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Abstract

Nous pésentons dans ces travaux le concept deseénée de £quence Temporelle” dont le but est
d’aider les applications @pendantes du tempspasser I'échelle sur de grandes masses de dmw
Un Resung de £quence Temporelle s’obtient en transformant weggience wenementswlesévene-
ments sont ordor@s chronologiquement. Chagae&nement est gcigment @crit par un ensemble de
labels. Le sung produit est alors uneégjuence temporelle @&€&nements, plus concise que &gsence
originale et pouvant se substituaf’originale dans les applications. Nous proposons un aitpone ap-
pek “TSaR” pour produire un telesungé. TSaR se base sur les principes deggalisation, de regroupe-
ment et de formation de concept. Largralisation permet d’abstraira I'aide de taxonomies les labels
gui decrivent lesevenements. Le regroupement permet ensuite d’aggienfesevenementsgréralises
qui sont similaires. La formation de concej@duit le nombre dgwenements grougs-gréralises dans
la sequence en regsentant chaque groupe foenpar un uniquee\enement. Le processus est concu
de manere a préserver la chronologie globale de l&guence d’enée. L'algorithme TSaR produit
le résung de mariére inclementale et a une complexitlgorithmique liaire. Nous validons notre
approche par un ensemble d’@&qences sur une a@e d’actualiés finanakres produites par Reuters.

Keywoards. Time sequences, Summarization, Taxonomies, Clustering
1 Introduction

Domains such as medicine, the WWW, business or finance gersrdtstore on a daily basis mas-
sive amounts of data. This data is represented as a cohieatibme sequences of events where each



event is described as a set of descriptors taken from vadesseriptive domains and associated with
a timestamp. These archives represent valuable sourcasighi for analysts to browse, analyze and
discover golden nuggets of knowledge. For instance, bisiegould discover disease risk factors by
analyzing patient history [28], web content producers adketing people are interested in profiling
client behaviors [24], traders investigate financial dataunderstanding global trends or anticipating
market moves [30]. However, analysts are overloaded welsthe of this data and increasingly need
methods and tools allowing exploratory visualization, rgue analysis.

As an example, Google has developed Google Finance [1]. $eadefined timeline, Google Finance
provides analysts with a tool to browse through companiegksvalues while visualizing background
information about the companies. This background infoiomais provided in the form of a sequence
of chronologically ordered news events that appeared aesotaresting moments, e.g., during price
jumps. We call applications, such as Google Finance, tihabrethe chronological order of the data to
be meaningfulChronology-dependemtpplications.

In this context, we observed that sequences of eventsngl&ti an entityA occurring in ashort
period of time are likely to relate to a same topic, e.g., &vabout Lehman Brothers mid-September
2008 relate to its bankruptcy. This observation shows thebuld be more practical and meaningful
for the analyst to navigate in the chronology of events tglosummarizedevents that gather several
events about a same topic, elgghman Brothers’s Backruptcyather than the entire set of individual
events. At the same time, the analyst should be given theahiligsto browse the details of these
summarized events for a more in-depth analysis. This egigkample puts forward the need for a data
representation where multiple events describing a sanie &op grouped while preserving the overall
chronology of events’ topic.

During the past decade, semantic data summarization hasdueessed in various areas such as
databases, data warehouses, datastreams, etc., to nefatein a more concise form by using its
semantics [10, 11, 14, 5, 13, 23]. However, includingttiveedimension into the summarization process
is an additional constraint that requires the chronologgweints’ topic to somehow be preserved. For
instance, the sequenc¢eehman Brothers’s Bankruptci.ehman Brothers’'s Rescuenly makes sense
because the events related to Benkruptcyneed to occur before theescuecan happen. We name
this type of data transformation, based on the data’s seon@onitent and temporal characteristi€sne
Sequence Summarizatiof time sequence summarizer should take as input a time segqué events,
where each event is described by a set of descriptors, apdtaitime sequence of summarized events.
The produced summarized time sequence should have theifodj@roperties:

1. Brevity: The number of summarized events in the output time sequdrmddsbe reduced in
comparison to the number of events in the input time sequence

2. Substitution principle: A chronology-dependent application that performs on a seguence of
events should be capable of performing seamlessly if thét ilmpe sequence is replaced by its summary.

3. Informativeness: Summarization should reduce time sequen- ces of events ay ahat keeps the
semantic content available to and understandable by thesamathout the need fodesummarization

4. Accuracy and usefulness:The input time sequence of events should not be overgepedaio
preserve descriptive precision and keep the summarizedlgequence useful. However, ensuring high
descriptive precision of events in the summarized time segeli requires trading off theevity property
of the summary.

5. Chronology preservation: The chronology of summarized events in the output time sscpie
should reflect theverall chrono- logy of events in the input time sequence.



6. Computational scalability: Time sequence summaries are built to support chronologestient
applications and, thus their construction should not bexanbottleneck. Applications such as data
mining might need to handle very large and long collectiohime sequences of events, e.g., news
feeds, web logs or market data, to rapidly discover knowdedherefore, the summarization process
should have low processing and memory requirements.

Designing a time sequence summary that displays all thegepies is a challenging task. There ex-
ists a bulk of work for designingummariesn different areas such as datastreams, transaction datgba
event sequences or relational databases. However, togheflweir knowledge, this research corpus does
not address simultaneously all six mentioned properties.

Contributions. In this paper, we present the concepflohe Sequence Summarizatiemd propose
a summarization technique that satisfies all six mentiomegdgaties to support chronology-dependent
applications. Our contributions are as follows:

e We give a formal definition offime Sequence Summarizatiobhe time sequence summary of a
time sequence of events is a time sequence of summarizetsevieare: (i) events occurringjosein
time and relating to a same topic are gathered into a same atirad event and (ii) each summarized
event is represented bycanceptformed from the underlying events. For example, assumeniet i
time sequence of events i&t;,Easy subprime logk(ts,Interest rate increage(ts,Housing market collapge
A valid time sequence summary could §&;,Subprime crisi}.

¢ We propose &ime Sequence SumaRzation (TSaR) algorithm. TSaR relies on the ideas of Gen-
eralization and Merging, introduced by Han et al. for disrovg knowledge in relational databases [10,
11]. TSaR is a 3-step process that uses background knowiedhe form of taxonomies, supposedly
given by the analyst to generalize event descriptors aehilgvels of abstraction.

Assuming events occurringjosein time might relate to a same topic, grouping is performeden-
eralized events whose generalized descriptors are simittaR’s grouping process gathers generalized
events in a way that respects the chronology of topics inripatitime sequence. For this purpose, a
Temporal Localitys defined so that temporally close events can be gatherethdral locality is a term
borrowed from Operating systems research [8] and define@atich 4.3. It can intuitively be under-
stood as the fact that a series of everitsein time have high probability of relating to a same topic.
However, events relating to different topics might locadlyerlap in that period, e.g., due to network
delays. Thus, defining a temporal locality allows TSaR ttgathese overlapping events into their cor-
responding topics. Finally, each group is represented loneapt. In total, higher numerosity reduction
can be achieved while the chronology of topics in the inpuetsequence is preserved.

TSaR summaries are built in an incremental way by processingput time sequence of events in
a one-pass manner. The algorithm has small memory and gingdsotprints. TSaR maintains in-
memory a small structure that holds a limited number of gealgvents, i.e., grouped events that fit into
the temporal locality. TSaR’s algorithmic complexity isdar with the number of events in the input
time sequence.

We validate these characteristics with a set of experimamtgal world data. We performed experi-
ments using one year of English financial news events oltdioen Reuters’s. These archives contain
after cleaning and preprocessing approximately 1.28M teveplit over 34458 time sequences. Each
event in the time sequences is a set of words that precissbyites the content of the corresponding



news article. Our extensive set of experiments on summngrihis data shows that TSaR has (i) inter-
esting numerosity reduction capabilities, e.g., compoasstio ranges from 10% to 82%, and (ii) low
and linear processing cost.

Roadmap. The rest of the paper is organized as follows. Section 2 pteselated work. Section 3
formalizes the concept dfime Sequence SummarizatioBection 4 presents the novel technique we
contribute in the paper. Section 5 discusses the experanentwe performed on financial news data.
We conclude and discuss future work in Section 6.

2 Related work

Our work relates to lines of research, where a concise reptason of massive data sources is de-
sirable for storage or for knowledge discovery in consgdiprocessing and memory environments.
Related research domains are those where summaries arédmilsequences of objects ordered by
their time of occurrence. In this context, and in the lightha# requirements mentioned in the introduc-
tion, we examine summarization techniques produced fasti@ams, transaction databases and event
sequen- ces. This study, however, do not encompass tines senmmarization as time series summa-
rization rely on methods that only consider numerical data.

Datastreams.Datastreams is a domain characterized by data of infiniteagid eventually generated
at very high rates. The common assumptions are that (i) amgepsing should be performed in a sin-
gle pass and (i) input data can not be integrally stored h®oastraints have motivated researchers to
represent input streams in a more concise form to suppotasapplications, e.g., (approximate) con-
tinuous queries answering, frequent items counting, aggien, clustering, etc.. Techniques proposed
maintain in memory small structures, e.g., samples, hiatog, quantiles or synopses, for streams of
numericaldata (we refer the reader to [9] for a more complete reviewkdntrast with numerical data
that is defined on continuous and totally ordered domairiegoaical descriptors are defined on discrete
and partially ordered domains. Therefore, descriptorsncdioe handled and reduced in the same way
as numerical data using conventional datastreaming suizetian techniques, e.g, min/max/average
functions.

To the best of our knowledge, small interest has been givelesgning summaries[4, 23] for cate-
gorical datastreams. Aggarwal et al. [4] proposed a climganethod for categorical datastreams. The
approach relies on the idea@d-occurrencef attribute values to build statistical summaries and gjath
input data based on these statistics. However, the clustaltsdo not reflect the chronology of the
input data and require pre-processing before analysis. Mfgoped in previous work an approach to
summarize datastreams using a conceptual summarizagjontam [20]. The summary produced does
not reflect the chronology of the input data and can not bectiyrexploited by chronology-dependent
applications.

Transaction database summarization. Transaction databases (TDB) are collections of time se-
guences where each time sequence is a list of chronologimalered itemsets. A bulk of work [6, 25,
26, 29] has focused on creating summaries for transacti@mipdses. Chandola et al.'s approach [6] and
SUMMARY [26] are techniques that rely on closed frequenniget mining to build amformativerep-
resentation that covers the entire TDB. Building these suna®maequire multiple passes over the input
TDB and the output is a set of frequent itemsets. This outpasaot endorse the substitution principal
and does not reflect the chronology of transactions of thetim@B. HYPER [29] summarizes a TDB
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as a set of hyperrectangles that covers the database. HYBHRISt set of hyperrectangles requires
preprocessing before chronology-dependent applicatiansexploit the summary and hyperrectangles
are computed in polynomial time. But, designing a time seqeesummarizer requires a single pass
over the data and the output to preserve the chronology n$actions. Wan et al. [25] summarize a
TDB into the compact form of a CT-tree specifically to suppa@ti&ential Pattern Mining (SPM). The
output tree structure allows SPM to perform but looses thmeradlogy of transactions of the input TDB.
Event sequence summarizationKiernan and Terzi [16] rely on the Minimum Description Lehgt
(MDL) principle to produce in a parameter-free way a compredive summary of an event sequence,
where events are taken from gebf m different event types. The authors segment the input exent s
guence timeline inté segments. Summarization is achieved by describing eachesgg; with a local
model}M; that is a partition of where groups¥;; € M, gather event types of similar rate of appearance
in S;. Each event grougX;; € M, is then associated with a probability of appeararce;;) of X;; in S;.
However, the output summary can not be directly piped to arablogy-dependent application and needs
some form ofdesummarizationHence, the authors’ definition of summarization does ndbese the
substitution principle and one can not seamlessly substite original event sequence for the summary.

The TSaR approach builds on top of the ideas in Attribute idei@ Induction (AOI) [10, 11]. The
TSaR process is split into three sub-routines that allowtitime sequences to be processed in an incre-
mental way: (i) generalization, (ii) grouping and (iii) a@pt formation. Generalization transforms event
descriptors into a more abstract but informative form. Trgouping gathers generalized events that
are semantically close, i.e., having similar generalizestdptors, and chronologically close. Grouping
is performed in a way that preserves the overall chronoldgpmics in the time sequence. Finally,
each formed group is represented by a concept, i.e., a sesofidtors, formed from the underlying
events’ descriptors. The output can then be directly imézegnl by a human analyst or piped to any
chronology-dependent application.

3 Time sequence summary

In this section, we give a running toy example to illustratetee concepts presented in this paper.
We also introduce the basic terminology used throughoutekeof the discussion and formalize the
concept ofTime Sequence Summarization

3.1 Toy example

To illustrate the ideas exposed in this paper, we generalalite 1 a simple toy example with a
time sequence extracted from conference proceedings. UtheraN. Koudas is associated with a time
sequence where each event is one publication timestampegidate of presentation. For simplicity, the
set of descriptors describing an event is taken from ondesuhgscriptive domain, namely, the paper’s
topic. Without loss of generality, this discussion is valid foyyarumber of descriptive domains. This
example is purposely unrelated to the application domaimpregide in Section 5. It illustrates all the
concepts introduced and shows the genericity of our approac



Table 1. Time sequences of conference proceedings
Author Date | Descriptors

N. Koudas| JUNO5 | z; = {Datastreams, Aggregati¢pn
AUGO6 | x5 = {Datastreams, Top-k query
AUGO06 | z3 = {Top-k query

SEPO06 | x4 = {Top-k query

SEPO06 | x5 = {Join query, Selection quey,
SEPO7 | x¢ = {Clustering

3.2 Terminology

Let 2 be the universe of discourse, i.e., the set of all descsptat could describe an event in a time
sequence of events) = |J, D, is organized into several descriptive domaing corresponding to
each domaim that interests the analyst, e.g., thpic of research papers.

We refer to a part of?, i.e., a subset of descriptors taken from various deseeptomains, a®(2).

An itemsetr is defined as an element((2). Given anobject of interesfe.g., “N. Koudas”), arevent
eis defined by an itemsetthat describes (e.g.,{ DatastreamsAggregatior}) and is associated with a
timestamg (e.g.,t ="JUNO05”). We assume the data input for time sequence suraataon, also called
raw data, is a collection of time sequences of events as defin@dfinition 1.

Definition 1 (Time Sequence of events)

Atime sequence of events- ((z1,11), ..., (zm, t,)), also calledtime sequencéor short, is a series of
eventyz;,t;), withl < j <mandx; € P(Q2), ordered by increasing timestamp We denote by =
{z1,..., 2, } the support multi-set of. A time sequenceverifies:V(z;,z;) € S?, j < k & t; < t;.

We denote by[T'| the set of timestamps of elementsin

This definition of a time sequence and the total order on tiamegs allow us to equivalently write:
s={((x1,t1),..., (@m,tn)) ©s={(z;,t;)}/,1 <j<m

By convention, we further simplify the notation of a time seqoe and note = (xy, ..., z,,) where
eachr;, 1 < j <m,is anitemset and all itemsetsare sorted by ascending indgxThis simplification
of the notation allows us to interchangeably use the ®rentto refer to the itemset; in event(z;, t;).
We denote by5(2) the set of time sequences®{(2). This notion of time sequence can be generalized
and used to define a sequence of time sequences that we @erdifsecond-order time sequence
Second-order time sequences are more formally defined imibei 2.

Definition 2 (Second-order time sequence)

A second-order time sequence definedbis a time sequence = {(y;, t;)} where each every;, t.)

is itself a regular time sequence of events definefoivents(y;, ;) in 5, wherey, = {(z;,t;)}, are
ordered thanks to the minimum timestamp value min{t¢;}. The set of second-order time sequences
defined orf) is denotedS?(2).

An example of second-order time sequence from Table 1 fétroalt. Koudascan be defined as fol-
lows: 5 = (41, t4), (42, th), (43, 14))) where:
e y,=((x,={Datastreams, Aggregatidyt;=JUNO5) andt;=t;=JUNO5
o yo=((xa,t2), (v3,13), (4,t4), (x5,t5))) @ndty, = min {ta, ..., t5} i.e.,t,=AUG06, where:
—xo={Datastreams, Top-k quenandi,=AUG06
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—x3={Top-k query andt;=AUG06
—z4={Top-k query andt,=SEP06
—z5={Join query, Selection queyyandt;=SEP06
e y3=((x¢={Clustering, t;=SEPO07) andt,=t;=SEP07

A second-order time sequence can be obtained from a timesegu as defined in Definition 1 by
the means of a form dflusteringbased on the semantiasd temporal information of events; ; in s.
We refer the reader to the following surveys for more indepttclustering [15, 27]. Reversely, a time
sequence can be obtained from a second-order time seqeibgaaeans otoncept formatiofl8, 19]
computed from time sequencgsin s.

3.3 Time sequence summary

We formally define in Definition 3 the concept of a time sequesiemmary using the concepts intro-
duced previously.

Definition 3 (Time sequence summary)
Given a time sequence= {(z;,t;)} € S(2), using clustering terminology, we define the time sequence
summary of, denotedy(s) = (s%, s3,) € S?(R2) x S(), as follows:

o s, = {(ui,t;)} is a second-order time sequence where evgntss;, are clusters obtained thanks
to a form of clustering” that relies on event§e;, t;) semantic and temporal information.

o s, = {(z7,t;)} is the time sequence of conceptsormed from clusterg; € sz.. M is the model

177

chosen to characterize each clusigre s?,, i.e., to build the concepts.

Hence,s;, and s}, can be understood as tletensiorand theintention respectively, of summany(s).

We defined time sequence summarization using clusterimgiriefogy as the underlying ideas are
similar, i.e., grouping objects based on thaioximity. The novelty of time sequence summaries relies
on the fact that events are clustered thanks to their seenantli temporal information. Conventional
clustering methods mostly rely on the joint features of thgecdts considered and their proximity is
evaluated thanks to a distance measure, e.g., based opyeatrsemantic distances. Similarly, in time
sequence summarization, a form of temporal approximatnaulsl also be applicable so that objects
that are close from temporal view point are grouped. Cons#tyiéocal rearrangement of the objects
on the timeline should also be allowed.

In a nutshell, the objective of time sequence summarizasida find thebestmethod for grouping
events based on their semantic content and their proxinmitshe timeline. This general definition of
time sequence summarization can partially encompass smwieps works such as Kiernan and Terzi’s
research on large event sequences summarization [16]edntlee authors perform summarization by
partitioning an event sequengento k segmentss;, 1 < i < k; this segmentation can be understood as
organizingS into a second-order time sequengevhereC is their segmentation method, e.g., Segment-
DP. Note that the authors’ segmentation method does not alhly form of event rearrangement on the
timeline. Then, each segmeitis described by a set of event type grogps ; } where eachx; ; groups
event types of similar appearance rate. Thus, the modeltaosdgscribe each segment is a probabilistic
model. To this point, our definition of a time sequence sumynfally generalizes Kiernan and Terzi’'s

7



work. However, the authors add for ea&h; its probability of appearanggX; ;) in S;. By doing so,
the authors do not support the substitution principle and tto not completely respect our definition of
a time sequence summary.

4 The TSAR approach

In this section we presentlame Sequence SumaRization technique called TSaR. The basic princi-
ple of TSaR is illustrated in Figure 1. The idea is to gathengés whose descriptors are similar at some
high level of abstraction and that appear close in time. Eha@one in three steps: (i) reduce the data’s
domain of representation by generalizing descriptors tgex defined level of abstraction, (ii) group
identical sets of descriptors within a certain sliding tim@dow then (iii) represent each group with a
single set of descriptors, a.k.a. concept.

In practice, the process is parametrized by three inpytdo(nain specific taxonomies, (ii) a semantic
accuracy parameter and (iii) a temporal precision paramébe generalization process in phase 1 takes
as input a time sequence, domain specific taxonomies andgénelafined semantic accuracy parameter.
It outputs a time sequence of generalized events where dgsatiptors are expressed at higher levels of
taxonomy. This output is then fed to the grouping proces$asp 2 where identical generalized events
are grouped together. The overall chronology of eventsasgwed by grouping only generalized events
present in a same temporal locality (as defined in Section Rigase 3 forms a concept to represent each
group. Here, since all sets of descriptors in a group ardicknone instance of the group is selected to
represent the group. We will detail these steps in the faligvgections.

T: mies and semantic parameter V

axXono
vy

. ° X / Time Sequence \
< \g SummaRization (TSaR) any_Topic |

(1. {an. a3}) Generﬁilizatjon (6 A Dat(a];ruNEmg
(1. {2, ai}) / (s, { An AsD)

(ta. {5, as})
(. {ag. apo})
- Raw data hd

{A2, As})

Queries Anonymization Privacy egation

Generalized events

Transaction

Temporal parameter I::) N Query Query Compression Clustering Segmentation
Grouping Tewritting optimization - ~ | DB mining
[] 0 (AL AL QQ Summarization Classification
1 {H{AGA
[ (2 A2 A, {An ASD — Databases | Seduentl
Skyline Join Top-k Selection Datastreams Frequent patterns
(1 {AD) 4L - Grouped events query query query  query itemset
Vv SJrouped events
(T, {Az. Ag}) ) Phase 3
Summary & 1 . . . .
] Concept formation Figure 2. Taxonomy for the topiCdomain

Figure 1. TSaR summarization process

4.1 Preliminaries

In this work, we assume that each descriptive donajin on which event descriptors are defined, is
structured into a taxonom¥f 4 that defines a generalization-specialization relatignbbiween descrip-
tors of D4. The set of all taxonomies is denotétl= | J , H4. The taxonomyH 4 provides a partial
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ordering< 4 over D4 and is rooted by the special descripgory A, i.e.,Va € Dy, a <4 any_A. For
convenience, we assume in the following that the descrgmgr A belongs taD 4.

The partial ordering<4 on D 4 defines a cover relatiosri 4 that corresponds to direct links between
items in the taxonomy. Hence, we haver,y) € D%, * <4 v = 3(y1, 0, ...,%:) € DY such that
<Ay <a-...<aUr <ay. Thelength of the path fromto y is ¢(x,y) = k + 1. In other words, we
needk + 1 generalizations to reaghfrom z in H,. For example, given th®pic taxonomy in Figure 2,
it takes 2 generalizations to reach the con&@periesfrom the conceptop-k query

In practice, we assume these taxonomies are available @ntilgst. We believe this assumption is
realistic as there exists numerous domain specific ontesogvailable, e.g., WordNet [3] or Onto-Med
for medicine, as well as techniques that allow the autonggieration of taxonomies [17, 22].

4.2 Generalization phase

Here, we detail the generalization phase that uses tax@sotoirepresent the input data at higher
levels of abstraction. We assumed valueQiare partially ordered by the partial order relatian, so,
thanks to this relation, we can define a containment relatiaver subsets a®, i.e.,P(£2).

V(z,y) e P(Q)?, (xCy) < (Vicewx, Ji'cy, FJAc A (i <a?)V (i=7))

For generalization, we need to replace event descriptdrs wpiper terms of the taxonomies. We call
generalization vectoon (2, denotedy € N, a list of integer valuesy defines the number of general-
izations to perform for each descriptive domaindnWe denote by)[A] the generalization level for the
domainA. Equipped with this generalization vectéyr we are now able to define a restrictiarn 4 of
the containment relation above:

V(z,y) € P(Q)? (zClyy) < <Vi €z, ey, FJA€ A, (i <ai) A

((€(i,3") = I[A]) v ((£(i,7") < I[A]) A (i = any,A))))

Definition 4 (Generalization of a Time Sequence)
Given a generalization vecta? and a set of taxonomieX, we define a parametric generalization
functionyp, that operates on a time sequence: (z1, ..., z,) as follows:

po: S(Q) — S(Q)
s — pg(s) = (z},...,x)) suchthatvi € {1.n}, x; C|y 2}

rn

For example, given thepictaxonomy in Figure 2 the generalized version of Table 1 wigiemeral-
ization vector[topic] = 1 (also denoted = (1) when all taxonomies should be generalized once) is
shown in Table 2. We can notice that the, relation also allows to reduce itemsets’ cardinality. kedle
Datastreamsand Top-k queryboth generalize int@O. As a result, in N. Koudas'’s time sequence, the
event{Datastreams, Top-k querys generalized intd QO}.

From the analyst’s view point} represents the semantic accuracy he desires for eachpdescri
domain. If he is interested in the minute details of a spedi@imain, e.g., a papertepic, he can set
v to a low value, e.g.y[topic] = 0 or V[topic] = 1. Otherwise, he can setto higher values for a
more abstract description of the domain. Once the input Segience has undergone generalization,
the output undergoes a grouping process as described iallbvihg section.



Table 2. Generalized events with ¥ = (1)
Author Date | Itemset

N. Koudas| JUNO5 | 2} = {QO, DM}
AUGO6 | 2, = {QO}
AUG06 | z, = {QO}
SEP06 | «, = {QO}
SEP06 | 2, = {QO}
SEP07 | «, = {DM}

Table 3. Grouped events with w = 1
Author Date | Sequence
N. Koudas| JUNOS5 | y; = {{QO, DM} }
AUGO6 | y» = {{Q0},{QC},{Q0}{Q0}}
SEPO7 | y3 = {{DM}}

4.3 Grouping phase

Here, we detail the grouping phase responsible for gathg@meralized events. This phase relies on
two concepts: (i) second-order time sequence as definedfinifi® 2 and (ii) Temporal locality We
define this notion of temporal locality hereafter.

4.3.1 Temporal locality

In many research areas, it is assumed that a sequence of g@dratealosein time have high
probability of relating to a same topic. This notion tefnporal localityis borrowed from Operating
systems research [8]. For examp{Paper deadlingAuthors notification Camera-ready papéris a
chronology of events describing tiB®onference submissidapic. However, in a time sequence, events
describing different topics can eventually be intertwinedy., due to network delays. Thus, defining
atemporal localityfor grouping events of a time sequence allows to capturedt@nfing notions: (i)
sequentiality of events for a given topic and (ii) chrongldigetween topics.

Temporal locality is measured as the time differeddigeon a temporal scal€, between an incoming
event and previously grouped events, hereafter caledpsfor short. The temporal scale may be
defined directly through the timestamps or by a number ofimégliate groups since we assume they are
chronologically ordered. While grouping, an incoming evegm only be compared to previous groups
within a distancew (dr < w). Indeed,w acts as a sliding window on the time sequence of groups
and corresponds to the analyst’s estimation of the tempaeality of events. In other words; can be
understood as the temporal precision loss the analystdly tedolerate for rearranging and regrouping
incoming events.

This temporal window can be defined as a duration, @:g= one month, or as a number of groups,
e.g.,w = 2. Definingw as a number of groups is useful in particular when considdrinmsty sequences,
i.e., sequences where the arrival rate of events is unevenddwnside of this approach is the potential
grouping of events distant in time. However, this limitaticould be solved by defining as both a du-
ration and a constraint on the number of groups. As some d@myaig. Finance, give more importance
to the most recent information, we choose in our work to espi@ur scale as a number of groups in
order to handle bursts of events.

4.3.2 Grouping process

The grouping process is responsible for gathering gerzebkvents relating to a same topic w.r.t. the
temporal parameter. It produces a second-order time sequence of groups defifed@vs.
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Definition 5 (Grouping of a time sequence)
Given a sliding temporal window, we define a parametric grouping functian, that operates on a
time sequence as follows:

o S(Q) — S*(Q)
s 2ﬂu)(s) = <(y1 = <<:L’1,t1), R ($m1>tm1)>7t/1)a ) (ymt;z»

wheren is the number of groups formed and such that:
(Part) VEk € [w,n], U, _peicr¥i € Sandy;Ny; =0whenl <i<j<n,j—i<w
(Cont) (ziqCmiy), 1<r<g<my 1<i<n
(TLoc) (dr(tig.t}) <w),1<i<n, 1<qg<my
(Max) Vz;, €y, Vo, €y;,1 <i<j<n,
(ig Exjp) = (dr(tjr,t]) >w), 1 <qg<m; 1<r<m;

Property(Part) ensures that the support multi-setwfcontiguous time sequences ii,(s), e.g.,
Y1y Yw)s (Y2, .-+, Ywr1), €tC..., IS @ non-overlapping part df. This is a direct consequence of
grouping events that relate to a same topic within a samedsahfocality. Property(Cont) gives a
containment condition on events of every time sequeneg,iis). Given a time sequenag in ¥, (s),
all eventsy; ; € y; are comparable w.r.t. the containment relatioandz; ; is the greatest event, i.e.,;
contains all other events . Property(TLoc)defines a temporal locality constraint on events that are
grouped into a same time sequence v,(s). (TLoc)ensures thay; only groups eventéz, ;. t; ;) that
are within a distancé; inferior to w from timestamp, = min(y;[T]), i.e.,dr(t;;,t;) < w. Property
(Max) guaranties that the joint conditiofSont)and(TLoc)are maximally satisfied.

In the grouping function),,, the temporal locality parameter controls how well the chronology
of groups should be observed. When a small temporal windag chosen, a very strict ordering of
topics in the output time sequence is required. Incomingi®vean only be grouped with the latest
groups. Ifw = 1 only contiguous events are eligible for grouping. Table\&githe expected output
when performing grouping on Table 2 with = 1. For example, note that in N. Koudas’s generalized
time sequence, when everf = {QO} is consideredy!, can only be compared to previous group
y1 = {{QO, DM }} for grouping.

When a large temporal window is chosen, the ordering req@ngns relaxed. This means that a
large number of groups can be considered for grouping fdn @aoming event. As a consequence,
the minute details of the chronology of topics may be losthigher numerosity reduction could be
achieved.

The second-order time sequence output by the groupingifumgt, can be understood as the ex-
tension of the summary, i.es?, as defined in Section 3.3. The intention of the summary, and th
the reduced version of the input time sequence, is obtaimaoks to the concept formation phase as
presented in the following section.

4.4 Concept formation phase

The concept formation phase is responsible for generatinghe intention of the summary, from the
time sequence of group$, obtained in the grouping phase. Inthe TSaR approach, weiggéineralized
events that have identical sets of descriptors. Therefloiephase is straightforward.

Here, concept formation is achieved thanks to the projedjeeratorr defined in Definition 6. Intu-
itively, = represents each time sequepge second-order time sequenge by a single concept, called
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representative event;, contained iny;. Consequentlyr produces froms, a regular time sequence
sy, = m(s) that is the intention of the summary, also caltegresentative sequenck addition, this
operator is responsible for reducing the numerosity of ewventhe output time sequence, w.r.t. the
original number of events in the input time sequence.

Definition 6 (Projection of a Second-Order Time Sequence)
We define the projection of a second-order time sequenee ((y1 = ((z11,%1.1), - - - (T1mys t1ma ), th),

ooy (Yyn, 1)) as:

7 S%(Q) — S(Q)
S2C — 7'['(8%«) = <($1,17 t171)a sy (Inmptn,nl»

From our toy example in Table 3, N. Koudas’s representagggisnce is therefore:
m(sg) = ((m(y1), 1)), (m(y2), t5), (7 (y3), t3)) where:

oe(y1) = 2% = x; = {QO, DM} andt, = ¢, = JUNO5

o (yy) = 25 = zy, = {QO} andt, = t, = AUG06

o n(ys) = a5 = x4 = {DM} andt} = t; = SEPO7

4.5 The summarization process

In TSaR, summarization is achieved by the association ofifeetfunctions presented in the previous
section, namely, the generalization, grouping and prgedunctionsy, ¢ and 7 respectively. The
summarization function is formally defined in Definition 7.

Definition 7 (Time Sequence SummaRization (TSaR) function)

Given a time sequencedefined orf2, a set of taxonomieX defined ovef?, a user defined generaliza-
tion vectord for taxonomies ir{ and a user defined sliding temporal windawy the summary of is
the combination of a generalizatiary, followed by a grouping,, and a projectionr:

Xow: S(Q) — S%*Q) x S(Q)
s > xow(s) = (s, sh;) wheres, = 1, o py(s) and sy, = m(sz)

The association of the generalization and grouping functicand respectively, outputs the exten-
sion of the summary, i.esz.. The reduced form of the summary, i.e., its intentigp is a time sequence
obtained by forming concepts from groupssin thanks to the projection operator The extension of
the summang,, then satisfies the conditions of the generalization-gmgprocess. Th€Cont) prop-
erty of ¢, is then enforced by the generalization phagef events ins. Note that every element in the
reduced form of the summarized time sequence, d;g, is an element op,(s). In other wordss}, is
a representative subsequence of the generalized sequence o

From a practical view point, the analyst and applicatiorsaly given the intention form}, of s’s
time sequence summagy, .,(s). Indeed,s}, is the most compact form of the summary. In additigy,
is a time sequence that can seamlessly replacel be directly processed by any chronology-dependent
application that performs ofi Thus, s}, is the most useful form from application view point. In the
following, we will interchangeably use the tesummaryto designate the intentiof}, of a summary.

Let us give an illustration of a summary with our toy examglbe representative sequences extracted
from Table 3 are give Table 4. Here, we achieve the dual goalioferosity reduction (from 6 events to
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3) and domain reduction (from 6 descriptors to 2). These cesgion effects are obtained thanks to the
user defined parameters, i.e., the generalization véaad the temporal sliding window, that control
the trade-off between resp. semantic accuracy vs. stamdtich and time accuracy vs. compression.

Table 4. Summary with w = 1
Author Date | Itemset

N. Koudas| JUNO5 | 27 ={QO, DM}
AUGO6 | 23 ={QO}
SEPO7 | 2% ={DM}

4.6 The TSaR algorithm

From an operational view point, our implementation of TSaRhown in Algorithm 1. The sum-
mary is computed through an incremental algorithm that ggizes and appends incoming events one
at a time into the current output summary. In other wordsumsgsthe current summary i, =
Xo.w({T1, ..., 20)) = (7(y1), ..., m(y;)) and the incoming event i, 11, t,+1). The algorithm com-
putesyy . ((z1, ..., T, To+1)) With a local update ta7,, i.e., changes are only made within the last
groupsy; —w, - - - Yj-

More precisely,(z,1,t,+1) IS generalized intd«/,,,t,11) (line 6). Then, assuming we denote
W =A{yx}, 1 <j—w <k < jthe setof groups that are included in temporal windew SaR checks
if 27,,, is included in a group;,, € W. x;_, is either incorporated into a group if its J-generalized
version satisfies théCont) condition (line 8 to 9), or it initializes a new groygy;1,t,, = tny1)} in
W (line 11 to 14). Once all input events are processed, thedagbups contained ifl” are projected
and added to the output summaty (line 18 to 20). The final output summary is then returned @and/
stored in a database.

Memory footprint. TSaR requiress groups to be maintained in-memory for summarizing the input
time sequence. The algorithm’s memory footprint is finit§ X)) and bound by the width of» and
the average sizen of an event’s set of descriptors. The overall process meromtprint is obtained
by adding the cost necessary to maintain in-memory the otitpe sequence;, and the taxonomies
and/or hashtable index to compute descriptors’ genetalizaHowever s}, can be projected and written
to disk at regular intervals. Therefore, TSaR’s overall mgniootprint remains constant and limited
compared to the amount of RAM now available on any machine.

Processing costTSaR performs generalization, grouping and concept foomain the fly for each
incoming event. The process has an algorithmic complexigalr with the number of evené(n). The
processing cost is weighted by a constant eost a x b. a is the cost for generalizing an event’s set
of descriptors and mainly depends on the number of taxoreamd their sizeb is the cost to scan the
finite list of groups inl/. However,a is a cost that can be reduced by precomputing the generahizat
of each descriptive domain and storing the results in a hahindex.b is a cost that is negligible since
the temporal windows used are small, e.g., mostly < 25 in our experiments. Hence, we satisfy the
memory and processing requirements presented earlier.
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5 Experiments

In this section we validate our summarization approachutincan extensive set of experiments on
real-world data from Reuter’s financial news archives. Fug describe the data and how taxonomies
are acquired for the descriptive domains of the news. We sanamthe raw data with different temporal
windows w and show the following properties of the TSaR algorithm: I¢iy processing cost, (ii)
linearity and (iii) compression ratio.

Algorithm 1 TSaR’s pseudo-code
1. INPUT: ¥, taxonomie$H, w, time sequence of events
2. LOCAL: W FIFO list containing thev last groups
3. OUTPUT: Summaryy,
4. for all incoming eventz,,,1,t,.1) € s do

5. {/l Generalization usin@t}

6. Ty ©o(Tnt1)

7. {/l Grouping

8. if I(yw,ty,) € W, wherex] | C y; then

9. Yk — yr Y, {/l x,_, is grouped intay, }
10. else

11. if |W| > w {/l Case wheréV is full } then
12. PopW’s 1% groupy;_,,, addm(y;_,,) into s%,
13. end if

14. W — WuU{(«,tus1)} {// Updatingi'}
15.  end if

16. end for

17. {// Add all groups ini¥ into s}, }

18. while W # () do

19. PopW'’s 1% groupy;, addn(y;) into s%,
20. end while

21. return sy,

Our experiments were performed on a Core2Duo 2.0GHz lapt@B & memory, 4200rpm hard
drive and running Windows Vista Pro. The DBMS used for stoliag&ostgreSQL 8.0 and all code was
written in C#.

5.1 Financial news data and taxonomies

n financial applications, traders are eager to discover lediye and eventual relationships between
live news feeds and market data in order to create new bssomsortunities [30]. Reuters has been
generating and archiving such data for more than 10 yearexgeriment and validate our approach in
a real-world environment, we used one year of Reuters’s netredea (2003) written in English. The
unprocessed data set comes as a log of 21,957,500 entries @dwh entry includes free text and a set
of ~ 30 attribute-value pairs of numerical or categorical dedorfp An example of raw news event is
given in Table 5. As provided by Reuters, the data can not beegead by the TSaR algorithm. Hence,
the news data was cleaned and preprocessed into a sequaveatsf processable by TSaR.
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Among all the information embedded in Reuters’s news agiale focused on 3 main components
for representing the archive as a time sequence:

e Timestamp: This value serves for ordering a news articlbiwi time sequence.

e Topic_codes: When news articles are writtérpic_codesare added to describe their content. There
are in total 715 different codes relating to 20 differentitsp We used 7 of the most popular topics
to describe the data, i.e{Location, Commodities, Economy Central Banking and InsttuytEnergy,
Equities, Industrial sector, General ngws

e Free text: This textual content is a rich source of inform@from which precise semantic descrip-
tors can be extracted. Give 5 additional topics, nam{@ysiness, Operation, Economics, Government,
Finance, we used the WordNet [3] ontology to extract additional digsars from this content.

Taxonomy generation
WordNet mmmmm)  Generated Taxonom,

I any_Business I
Business . Commercial
L Occupation .
: organization enterprise
: o
N HE ) J - - // *
Commercial |: | —~ &~ L, A
enterprise )i | Commerce ;¢  Mercantilism
H
| =

E_ TS Commercialism
E ey T

Giant oo Collective

[ Occupation
[ Business Legend

Job ——> Sense

—--

.............. - - - -> Specialization

L

Business Busgnesls i Same sense

il concern ) organization f - |Ft

- ~ -
PAEEEVEREN

Giant  occ Collective

Figure 3. Taxonomy generated for the businessiomain

Table 5. Example of raw news event:
Timestamp 01 Jan 2004
Topic code EUROPE USA Bank INS NL
Free text | Dutch bank ABN AMRO said on Wednesday it had reached a predingingreement to
sell its U.S.-based Professional Brokerage business talMsgmch & Co. ...

Extracting pertinent descriptors from free text is a novidtitask w.r.t. the need for organizing the de-
scriptors extracted into taxonomies. Research in Natunaguage Processing (NLP) could be leveraged
to tag texts based on their corpus, e.g., using Term Freguexmerse Document Frequency (TF-IDF)
weights as done in [12] or using online resources such as Opkais [2]. However, creating taxonomies
from the tags extracted is not trivial and requires priorklealge on the descriptors. The paradox lies
in the fact that these descriptors are not known in advaneechMise to use the WordNet [3] ontology
as a guide for extracting descriptors and structuring th@mtaxonomies thanks to the hierarchical or-
ganization already existing in WordNet. This choice leawsn for improvement by leveraging more
complex techniques for both extracting descriptors fromftee text and structuring these descriptors.
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For example, automatic approaches [17] or hierarchicalcesusuch as Wikipedia [22, 7] could also be
used. However, such research is out of the scope of this paper

In total, we preprocessed the input archive into a sequeint283,277 news events.Each news event
is described on the 12 descriptive domains selected earlgkseveral descriptors from each domain can
be used. We generated a taxonomy for each of these desemjatiuains. As the domains of topiode
themes are limited in size and already categorized, carrebpg taxonomies were manually generated.
Descriptive domains extracted from the free text were gerdrusing the WordNet ontology as shown
in Figure 3. In a nutshell, for a given subject, elgusinessits senses are used as intermediary nodes
in the taxonomy. If there are several synonyms for one senge {Commercial enterpriseBusiness
enterprisg, one is arbitrarily chosen, e.ommercial enterpriseSpecialized descriptors are then used
as lower level descriptors.

5.2 Summarization

The TSaR algorithm takes as input taxonomi€sg, a generalization vectat, temporal window pa-
rameterw and a time sequence. The expected output is a more concissseamtion of the input
sequence where the descriptive domains and the numberwifaerpnts are reduced.

5.2.1 Quality measure

The quality of the algorithm can be evaluated by differenthrods. First, we could evaluate the
summarization algorithm w.r.t. the application that it isant to support, e.g., Sequential Pattern Mining
(SPM). In this case, the summary can be evaluated basedaiilitg to increase the quality of the output
knowledge or increase the speed of the mining process (aymmalty study is proposed in our technical
report [21]).

Second, we can measure the semantic accuracy of summaviert descriptors in the summary

produced. This accuracy can be evaluated thanks to theda.-etidl%—l”, whereQ} is the set of descriptors
in the raw data an@@ is the set of generalized descriptors in the output summBng highera, the
better the semantic accuracy.

In addition to the semantic accuracy of the summary, we cemrakasure its temporal accuracy. For
this purpose, given a time sequence- {z;}, 1 < i < n, temporal localityw > 1 and a temporal
window W, we define a temporal rearrangement penalty cost for grguggnincoming event; with
a groupy; € W. We denote this penalty co8t(x;). C.(z;) expresses the number of rearrangements
necessary on the timeline so that eveptcan be grouped witly; in window W. C,(z;) penalizes
incoming eventsg; that are grouped with the older groupsin 17; on the other hand, if; is the most
recent group i, no penalty occur<’.(z;) is formally defined as follows:

C, =0, if (By; € W,z; Cy,),or(3y; € W,z; Cy; and Ak > j,y, € W)
Cr=m,1<m<w-1, if Jy; € W,z; C y; andm = [{yx, € W,k > j}|.

The total temporal rearrangement penalty cost for sumingrizinto s3,, denoted’.(s%,), is then
C-(syy) = >i, C.(z;). This penalty cost should then be normalized so that oultseate compara-
ble. Hence, we choose to compute the relative temporal acgwf the summaries. We normalize all
temporal rearrangement cost by the maximum cost obtainedriexperiments, i.€C,(x(s),100(5))-
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Finally, we also evaluate the summarization algorithm emitmerosity reduction capability by re-
porting itscompression ratidC’ R. C'R is defined asCR =1 — '73{':11 where|seq| is the number of
events in a time sequeneey. The higherC R, the better. We decide to usér as it was also used by
Kiernan and Terzi’s in [16] and we weight tlieR with the summaries’ semantic and temporal accuracy,
a andg, respectively.

5.2.2 Experiment results

We start by setting the generalization vector (1), i.e., all descriptors are generalized once, and
w e {1,2,3,4,5, 10, 15, 20, 25,50, 100} where the maximum value = 100 was chosen to represent a
very strong temporal relaxation. Figure 4 gives the praogdsme of the TSaR algorithm with different
temporal windows. For the sake of readability, we only digphe plots for temporal windows €
{1,5,100}. These plots show that the TSaR algorithm is linear in thebmmof input events for temporal
windowsw of any size. In addition, we can observe that processingstisne almost constant whatever
the temporal window considered. The slight variation obsen between different values efhave two
complementary explanations. First, it is more costly tlmdeage windows during grouping. Second,
a larger windoww allows to maintain more groups in-memory and, so, requass I/O operations for
writing into storage.

Table 6. Semantic accuracy

9 Q] a
(0) [ 1208| N/A
1)y [ 50 | 1
(2) | 20 | 0.40
(3) | 13 [0.26

We compute the CR of the summaries built with different gelimation vectors) € {(0), (1), (2), (3) }.
The results are given in Figure 5. Note that the best comioresatio achieved with) = (0) is only
0.39. For a given temporal window, relaxing the precision of the data by generalizing eackrijgsr
once, twice or three times allows an average gain in comipressipabilities of 46.15%, 94.87% and
133.33% respectively. In other other words, the compressatio is approximatively doubled when
increasing the generalization level. Another interesthgervation is that for alf, the plots show that
highest numerosity reduction is achieved with larger terape@indows while processing times are al-
most constant, as shown in Figure 4. This observation is kelyful from user view point for setting
the summarization parametetandw. In effect, as processing times are almost constant whatieee
temporal window considered, the user needs only to exphesgdsired precision in terms of (i) seman-
tic accuracy for each descriptive domain and (ii) tempavahlity without worrying about processing
times.

Table 6 gives the semantic accuracy of the summaries prddane Figure 6 gives their temporal
accuracy. Note in Table 6 that the number of descriptorseérrdéiw data, i.ey = (0), is 1208. When
summarizing each descriptive domain once, ile= (1), the number of descriptors in the summaries
drops to 50. This loss of semantic information can be explhioy the fact the data was preprocessed
using the WordNet ontology and the taxonomies were alsorgewfrom the WordNet ontology. Nu-
merous descriptors extracted from the free text are in fawsyms and are easily generalized into one
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common concept. Consequently, the concepts obtainedwith 1) should be considered as better de-
scriptors than the raw descriptors. Hence, we choose to a@mpsing as baselin@'| = 50, as shown

in Table 6. In this case, each tindds increased, the semantic accuracy is approximativeledalThis
observation is consistent with our previous observatiotheraverage compression gain.

Figure 6 gives the relative temporal accuracy of each summntaigher levels of generalization re-
duce the temporal accuracy of the summaries. This phenamisrdue to the fact that more generic
descriptors allow more rearrangements for grouping evedtsvever, the temporal accuracy remains
high, i.e.,> 0.80, for small and medium sized temporal windows, e.< 25. The temporal accuracy
only deteriorates with large windows, i.eu,> 25. This result means that the analyst can achieve high
compression ratios without sacrificing the temporal acouod the summaries.

Compression ratio (o)

200 :Time (sec)
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0t Number of events (Xl 03 ) o1 Generalization vector V=<2
' ‘ ‘ ‘ ‘ ‘ ' ‘ ' ! ‘ ‘ ‘ ’ ! —#—Generalization vector V=<3> Temporal window (w)
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Figure 4. Processing time
Figure 5. Numerosity reduction
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0.2
0.1 —o-Generalization vector V=<3>
’0 T'emporal window (wa\oi)o
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Figure 6. Temporal accuracy
However, guaranteeing th@R with TSaR is a difficult task, if not impossible, as its dep@mdthe
input parameters and on the data’s distribution. In addjtioe analyst needs to weight the semantic and
temporal accuracy he is ready to trade off for highét. Guaranteeing th€' k becomes an optimization

problem that requires the algorithm to self-tune the in@rameters and take into account the analyst’s
preferences.
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6 Conclusion and future work

Massive data sources appear as collections of time sequeheeents in a number of domains such as
medicine, the WWW, business or finance. A concise representatithese time sequences of events is
desirable to support chronology-dependent applicatiomthis paper, we have introduced the concept of
Time Sequence Summarizattoriransform time sequences of events into a more concisefoamnative
form, using the data’s semantic and temporal charactsisti

We propose d'ime Sequence SumaRization (TSaR) algorithm that transforms a time sequence
of events into a more reduced and concise time sequence ofsewsing a generalization, grouping
and concept formation principle. TSaR expresses inputtelescriptors at higher levels of abstraction
using taxonomies and reduces the size of time sequencesiyyiggsimilar events while preserving the
overall chronology of events. The summary is computed imaremental way and has an algorithmic
complexity linear with the number of input events. The ottigudirectly understandable by a human
operator and can be used, without the needlésummarizatiorby chronology-dependent applications.
One such application could be conventional mining algargho discovehigh order knowledgeWe
have validated our algorithm by performing an extensiveo$etxperiments on one year of Reuters’s
financial news archives using our prototype implementation

TSaR summaries are built using background knowledge inaim bf taxonomies and the semantic
and temporal precision of the output summary are contrdiiedser defined parameters. One direction
in our future work is to render the generalization, groumng concept formation process more flexible.
We would like to allow automatic tuning of the input paramsteith regard to an objective to achieve,
e.g., acompression ratio. The problem then turns into anasting optimization issue between semantic
accuracy vs. standardization and time accuracy vs. cosipresAlso, much research in the temporal
databases and datastreaming have worked under the assortiit analysts are more interested in
recent data and desire high precision representationseferdata items while older data can become
obsolete. Works in temporal databases have introducedtieept of decay functions to model ageing
data. We would also like to extend TSaR in future work by idtraing decay functions to further reduce
descriptive domains and data compression of older or oteswliformation.

7 Acknowledgements

We would like to thank Sherif Sakr, Juan Miguel Gomez and TisdPalpanas for their many helpful
comments on earlier drafts of this paper. This work was stipddy the ADAGE project, the Atlas-
GRIM group, the University of Nantes, the CNRS and the regiorsiél@yja Loire.

References

[1] Google finance. http://finance.google.com.

[2] Open calais. http://www.opencalais.com.

[3] Wordnet. http://wordnet.princeton.edul.

[4] C. C. Aggarwal, J. Han, J. Wang, and P. S. YOn Clustering Massive Data Streams: A Summarization
Paradigm volume 31 ofAdvances in Database Systemages 9-38. 2007.

[5] S.Babu, M. Garofalakis, and R. Rastogi. Spartan: A model-bammdistic compression system for massive
data tables. liProc. of SIGMOD 2001.

19



[6] V. Chandola and V. Kumar. Summarization - compressing data into amiatibre representation. IAroc.
of ICDM, 2005.
[7] K. Chandramouli, E. Izquierdo, T. Kliegr, J. Nemrava, and V. Skaw/ikipedia as the premiere source for
targeted hypernym discovery. WBBT workshop at ECML/PKD[2008.
[8] P.J.Denning. The locality principl&ommun. ACM48(7):19-24, 2005.
[9] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data stieaA review. SIGMOD, 34(2), 2005.
[10] J. Han, Y. Cai, and N. Cercone. Knowledge discovery in datghasn attribute-oriented approach.Rroc.
of VLDB, 1992.
[11] J. Han and Y. Fu. Exploration of the power of attribute-oriented d¢tida in data mining. Advances in
Knowledge Discovery and Data Mining996.
[12] A. Hotho and G. Stumme. Conceptual clustering of text clusterBrado. of FGML Workshop2002.
[13] H. Jagadish, R. Ng, B. Ooi, and A. Tung. ltcompress: an itera@veantic compression algorithm. Pnoc.
of ICDE, 2004.
[14] H. V. Jagadish, J. Madar, and R. T. Ng. Semantic compressiopattetn extraction with fascicles. Rroc.
of VLDB, 1999.
[15] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a revi&\@M Computer Survey1(3), 1999.
[16] J. Kiernan and E. Terzi. Constructing comprehensive summarlasgef event sequences. Pnoc. of KDD,
2008.
[17] K. Krishnapuram and K. Kummamuru. Automatic taxonomy generatisgueds and possibilities. IRroc.
of IFSA 2003.
[18] R. S. Michalski. Knowledge acquisition through conceptual clusterftheoretical framework and algo-
rithm for partitioning data into conjunctive conceplsternational Journal of Policy Analysis and Informa-
tion Systems4:219-243, 1980.
[19] R. S. Michalski and R. Stepj.earning from observation: conceptual clusterirk80.
[20] Q.-K. Pham, N. Mouaddib, and G. Raschia. Data stream synopsig s&intetiq. InProc. of FQA$2006.
[21] Q.-K.Pham, R. Saint-Paul, B. Benetallah, G. Raschia, and N. Mbloatime-aware content summarization
of data streams. Technical Report TR-0722 (ftp:/ftp.cse.unsw.edutddfmipapers/UNSW/0722.pdf),
2007.
[22] S. P. Ponzetto and M. Strube. Deriving a large scale taxonomywvirikipedia. InProc. of AAAI Conference
on Artificial Intelligence 2007.
[23] R. Saint-Paul, G. Raschia, and N. Mouaddib. General purpaisddse summarization. Rroc. of VLDB
2005.
[24] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Wabeumining: Discover and applications of
usage patterns from web daBIGKDD Explor. News].1(2):12—-23, 2000.
[25] Q. Wan and A. An. Compact transaction database for efficiequéet pattern mining. IRroc. of ICGC
2005.
[26] J. Wang and Karypis. On efficiently summarizing categorical datsh&nowledge and Information Sys-
tems 9(1):19-37, 2006.

[27] T. Warren Liao. Clustering of time series data—a surRattern Recognition38(11):1857-1874, 2005.
[28] A. Wright, T. N. Ricciardi, and M. Zwickc. Application of information-gbretic data mining techniques in
a national ambulatory practice outcomes research netwoiRrda of AMIA Annual Symposiyr2005.

[29] Y. Xiang, R. Jin, D. Fuhry, and F. F. Dragan. Succint summariradiotransactional databases: An over-
lapped hyperrectangle scheme.Rroc. of KDD, 2008.

[30] D.Zhang and K. Zhou. Discovering golden nuggets: data mining antiral applicationlEEE TSMC, Part
C: Applications and Review84:513-522, 2004.

20



