronological order of the data to
be meaningful:Chronology-dependentapplications.

In this context, we observed that sequences of events relating to an entityA occurring in ashort
period of time are likely to relate to a same topic, e.g., events about Lehman Brothers mid-September
2008 relate to its bankruptcy. This observation shows that it could be more practical and meaningful
for the analyst to navigate in the chronology of events through summarizedevents that gather several
events about a same topic, e.g.,Lehman Brothers’s Backruptcy, rather than the entire set of individual
events. At the same time, the analyst should be given the possibility to browse the details of these
summarized events for a more in-depth analysis. This existing example puts forward the need for a data
representation where multiple events describing a same topic are grouped while preserving the overall
chronology of events’ topic.

During the past decade, semantic data summarization has been addressed in various areas such as
databases, data warehouses, datastreams, etc., to represent data in a more concise form by using its
semantics [10, 11, 14, 5, 13, 23]. However, including thetimedimension into the summarization process
is an additional constraint that requires the chronology ofevents’ topic to somehow be preserved. For
instance, the sequence〈Lehman Brothers’s Bankruptcy, Lehman Brothers’s Rescue〉 only makes sense
because the events related to theBankruptcyneed to occur before theRescuecan happen. We name
this type of data transformation, based on the data’s semantic content and temporal characteristics,Time
Sequence Summarization. A time sequence summarizer should take as input a time sequence of events,
where each event is described by a set of descriptors, and output a time sequence of summarized events.
The produced summarized time sequence should have the following properties:

1. Brevity: The number of summarized events in the output time sequence should be reduced in
comparison to the number of events in the input time sequence.

2. Substitution principle: A chronology-dependent application that performs on a timesequence of
events should be capable of performing seamlessly if the input time sequence is replaced by its summary.

3. Informativeness:Summarization should reduce time sequen- ces of events in a way that keeps the
semantic content available to and understandable by the analyst without the need fordesummarization.

4. Accuracy and usefulness:The input time sequence of events should not be overgeneralized to
preserve descriptive precision and keep the summarized time sequence useful. However, ensuring high
descriptive precision of events in the summarized time sequence requires trading off thebrevityproperty
of the summary.

5. Chronology preservation: The chronology of summarized events in the output time sequence
should reflect theoverallchrono- logy of events in the input time sequence.
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6. Computational scalability: Time sequence summaries are built to support chronology-dependent
applications and, thus their construction should not become a bottleneck. Applications such as data
mining might need to handle very large and long collections of time sequences of events, e.g., news
feeds, web logs or market data, to rapidly discover knowledge. Therefore, the summarization process
should have low processing and memory requirements.

Designing a time sequence summary that displays all these properties is a challenging task. There ex-
ists a bulk of work for designingsummariesin different areas such as datastreams, transaction databases,
event sequences or relational databases. However, to the best of our knowledge, this research corpus does
not address simultaneously all six mentioned properties.

Contributions. In this paper, we present the concept ofTime Sequence Summarizationand propose
a summarization technique that satisfies all six mentioned properties to support chronology-dependent
applications. Our contributions are as follows:
• We give a formal definition ofTime Sequence Summarization. The time sequence summary of a

time sequence of events is a time sequence of summarized events where: (i) events occurringclosein
time and relating to a same topic are gathered into a same summarized event and (ii) each summarized
event is represented by aconceptformed from the underlying events. For example, assume the input
time sequence of events is:〈(t1,Easy subprime loan),(t2,Interest rate increase),(t3,Housing market collapse)〉.
A valid time sequence summary could be:〈(t′1,Subprime crisis)〉.
•We propose aTime Sequence SummaRization (TSaR) algorithm. TSaR relies on the ideas of Gen-

eralization and Merging, introduced by Han et al. for discovering knowledge in relational databases [10,
11]. TSaR is a 3-step process that uses background knowledgein the form of taxonomies, supposedly
given by the analyst to generalize event descriptors at higher levels of abstraction.

Assuming events occurringclosein time might relate to a same topic, grouping is performed ongen-
eralized events whose generalized descriptors are similar. TSaR’s grouping process gathers generalized
events in a way that respects the chronology of topics in the input time sequence. For this purpose, a
Temporal Localityis defined so that temporally close events can be gathered. Temporal locality is a term
borrowed from Operating systems research [8] and defined in Section 4.3. It can intuitively be under-
stood as the fact that a series of eventsclosein time have high probability of relating to a same topic.
However, events relating to different topics might locallyoverlap in that period, e.g., due to network
delays. Thus, defining a temporal locality allows TSaR to gather these overlapping events into their cor-
responding topics. Finally, each group is represented by a concept. In total, higher numerosity reduction
can be achieved while the chronology of topics in the input time sequence is preserved.

TSaR summaries are built in an incremental way by processingan input time sequence of events in
a one-pass manner. The algorithm has small memory and processing footprints. TSaR maintains in-
memory a small structure that holds a limited number of grouped events, i.e., grouped events that fit into
the temporal locality. TSaR’s algorithmic complexity is linear with the number of events in the input
time sequence.

We validate these characteristics with a set of experimentson real world data. We performed experi-
ments using one year of English financial news events obtained from Reuters’s. These archives contain
after cleaning and preprocessing approximately 1.28M events split over 34458 time sequences. Each
event in the time sequences is a set of words that precisely describes the content of the corresponding

3



news article. Our extensive set of experiments on summarizing this data shows that TSaR has (i) inter-
esting numerosity reduction capabilities, e.g., compression ratio ranges from 10% to 82%, and (ii) low
and linear processing cost.

Roadmap. The rest of the paper is organized as follows. Section 2 presents related work. Section 3
formalizes the concept ofTime Sequence Summarization. Section 4 presents the novel technique we
contribute in the paper. Section 5 discusses the experimentation we performed on financial news data.
We conclude and discuss future work in Section 6.

2 Related work

Our work relates to lines of research, where a concise representation of massive data sources is de-
sirable for storage or for knowledge discovery in constrained processing and memory environments.
Related research domains are those where summaries are builtfrom sequences of objects ordered by
their time of occurrence. In this context, and in the light ofthe requirements mentioned in the introduc-
tion, we examine summarization techniques produced for datastreams, transaction databases and event
sequen- ces. This study, however, do not encompass time series summarization as time series summa-
rization rely on methods that only consider numerical data.

Datastreams.Datastreams is a domain characterized by data of infinite size and eventually generated
at very high rates. The common assumptions are that (i) any processing should be performed in a sin-
gle pass and (ii) input data can not be integrally stored. Such constraints have motivated researchers to
represent input streams in a more concise form to support analysis applications, e.g., (approximate) con-
tinuous queries answering, frequent items counting, aggregation, clustering, etc.. Techniques proposed
maintain in memory small structures, e.g., samples, histograms, quantiles or synopses, for streams of
numericaldata (we refer the reader to [9] for a more complete review). In contrast with numerical data
that is defined on continuous and totally ordered domains, categorical descriptors are defined on discrete
and partially ordered domains. Therefore, descriptors cannot be handled and reduced in the same way
as numerical data using conventional datastreaming summarization techniques, e.g, min/max/average
functions.

To the best of our knowledge, small interest has been given todesigning summaries[4, 23] for cate-
gorical datastreams. Aggarwal et al. [4] proposed a clustering method for categorical datastreams. The
approach relies on the idea ofco-occurrenceof attribute values to build statistical summaries and gather
input data based on these statistics. However, the clustersbuilt do not reflect the chronology of the
input data and require pre-processing before analysis. We proposed in previous work an approach to
summarize datastreams using a conceptual summarization algorithm [20]. The summary produced does
not reflect the chronology of the input data and can not be directly exploited by chronology-dependent
applications.

Transaction database summarization. Transaction databases (TDB) are collections of time se-
quences where each time sequence is a list of chronologically ordered itemsets. A bulk of work [6, 25,
26, 29] has focused on creating summaries for transaction databases. Chandola et al.’s approach [6] and
SUMMARY [26] are techniques that rely on closed frequent itemset mining to build aninformativerep-
resentation that covers the entire TDB. Building these summaries require multiple passes over the input
TDB and the output is a set of frequent itemsets. This output does not endorse the substitution principal
and does not reflect the chronology of transactions of the input TDB. HYPER [29] summarizes a TDB
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as a set of hyperrectangles that covers the database. HYPER’soutput set of hyperrectangles requires
preprocessing before chronology-dependent applicationscan exploit the summary and hyperrectangles
are computed in polynomial time. But, designing a time sequence summarizer requires a single pass
over the data and the output to preserve the chronology of transactions. Wan et al. [25] summarize a
TDB into the compact form of a CT-tree specifically to support Sequential Pattern Mining (SPM). The
output tree structure allows SPM to perform but looses the chronology of transactions of the input TDB.

Event sequence summarization.Kiernan and Terzi [16] rely on the Minimum Description Length
(MDL) principle to produce in a parameter-free way a comprehensive summary of an event sequence,
where events are taken from setE of m different event types. The authors segment the input event se-
quence timeline intok segments. Summarization is achieved by describing each segmentSi with a local
modelMi that is a partition ofE where groupsXij ∈Mi gather event types of similar rate of appearance
in Si. Each event groupXij ∈Mi is then associated with a probability of appearancep(Xij) ofXij in Si.
However, the output summary can not be directly piped to a chronology-dependent application and needs
some form ofdesummarization. Hence, the authors’ definition of summarization does not endorse the
substitution principle and one can not seamlessly substitute the original event sequence for the summary.

The TSaR approach builds on top of the ideas in Attribute Oriented Induction (AOI) [10, 11]. The
TSaR process is split into three sub-routines that allow input time sequences to be processed in an incre-
mental way: (i) generalization, (ii) grouping and (iii) concept formation. Generalization transforms event
descriptors into a more abstract but informative form. Then, grouping gathers generalized events that
are semantically close, i.e., having similar generalized descriptors, and chronologically close. Grouping
is performed in a way that preserves the overall chronology of topics in the time sequence. Finally,
each formed group is represented by a concept, i.e., a set of descriptors, formed from the underlying
events’ descriptors. The output can then be directly interpreted by a human analyst or piped to any
chronology-dependent application.

3 Time sequence summary

In this section, we give a running toy example to illustrate all the concepts presented in this paper.
We also introduce the basic terminology used throughout therest of the discussion and formalize the
concept ofTime Sequence Summarization.

3.1 Toy example

To illustrate the ideas exposed in this paper, we generate inTable 1 a simple toy example with a
time sequence extracted from conference proceedings. The author N. Koudas is associated with a time
sequence where each event is one publication timestamped byits date of presentation. For simplicity, the
set of descriptors describing an event is taken from one single descriptive domain, namely, the paper’s
topic. Without loss of generality, this discussion is valid for any number of descriptive domains. This
example is purposely unrelated to the application domain weprovide in Section 5. It illustrates all the
concepts introduced and shows the genericity of our approach.
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Table 1. Time sequences of conference proceedings
Author Date Descriptors

N. Koudas JUN05 x1 = {Datastreams, Aggregation}
AUG06 x2 = {Datastreams, Top-k query}
AUG06 x3 = {Top-k query}
SEP06 x4 = {Top-k query}
SEP06 x5 = {Join query, Selection query}
SEP07 x6 = {Clustering}

3.2 Terminology

Let Ω be the universe of discourse, i.e., the set of all descriptors that could describe an event in a time
sequence of events.Ω =

⋃

ADA is organized into several descriptive domainsDA corresponding to
each domainA that interests the analyst, e.g., thetopicof research papers.

We refer to a part ofΩ, i.e., a subset of descriptors taken from various descriptive domains, asP(Ω).
An itemsetx is defined as an element inP(Ω). Given anobject of interest(e.g., “N. Koudas”), anevent
e is defined by an itemsetx that describese (e.g.,{Datastreams, Aggregation}) and is associated with a
timestampt (e.g.,t =“JUN05”). We assume the data input for time sequence summarization, also called
raw data, is a collection of time sequences of events as defined inDefinition 1.

Definition 1 (Time Sequence of events)
A time sequence of eventss = 〈(x1, t1), . . . , (xm, tm)〉, also calledtime sequencefor short, is a series of
events(xj, tj), with 1 ≤ j ≤ m andxj ∈ P(Ω), ordered by increasing timestamptj. We denote byS =
{x1, . . . , xm} the support multi-set ofs. A time sequences verifies:∀(xj, xk) ∈ S

2, j < k ⇔ tj < tk.
We denote bys[T ] the set of timestamps of elements inS.

This definition of a time sequence and the total order on timestamps allow us to equivalently write:
s = 〈(x1, t1), . . . , (xm, tm)〉 ⇔ s = {(xj, tj)}, 1 ≤ j ≤ m

By convention, we further simplify the notation of a time sequence and notes = 〈x1, . . . , xm〉 where
eachxj, 1 ≤ j ≤ m, is an itemset and all itemsetsxj are sorted by ascending indexj. This simplification
of the notation allows us to interchangeably use the termeventto refer to the itemsetxj in event(xj, tj).
We denote byS(Ω) the set of time sequences inP(Ω). This notion of time sequence can be generalized
and used to define a sequence of time sequences that we hereafter call second-order time sequence.
Second-order time sequences are more formally defined in Definition 2.

Definition 2 (Second-order time sequence)
A second-order time sequence defined onΩ is a time sequences = {(yi, t

′
i)} where each event(yi, t

′
i)

is itself a regular time sequence of events defined onΩ. Events(yi, t
′
i) in s, whereyi = {(xj, tj)}, are

ordered thanks to the minimum timestamp valuet′i = min{tj}. The set of second-order time sequences
defined onΩ is denotedS2(Ω).

An example of second-order time sequence from Table 1 for author N. Koudascan be defined as fol-
lows: s = 〈(y1, t

′
1), (y2, t

′
2), (y3, t

′
3))〉 where:

• y1=〈(x1={Datastreams, Aggregation}, t1=JUN05)〉 andt′1=t1=JUN05
• y2=〈(x2, t2), (x3, t3), (x4, t4), (x5, t5))〉 andt′2 = min {t2, . . . , t5} i.e., t′2=AUG06, where:
−x2={Datastreams, Top-k query} andt2=AUG06
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−x3={Top-k query} andt3=AUG06
−x4={Top-k query} andt4=SEP06
−x5={Join query, Selection query} andt5=SEP06
• y3=〈(x6={Clustering}, t6=SEP07)〉 andt′3=t6=SEP07

A second-order time sequence can be obtained from a time sequences as defined in Definition 1 by
the means of a form ofclusteringbased on the semanticsand temporal information of eventsxi,j in s.
We refer the reader to the following surveys for more indepthon clustering [15, 27]. Reversely, a time
sequence can be obtained from a second-order time sequences by means ofconcept formation[18, 19]
computed from time sequencesyi in s.

3.3 Time sequence summary

We formally define in Definition 3 the concept of a time sequence summary using the concepts intro-
duced previously.

Definition 3 (Time sequence summary)
Given a time sequences = {(xi, ti)} ∈ S(Ω), using clustering terminology, we define the time sequence
summary ofs, denotedχ(s) = (s2

C , s
⋆
M) ∈ S2(Ω)× S(Ω), as follows:

• s2

C = {(yi, t
′
i)} is a second-order time sequence where eventsyi ∈ s2

C are clusters obtained thanks
to a form of clusteringC that relies on events(xi, ti) semantic and temporal information.

• s⋆
M = {(x⋆

i , t
′
i)} is the time sequence of conceptsx⋆

i formed from clustersyi ∈ s2

C . M is the model
chosen to characterize each clusteryi ∈ s2

C , i.e., to build the concepts.

Hence,s2

C ands⋆
M can be understood as theextensionand theintention, respectively, of summaryχ(s).

We defined time sequence summarization using clustering terminology as the underlying ideas are
similar, i.e., grouping objects based on theirproximity. The novelty of time sequence summaries relies
on the fact that events are clustered thanks to their semantic and temporal information. Conventional
clustering methods mostly rely on the joint features of the objects considered and their proximity is
evaluated thanks to a distance measure, e.g., based on entropy or semantic distances. Similarly, in time
sequence summarization, a form of temporal approximation should also be applicable so that objects
that are close from temporal view point are grouped. Consequently, local rearrangement of the objects
on the timeline should also be allowed.

In a nutshell, the objective of time sequence summarizationis to find thebestmethod for grouping
events based on their semantic content and their proximity on the timeline. This general definition of
time sequence summarization can partially encompass some previous works such as Kiernan and Terzi’s
research on large event sequences summarization [16]. Indeed, the authors perform summarization by
partitioning an event sequenceS into k segmentsSi, 1 ≤ i ≤ k; this segmentation can be understood as
organizingS into a second-order time sequences2

C whereC is their segmentation method, e.g., Segment-
DP. Note that the authors’ segmentation method does not allow any form of event rearrangement on the
timeline. Then, each segmentSi is described by a set of event type groups{Xi,j}where eachXi,j groups
event types of similar appearance rate. Thus, the model usedto describe each segment is a probabilistic
model. To this point, our definition of a time sequence summary fully generalizes Kiernan and Terzi’s
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work. However, the authors add for eachXi,j its probability of appearancep(Xi,j) in Si. By doing so,
the authors do not support the substitution principle and thus do not completely respect our definition of
a time sequence summary.

4 The TSAR approach

In this section we present aTimeSequence SummaRization technique called TSaR. The basic princi-
ple of TSaR is illustrated in Figure 1. The idea is to gather events whose descriptors are similar at some
high level of abstraction and that appear close in time. Thisis done in three steps: (i) reduce the data’s
domain of representation by generalizing descriptors to a user defined level of abstraction, (ii) group
identical sets of descriptors within a certain sliding timewindow then (iii) represent each group with a
single set of descriptors, a.k.a. concept.

In practice, the process is parametrized by three inputs: (i) domain specific taxonomies, (ii) a semantic
accuracy parameter and (iii) a temporal precision parameter. The generalization process in phase 1 takes
as input a time sequence, domain specific taxonomies and the user defined semantic accuracy parameter.
It outputs a time sequence of generalized events where eventdescriptors are expressed at higher levels of
taxonomy. This output is then fed to the grouping process in phase 2 where identical generalized events
are grouped together. The overall chronology of events is preserved by grouping only generalized events
present in a same temporal locality (as defined in Section 4.3). Phase 3 forms a concept to represent each
group. Here, since all sets of descriptors in a group are identical, one instance of the group is selected to
represent the group. We will detail these steps in the following sections.

Figure 1. TSaR summarization process

Figure 2. Taxonomy for the topicdomain

4.1 Preliminaries

In this work, we assume that each descriptive domainDA, on which event descriptors are defined, is
structured into a taxonomyHA that defines a generalization-specialization relationship between descrip-
tors ofDA. The set of all taxonomies is denotedH =

⋃

AHA. The taxonomyHA provides a partial
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ordering≺A overDA and is rooted by the special descriptorany A, i.e.,∀a ∈ DA, a ≺A any A. For
convenience, we assume in the following that the descriptorany A belongs toDA.

The partial ordering≺A onDA defines a cover relation<A that corresponds to direct links between
items in the taxonomy. Hence, we have∀(x, y) ∈ D2

A, x ≺A y ⇒ ∃(y1, y2, . . . , yk) ∈ Dk
A such that

x <A y1 <A . . . <A yk <A y. The length of the path fromx to y is ℓ(x, y) = k + 1. In other words, we
needk+ 1 generalizations to reachy from x in HA. For example, given thetopic taxonomy in Figure 2,
it takes 2 generalizations to reach the conceptQueriesfrom the conceptTop-k query.

In practice, we assume these taxonomies are available to theanalyst. We believe this assumption is
realistic as there exists numerous domain specific ontologies available, e.g., WordNet [3] or Onto-Med
for medicine, as well as techniques that allow the automaticgeneration of taxonomies [17, 22].

4.2 Generalization phase

Here, we detail the generalization phase that uses taxonomies to represent the input data at higher
levels of abstraction. We assumed values inΩ are partially ordered by the partial order relation≺A, so,
thanks to this relation, we can define a containment relation⊑ over subsets ofΩ, i.e.,P(Ω).

∀(x, y) ∈ P(Ω)2, (x ⊑ y) ⇐⇒
(

∀i ∈ x, ∃i′ ∈ y, ∃A ∈ A, (i ≺A i
′) ∨ (i = i′)

)

For generalization, we need to replace event descriptors with upper terms of the taxonomies. We call
generalization vectoron Ω, denotedϑ ∈ N

i, a list of integer values.ϑ defines the number of general-
izations to perform for each descriptive domain inA. We denote byϑ[A] the generalization level for the
domainA. Equipped with this generalization vectorϑ, we are now able to define a restriction⊑↓ϑ of
the containment relation above:

∀(x, y) ∈ P(Ω)2, (x ⊑↓ϑ y)⇐⇒
(

∀i ∈ x,∃i′ ∈ y, ∃A ∈ A, (i ≺A i′) ∧

(

(ℓ(i, i′) = ϑ[A]) ∨ ((ℓ(i, i′) < ϑ[A]) ∧ (i′ = any A))
)

)

Definition 4 (Generalization of a Time Sequence)
Given a generalization vectorϑ and a set of taxonomiesH, we define a parametric generalization
functionϕϑ that operates on a time sequences = 〈x1, . . . , xn〉 as follows:

ϕϑ : S(Ω) −→ S(Ω)
s 7−→ ϕϑ(s) = 〈x′1, . . . , x

′
n〉 such that∀i ∈ {1..n}, xi ⊑↓ϑ x

′
i

For example, given thetopic taxonomy in Figure 2 the generalized version of Table 1 with ageneral-
ization vectorϑ[topic] = 1 (also denotedϑ = 〈1〉 when all taxonomies should be generalized once) is
shown in Table 2. We can notice that the⊑↓ϑ relation also allows to reduce itemsets’ cardinality. Indeed,
DatastreamsandTop-k queryboth generalize intoQO. As a result, in N. Koudas’s time sequence, the
event{Datastreams, Top-k query} is generalized into{QO}.

From the analyst’s view point,ϑ represents the semantic accuracy he desires for each descriptive
domain. If he is interested in the minute details of a specificdomain, e.g., a paper’stopic, he can set
ϑ to a low value, e.g.,ϑ[topic] = 0 or ϑ[topic] = 1. Otherwise, he can setϑ to higher values for a
more abstract description of the domain. Once the input timesequence has undergone generalization,
the output undergoes a grouping process as described in the following section.
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Table 2. Generalized events with ϑ = 〈1〉
Author Date Itemset

N. Koudas JUN05 x′
1 = {QO, DM}

AUG06 x′
2 = {QO}

AUG06 x′
3 = {QO}

SEP06 x′
4 = {QO}

SEP06 x′
5 = {QO}

SEP07 x′
6 = {DM}

Table 3. Grouped events with w = 1
Author Date Sequence

N. Koudas JUN05 y1 = {{QO, DM}}
AUG06 y2 = {{QO},{QO},{QO},{QO}}
SEP07 y3 = {{DM}}

4.3 Grouping phase

Here, we detail the grouping phase responsible for gathering generalized events. This phase relies on
two concepts: (i) second-order time sequence as defined in Definition 2 and (ii)Temporal locality. We
define this notion of temporal locality hereafter.

4.3.1 Temporal locality

In many research areas, it is assumed that a sequence of events generatedclose in time have high
probability of relating to a same topic. This notion oftemporal localityis borrowed from Operating
systems research [8]. For example,〈Paper deadline, Authors notification, Camera-ready paper〉 is a
chronology of events describing theConference submissiontopic. However, in a time sequence, events
describing different topics can eventually be intertwined, e.g., due to network delays. Thus, defining
a temporal localityfor grouping events of a time sequence allows to capture the following notions: (i)
sequentiality of events for a given topic and (ii) chronology between topics.

Temporal locality is measured as the time differencedT , on a temporal scaleT , between an incoming
event and previously grouped events, hereafter calledgroups for short. The temporal scale may be
defined directly through the timestamps or by a number of intermediate groups since we assume they are
chronologically ordered. While grouping, an incoming eventcan only be compared to previous groups
within a distancew (dT ≤ w). Indeed,w acts as a sliding window on the time sequence of groups
and corresponds to the analyst’s estimation of the temporallocality of events. In other words,w can be
understood as the temporal precision loss the analyst is ready to tolerate for rearranging and regrouping
incoming events.

This temporal window can be defined as a duration, e.g.,w = one month, or as a number of groups,
e.g.,w = 2. Definingw as a number of groups is useful in particular when considering bursty sequences,
i.e., sequences where the arrival rate of events is uneven. The downside of this approach is the potential
grouping of events distant in time. However, this limitation could be solved by definingw as both a du-
ration and a constraint on the number of groups. As some domains, e.g. Finance, give more importance
to the most recent information, we choose in our work to express our scale as a number of groups in
order to handle bursts of events.

4.3.2 Grouping process

The grouping process is responsible for gathering generalized events relating to a same topic w.r.t. the
temporal parameterw. It produces a second-order time sequence of groups defined as follows.
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Definition 5 (Grouping of a time sequence)
Given a sliding temporal windoww, we define a parametric grouping functionψw that operates on a
time sequences as follows:

ψw : S(Ω) −→ S2(Ω)
s 7−→ ψw(s) = 〈(y1 = 〈(x1, t1), . . . , (xm1

, tm1
)〉, t′1), . . . , (yn, t

′
n)〉

wheren is the number of groups formed and such that:
(Part) ∀k ∈ [w, n],

⋃

k−w≤i≤k yi ⊆ S andyi ∩ yj = ∅ when1 ≤ i < j ≤ n, j − i ≤ w

(Cont) (xi,q ⊑ xi,r) , 1 ≤ r < q ≤ mi, 1 ≤ i ≤ n

(TLoc)
(

dT (ti,q, t
′
i) ≤ w

)

, 1 ≤ i ≤ n, 1 ≤ q ≤ mi

(Max) ∀xi,q ∈ yi, ∀xj,r ∈ yj, 1 ≤ i < j ≤ n,

(xi,q ⊑ xj,r) =⇒
(

dT (tj,r, t
′
i) > w

)

, 1 ≤ q ≤ mi, 1 ≤ r ≤ mj

Property(Part) ensures that the support multi-set ofw-contiguous time sequences inψw(s), e.g.,
〈y1, . . . , yw〉, 〈y2, . . . , yw+1〉, etc . . ., is a non-overlapping part ofS. This is a direct consequence of
grouping events that relate to a same topic within a same temporal locality. Property(Cont) gives a
containment condition on events of every time sequence inψw(s). Given a time sequenceyi in ψw(s),
all eventsxi,j ∈ yi are comparable w.r.t. the containment relation⊑ andxi,1 is the greatest event, i.e.,xi,1

contains all other events inyi. Property(TLoc)defines a temporal locality constraint on events that are
grouped into a same time sequenceyi in ψw(s). (TLoc)ensures thatyi only groups events(xi,j, ti,j) that
are within a distancedT inferior tow from timestampt′i = min(yi[T ]), i.e.,dT (ti,j, t

′
i) ≤ w. Property

(Max)guaranties that the joint conditions(Cont)and(TLoc)are maximally satisfied.
In the grouping functionψw, the temporal locality parameterw controls how well the chronology

of groups should be observed. When a small temporal windoww is chosen, a very strict ordering of
topics in the output time sequence is required. Incoming events can only be grouped with the latest
groups. Ifw = 1 only contiguous events are eligible for grouping. Table 3 gives the expected output
when performing grouping on Table 2 withw = 1. For example, note that in N. Koudas’s generalized
time sequence, when eventx′2 = {QO} is considered,x′2 can only be compared to previous group
y1 = {{QO,DM}} for grouping.

When a large temporal window is chosen, the ordering requirement is relaxed. This means that a
large number of groups can be considered for grouping for each incoming event. As a consequence,
the minute details of the chronology of topics may be lost buthigher numerosity reduction could be
achieved.

The second-order time sequence output by the grouping function ψw can be understood as the ex-
tension of the summary, i.e.,s2

C as defined in Section 3.3. The intention of the summary, and thus
the reduced version of the input time sequence, is obtained thanks to the concept formation phase as
presented in the following section.

4.4 Concept formation phase

The concept formation phase is responsible for generatings⋆
M , the intention of the summary, from the

time sequence of groupss2

C obtained in the grouping phase. In the TSaR approach, we gather generalized
events that have identical sets of descriptors. Therefore,this phase is straightforward.

Here, concept formation is achieved thanks to the projection operatorπ defined in Definition 6. Intu-
itively, π represents each time sequenceyi in second-order time sequences2

C by a single concept, called
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representative event, xk contained inyi. Consequently,π produces froms2

C a regular time sequence
s⋆

M = π(s2

C) that is the intention of the summary, also calledrepresentative sequence. In addition, this
operator is responsible for reducing the numerosity of events in the output time sequence, w.r.t. the
original number of events in the input time sequence.

Definition 6 (Projection of a Second-Order Time Sequence)
We define the projection of a second-order time sequences2

C = 〈(y1 = 〈(x1,1, t1,1), . . . , (x1,m1
, t1,m1

)〉, t′1),
. . . , (yn, t

′
n)〉 as:

π : S2(Ω) −→ S(Ω)
s2

C 7−→ π(s2

C) = 〈(x1,1, t1,1), . . . , (xn,n1
, tn,n1

)〉

From our toy example in Table 3, N. Koudas’s representative sequence is therefore:
π(s2

C) = 〈(π(y1), t
′
1), (π(y2), t

′
2), (π(y3), t

′
3)〉 where:

• π(y1) = x⋆
1 = x1 = {QO, DM} andt′1 = t1 = JUN05

• π(y2) = x⋆
2 = x2 = {QO} andt′2 = t2 = AUG06

• π(y3) = x⋆
3 = x6 = {DM} andt′3 = t6 = SEP07

4.5 The summarization process

In TSaR, summarization is achieved by the association of the three functions presented in the previous
section, namely, the generalization, grouping and projection functionsϕ, ψ andπ respectively. The
summarization function is formally defined in Definition 7.

Definition 7 (Time Sequence SummaRization (TSaR) function)
Given a time sequences defined onΩ, a set of taxonomiesH defined overΩ, a user defined generaliza-
tion vectorϑ for taxonomies inH and a user defined sliding temporal windoww, the summary ofs is
the combination of a generalizationϕϑ, followed by a groupingψw and a projectionπ:

χϑ,w : S(Ω) −→ S2(Ω)× S(Ω)
s 7−→ χϑ,w(s) = (s2

C , s
⋆
M) wheres2

C = ψw ◦ ϕϑ(s) ands⋆
M = π(s2

C)

The association of the generalization and grouping function,ϕ andψ respectively, outputs the exten-
sion of the summary, i.e.,s2

C . The reduced form of the summary, i.e., its intentions⋆
M , is a time sequence

obtained by forming concepts from groups ins2

C thanks to the projection operatorπ. The extension of
the summarysM then satisfies the conditions of the generalization-grouping process. The(Cont)prop-
erty ofψw is then enforced by the generalization phaseϕϑ of events ins. Note that every element in the
reduced form of the summarized time sequence, i.e.,s⋆

M , is an element ofϕϑ(s). In other words,s⋆
M is

a representative subsequence of the generalized sequence of s.
From a practical view point, the analyst and applications are only given the intention forms⋆

M of s’s
time sequence summaryχϑ,w(s). Indeed,s⋆

M is the most compact form of the summary. In addition,s⋆
M

is a time sequence that can seamlessly replaces and be directly processed by any chronology-dependent
application that performs ons. Thus,s⋆

M is the most useful form from application view point. In the
following, we will interchangeably use the termsummaryto designate the intentions⋆

M of a summary.
Let us give an illustration of a summary with our toy example.The representative sequences extracted

from Table 3 are give Table 4. Here, we achieve the dual goal ofnumerosity reduction (from 6 events to
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3) and domain reduction (from 6 descriptors to 2). These compression effects are obtained thanks to the
user defined parameters, i.e., the generalization vectorϑ and the temporal sliding windoww, that control
the trade-off between resp. semantic accuracy vs. standardization and time accuracy vs. compression.

Table 4. Summary with w = 1
Author Date Itemset

N. Koudas JUN05 x⋆
1 ={QO, DM}

AUG06 x⋆
2 ={QO}

SEP07 x⋆
3 ={DM}

4.6 The TSaR algorithm

From an operational view point, our implementation of TSaR is shown in Algorithm 1. The sum-
mary is computed through an incremental algorithm that generalizes and appends incoming events one
at a time into the current output summary. In other words, assume the current summary iss⋆

M =
χϑ,w(〈x1, . . . , xn〉) = 〈π(y1), . . . , π(yj)〉 and the incoming event is(xn+1, tn+1). The algorithm com-
putesχϑ,w(〈x1, . . . , xn, xn+1〉) with a local update tos⋆

M , i.e., changes are only made within the lastw

groupsyj−w, . . . , yj.
More precisely,(xn+1, tn+1) is generalized into(x′n+1, tn+1) (line 6). Then, assuming we denote

W = {yk}, 1 ≤ j −w ≤ k ≤ j the set of groups that are included in temporal windoww, TSaR checks
if x′n+1 is included in a groupyk ∈ W . x′n+1 is either incorporated into a groupyk if its ϑ-generalized
version satisfies the(Cont)condition (line 8 to 9), or it initializes a new group{(yj+1, t

′
j+1 = tn+1)} in

W (line 11 to 14). Once all input events are processed, the lastw groups contained inW are projected
and added to the output summarys⋆

M (line 18 to 20). The final output summary is then returned and/or
stored in a database.

Memory footprint. TSaR requiresw groups to be maintained in-memory for summarizing the input
time sequence. The algorithm’s memory footprint is finite (O(1)) and bound by the width ofw and
the average sizem of an event’s set of descriptors. The overall process memoryfootprint is obtained
by adding the cost necessary to maintain in-memory the output time sequences⋆

M and the taxonomies
and/or hashtable index to compute descriptors’ generalization. However,s⋆

M can be projected and written
to disk at regular intervals. Therefore, TSaR’s overall memory footprint remains constant and limited
compared to the amount of RAM now available on any machine.

Processing cost.TSaR performs generalization, grouping and concept formation on the fly for each
incoming event. The process has an algorithmic complexity linear with the number of eventsO(n). The
processing cost is weighted by a constant costc = a ∗ b. a is the cost for generalizing an event’s set
of descriptors and mainly depends on the number of taxonomies and their size.b is the cost to scan the
finite list of groups inW . However,a is a cost that can be reduced by precomputing the generalization
of each descriptive domain and storing the results in a hashtable index.b is a cost that is negligible since
the temporal windowsw used are small, e.g., mostlyw ≤ 25 in our experiments. Hence, we satisfy the
memory and processing requirements presented earlier.
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5 Experiments

In this section we validate our summarization approach through an extensive set of experiments on
real-world data from Reuter’s financial news archives. First, we describe the data and how taxonomies
are acquired for the descriptive domains of the news. We summarize the raw data with different temporal
windowsw and show the following properties of the TSaR algorithm: (i)low processing cost, (ii)
linearity and (iii) compression ratio.

Algorithm 1 TSaR’s pseudo-code
1. INPUT: ϑ, taxonomiesH, w, time sequence of eventss
2. LOCAL: W FIFO list containing thew last groups
3. OUTPUT: Summarys⋆

M

4. for all incoming event(xn+1, tn+1) ∈ s do
5. {// Generalization usingH}
6. x′n+1 ← ϕϑ(xn+1)
7. {// Grouping}
8. if ∃(yk, t

′
k) ∈ W, wherex′n+1 ⊑ yk then

9. yk ← yk ∪ x
′
n+1 {// x

′
n+1 is grouped intoyk}

10. else
11. if |W | > w {// Case whereW is full} then
12. PopW ’s 1st groupyj−w, addπ(yj−w) into s⋆

M

13. end if
14. W ← W ∪ {(x′n+1, tn+1)} {// UpdatingW}
15. end if
16. end for
17. {// Add all groups inW into s⋆

M}
18. while W 6= ∅ do
19. PopW ’s 1st groupyi, addπ(yi) into s⋆

M

20. end while
21. return s⋆

M

Our experiments were performed on a Core2Duo 2.0GHz laptop, 2GB of memory, 4200rpm hard
drive and running Windows Vista Pro. The DBMS used for storageis PostgreSQL 8.0 and all code was
written in C#.

5.1 Financial news data and taxonomies

n financial applications, traders are eager to discover knowledge and eventual relationships between
live news feeds and market data in order to create new business opportunities [30]. Reuters has been
generating and archiving such data for more than 10 years. Toexperiment and validate our approach in
a real-world environment, we used one year of Reuters’s news articles (2003) written in English. The
unprocessed data set comes as a log of 21,957,500 entries where each entry includes free text and a set
of ≈ 30 attribute-value pairs of numerical or categorical descriptors. An example of raw news event is
given in Table 5. As provided by Reuters, the data can not be processed by the TSaR algorithm. Hence,
the news data was cleaned and preprocessed into a sequence ofevents processable by TSaR.
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Among all the information embedded in Reuters’s news articles we focused on 3 main components
for representing the archive as a time sequence:
• Timestamp: This value serves for ordering a news article within a time sequence.
• Topic codes: When news articles are written,topic codesare added to describe their content. There

are in total 715 different codes relating to 20 different topics. We used 7 of the most popular topics
to describe the data, i.e.,{Location, Commodities, Economy Central Banking and Institution, Energy,
Equities, Industrial sector, General news}.
• Free text: This textual content is a rich source of information from which precise semantic descrip-

tors can be extracted. Give 5 additional topics, namely,{Business, Operation, Economics, Government,
Finance}, we used the WordNet [3] ontology to extract additional descriptors from this content.

Figure 3. Taxonomy generated for the businessdomain

Table 5. Example of raw news event:
Timestamp 01 Jan 2004
Topic code EUROPE USA Bank INS NL
Free text Dutch bank ABN AMRO said on Wednesday it had reached a preliminary agreement to

sell its U.S.-based Professional Brokerage business to Merrill Lynch & Co. . . .

Extracting pertinent descriptors from free text is a non trivial task w.r.t. the need for organizing the de-
scriptors extracted into taxonomies. Research in Natural Language Processing (NLP) could be leveraged
to tag texts based on their corpus, e.g., using Term Frequency-Inverse Document Frequency (TF-IDF)
weights as done in [12] or using online resources such as OpenCalais [2]. However, creating taxonomies
from the tags extracted is not trivial and requires prior knowledge on the descriptors. The paradox lies
in the fact that these descriptors are not known in advance. We chose to use the WordNet [3] ontology
as a guide for extracting descriptors and structuring them into taxonomies thanks to the hierarchical or-
ganization already existing in WordNet. This choice leavesroom for improvement by leveraging more
complex techniques for both extracting descriptors from the free text and structuring these descriptors.
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For example, automatic approaches [17] or hierarchical sources such as Wikipedia [22, 7] could also be
used. However, such research is out of the scope of this paper.

In total, we preprocessed the input archive into a sequence of 1,283,277 news events.Each news event
is described on the 12 descriptive domains selected earlierand several descriptors from each domain can
be used. We generated a taxonomy for each of these descriptive domains. As the domains of topiccode
themes are limited in size and already categorized, corresponding taxonomies were manually generated.
Descriptive domains extracted from the free text were generated using the WordNet ontology as shown
in Figure 3. In a nutshell, for a given subject, e.g.,business, its senses are used as intermediary nodes
in the taxonomy. If there are several synonyms for one sense,e.g.,{Commercial enterprise, Business
enterprise}, one is arbitrarily chosen, e.g.,Commercial enterprise. Specialized descriptors are then used
as lower level descriptors.

5.2 Summarization

The TSaR algorithm takes as input taxonomiesHA, a generalization vectorϑ, temporal window pa-
rameterw and a time sequence. The expected output is a more concise representation of the input
sequence where the descriptive domains and the number of input events are reduced.

5.2.1 Quality measure

The quality of the algorithm can be evaluated by different methods. First, we could evaluate the
summarization algorithm w.r.t. the application that it is meant to support, e.g., Sequential Pattern Mining
(SPM). In this case, the summary can be evaluated based on itsability to increase the quality of the output
knowledge or increase the speed of the mining process (a preliminary study is proposed in our technical
report [21]).

Second, we can measure the semantic accuracy of summarized event descriptors in the summary

produced. This accuracy can be evaluated thanks to the ratioα = |Ω
′

|

|Ω|
, whereΩ is the set of descriptors

in the raw data andΩ
′

is the set of generalized descriptors in the output summary.The higherα, the
better the semantic accuracy.

In addition to the semantic accuracy of the summary, we can also measure its temporal accuracy. For
this purpose, given a time sequences = {xi}, 1 ≤ i ≤ n, temporal localityw > 1 and a temporal
windowW , we define a temporal rearrangement penalty cost for grouping an incoming eventxi with
a groupyj ∈ W . We denote this penalty costCτ (xi). Cτ (xi) expresses the number of rearrangements
necessary on the timeline so that eventxi can be grouped withyi in window W . Cτ (xi) penalizes
incoming eventsxi that are grouped with the older groupsyi in W ; on the other hand, ifyi is the most
recent group inW , no penalty occurs.Cτ (xi) is formally defined as follows:

{

Cτ = 0, if (6 ∃yj ∈ W,xi ⊑ yj), or, (∃yj ∈ W,xi ⊑ yj and 6 ∃k > j, yk ∈ W )
Cτ = m, 1 ≤ m ≤ w − 1, if ∃yj ∈ W,xi ⊑ yj andm = |{yk ∈ W, k > j}|.

The total temporal rearrangement penalty cost for summarizing s into s⋆
M , denotedCτ (s⋆

M), is then
Cτ (s

⋆
M) =

∑n

i=1 Cτ (xi). This penalty cost should then be normalized so that our results are compara-
ble. Hence, we choose to compute the relative temporal accuracy of the summaries. We normalize all
temporal rearrangement cost by the maximum cost obtained inour experiments, i.e.,Cτ (χ〈3〉,100(s)).
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Finally, we also evaluate the summarization algorithm on its numerosity reduction capability by re-
porting itscompression ratioCR. CR is defined as:CR = 1 −

|s⋆

M
|−1

|s|−1
where|seq| is the number of

events in a time sequenceseq. The higherCR, the better. We decide to useCR as it was also used by
Kiernan and Terzi’s in [16] and we weight theCR with the summaries’ semantic and temporal accuracy,
α andβ, respectively.

5.2.2 Experiment results

We start by setting the generalization vectorϑ = 〈1〉, i.e., all descriptors are generalized once, and
w ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100} where the maximum valuew = 100 was chosen to represent a
very strong temporal relaxation. Figure 4 gives the processing time of the TSaR algorithm with different
temporal windows. For the sake of readability, we only display the plots for temporal windowsw ∈
{1, 5, 100}. These plots show that the TSaR algorithm is linear in the number of input events for temporal
windowsw of any size. In addition, we can observe that processing times are almost constant whatever
the temporal window considered. The slight variation observed in between different values ofw have two
complementary explanations. First, it is more costly to scan large windows during grouping. Second,
a larger windoww allows to maintain more groups in-memory and, so, requires less I/O operations for
writing into storage.

Table 6. Semantic accuracy

ϑ |Ω
′
| α

〈0〉 1208 N/A
〈1〉 50 1
〈2〉 20 0.40
〈3〉 13 0.26

We compute the CR of the summaries built with different generalization vectorsϑ ∈ {〈0〉, 〈1〉, 〈2〉, 〈3〉}.
The results are given in Figure 5. Note that the best compression ratio achieved withϑ = 〈0〉 is only
0.39. For a given temporal windoww, relaxing the precision of the data by generalizing each descriptor
once, twice or three times allows an average gain in compression capabilities of 46.15%, 94.87% and
133.33% respectively. In other other words, the compression ratio is approximatively doubled when
increasing the generalization level. Another interestingobservation is that for allϑ, the plots show that
highest numerosity reduction is achieved with larger temporal windows while processing times are al-
most constant, as shown in Figure 4. This observation is veryhelpful from user view point for setting
the summarization parametersϑ andw. In effect, as processing times are almost constant whatever the
temporal window considered, the user needs only to express the desired precision in terms of (i) seman-
tic accuracy for each descriptive domain and (ii) temporal locality without worrying about processing
times.

Table 6 gives the semantic accuracy of the summaries produced and Figure 6 gives their temporal
accuracy. Note in Table 6 that the number of descriptors in the raw data, i.e.,ϑ = 〈0〉, is 1208. When
summarizing each descriptive domain once, i.e.,ϑ = 〈1〉, the number of descriptors in the summaries
drops to 50. This loss of semantic information can be explained by the fact the data was preprocessed
using the WordNet ontology and the taxonomies were also generated from the WordNet ontology. Nu-
merous descriptors extracted from the free text are in fact synonyms and are easily generalized into one
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common concept. Consequently, the concepts obtained withϑ = 〈1〉 should be considered as better de-
scriptors than the raw descriptors. Hence, we choose to computeα using as baseline|Ω

′
| = 50, as shown

in Table 6. In this case, each timeϑ is increased, the semantic accuracy is approximatively halved. This
observation is consistent with our previous observation onthe average compression gain.

Figure 6 gives the relative temporal accuracy of each summary. Higher levels of generalization re-
duce the temporal accuracy of the summaries. This phenomenon is due to the fact that more generic
descriptors allow more rearrangements for grouping events. However, the temporal accuracy remains
high, i.e.,≥ 0.80, for small and medium sized temporal windows, i.e.,w ≤ 25. The temporal accuracy
only deteriorates with large windows, i.e.,w ≥ 25. This result means that the analyst can achieve high
compression ratios without sacrificing the temporal accuracy of the summaries.

Figure 4. Processing time
Figure 5. Numerosity reduction

Figure 6. Temporal accuracy

However, guaranteeing theCR with TSaR is a difficult task, if not impossible, as its dependon the
input parameters and on the data’s distribution. In addition, the analyst needs to weight the semantic and
temporal accuracy he is ready to trade off for higherCR. Guaranteeing theCR becomes an optimization
problem that requires the algorithm to self-tune the input parameters and take into account the analyst’s
preferences.
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6 Conclusion and future work

Massive data sources appear as collections of time sequences of events in a number of domains such as
medicine, the WWW, business or finance. A concise representation of these time sequences of events is
desirable to support chronology-dependent applications.In this paper, we have introduced the concept of
Time Sequence Summarizationto transform time sequences of events into a more concise butinformative
form, using the data’s semantic and temporal characteristics.

We propose aTime Sequence SummaRization (TSaR) algorithm that transforms a time sequence
of events into a more reduced and concise time sequence of events using a generalization, grouping
and concept formation principle. TSaR expresses input event descriptors at higher levels of abstraction
using taxonomies and reduces the size of time sequences by groupingsimilar events while preserving the
overall chronology of events. The summary is computed in an incremental way and has an algorithmic
complexity linear with the number of input events. The output is directly understandable by a human
operator and can be used, without the need fordesummarization, by chronology-dependent applications.
One such application could be conventional mining algorithms to discoverhigh order knowledge. We
have validated our algorithm by performing an extensive setof experiments on one year of Reuters’s
financial news archives using our prototype implementation.

TSaR summaries are built using background knowledge in the form of taxonomies and the semantic
and temporal precision of the output summary are controlledby user defined parameters. One direction
in our future work is to render the generalization, groupingand concept formation process more flexible.
We would like to allow automatic tuning of the input parameters with regard to an objective to achieve,
e.g., a compression ratio. The problem then turns into an interesting optimization issue between semantic
accuracy vs. standardization and time accuracy vs. compression. Also, much research in the temporal
databases and datastreaming have worked under the assumption that analysts are more interested in
recent data and desire high precision representations for new data items while older data can become
obsolete. Works in temporal databases have introduced the concept of decay functions to model ageing
data. We would also like to extend TSaR in future work by introducing decay functions to further reduce
descriptive domains and data compression of older or obsolete information.
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