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Abstract

Major media companies such as The Financial Times, the Wall Street Jour-
nal or Reuters generate huge amounts of textual news data world wide on
a daily basis. Finance specialists rely on this information to grasp the mar-
ket sentiment and make decisions accordingly (e.g., buy or sell stocks). An
important application for them is to mine this mass of information for ex-
tracting recurrent behaviors or frequent patterns and thereby anticipate the
markets. However, financial news is very rich in terms of content and poor
in terms of structure. The content, size and absence of structure in fi-
nancial news are three parameters that make their analysis, in particular
Frequent Pattern Mining (FPM), challenging. In this paper, we propose
a Time-Aware Content Summary (TACS) structure to support FPM. This
summary allows to represent news data in a more concise form at the desired
level of precision, both in terms of time and content. We show the bene-
fits of TACS for frequent pattern mining through experiments conducted on
Reuters’ financial news.
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1 Introduction

Major media companies such as the Financial Times, the Wall Street Jour-
nal or Reuters generate huge amounts of textual news data on a daily ba-
sis. This data represents a valuable source of insight for specialists such as
stock traders, social scientists and economists [19]. Frequent Pattern Min-
ing (FPM) consists in identifying sequences of events, here called patterns,
that occur over time for a significant number of objects of interest. For
example, a pattern could be “a salary increase” followed by “a house loan
subscription” observed for a number of bank customers. In this example,
the objects of interest are customers and each customer history is a distinct
time sequence. A pattern is said frequent if it is observed in more than a
given number of time sequences.

The discovery of frequent patterns is of importance since the fact that
several events are frequently observed in sequence may indicate a correlation
or causal dependency among the events. By observing the first few events in
a frequent pattern, an expert may be able to anticipate future events; in our
example, the bank could advertise interesting home loans to a customer who
just got a salary increase. While frequent pattern mining is an established
field [2, 14, 18, 11, 3, 15, 17], its application to financial news is challenging
for the following reasons:

Different experts will have different perspectives on the same
data. A given news relates to potentially many objects of interest and may
be interpreted differently depending on the expert’s interest. For instance,
a stock trader may be interested in finding patterns affecting companies
in some sector (e.g. IT) while an economist may be interested in finding
correlations between national political turmoil and corresponding market
volatility. Objects of interest are companies in the former example and
countries in the later. Thus, it is necessary to allow experts to specify their
objects of interest and construct, from the global streams of news issued by
media companies, a collection of time sequences, each relating to a particular
object of interest.

News’ textual content can not be directly used for frequent
pattern mining. News are all unique when considering that their exact
textual content is always different. In that sense, no frequent pattern can
be found since there is no such thing as a “frequent news”. However, while
two news might be different, the topics they present may be the same from
an expert’s point of view, e.g., several news may deal with “interest rate
increase” or “a company takeover”. For the purpose of frequent pattern
mining, a generic description of the news is more relevant and useful for
identifying frequent patterns. Before mining can be carried out, it is there-
fore necessary to compute a categorical description of the news that reflects
the news’ semantics from the expert’s point of view.

It may be argued that the issues outlined above can be handled through



2

a preprocessing step carried out using existing algorithms for text classifi-
cation (e.g. index term selection, naive Bayes classifier or nearest neighbor
classifier) or text categorization (see [6] for an overview of these approaches).
These algorithms can indeed be used to extract categorical descriptions of
news and build individual time sequences by classifying news that are rel-
evant to a given object of interest. However, one needs to be aware that
the precision of the description produced has an huge impact on the mining
algorithm results and performance. Intuitively, if the description of news is
too precise, they will be observed in very few number of objects of interest;
consequently, they can not be identified as frequent and no patterns will be
mined. On the other hand, if the description of news is not precise enough,
they will be observed in many objects of interest; consequently, they can all
be identified as frequent and the mining algorithm will produce a large num-
ber of patterns of little interest. Ideally, one would need to freely adjust the
precision of the categorical descriptions in response to the mining results.

The large volume of data considered. Each month, Reuters pub-
lishes about 40000 individual news stories world wide. Depending on the
expert’s interests, only a fraction of these news may be relevant, but the
patterns she might be looking for could span several months or years. For
instance, rumors about eBay taking over Paypal started early summer 2002
and the operation actually took place in October 2002. Thus, the iterative
approach typically adopted by FPM algorithms limits the size of datasets
that can be mined within a reasonable amount of time.

Also, when mining patterns over large periods of time, the minute details
of news are not relevant. Experts are often in search for more general “long
term trends” that are difficult to infer from the individual news. Therefore,
mining over large periods directly on individual news not only affects the
performance of the mining algorithm due to the large data size, but also
may not produce the desired results since individual news are too precise
for such a task. With numerical time series, such as a stock prices, this
problem can be solved by computing a moving average [10] of the price over
some time window, thereby reducing the number of data points. Ideally,
we would like to perform the same abstraction operations on news data.
The challenge here is to define how categorical descriptions of news can be
“averaged” over a period of time.

We make the following contributions:

1. We address these issues by proposing a framework that allows prepro-
cessing and mining of frequent patterns in financial news in a compre-
hensive manner. We design a S treaming Temporal Data (STEAD)
analysis framework that allows a centralized supervision by the expert
and allows her to express her domain knowledge which is then used
throughout the various processing steps as well as for the refinement
of the results.
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2. We focus our work on the summarization service and propose a Time-
Aware Content Summarization (TACS) method performing in a Tuple
Oriented Induction (TOI) way. This process allows to control both
the content and temporal precision of the dataset. Its computational
complexity is linear in the dataset size, allowing for handling of large
datasets such as found in news mining applications. Most importantly,
we can guarantee that patterns present in the original dataset will be
present in the summarized one, up to the precision loss specified by
the expert. This property is essential for using the summary for FPM.

3. We validate our approach through experiments performed on a real
world data set.

The rest of the paper is organized as follows. In Section 2, we present the
general framework for analyzing streaming data. In Section 3, we provide
background information about frequent pattern mining. We then detail
our summarization approach in Section 4 and evaluate experimentally the
approach in Section 5. Section 6 presents the related works and we conclude
in Section 7.

2 Framework for mining financial news

Mining frequent patterns in financial news is a challenging task that involves
the choices and preferences of domain experts. This is why we designed
S treaming Temporal Data (STEAD) analysis framework that lets domain
experts express which aspects of the data they are interested in. This expert-
centric STEAD analysis framework is illustrated in Figure 1. It is organized
around three services and each service accepts as input, in addition to a
dataset, a number of domain specific parameters set by the domain expert:

1. Preprocessing service: This service is responsible for transforming a
raw and poorly structured dataset into a structured dataset made of
categorical descriptions. These categorical descriptions can be in the
form of tuples of attribute-value pairs.

2. Summarization service: This service considers as input the categorical
descriptions of data and produces a new dataset that is less precise but
more concise than the original one. In order to support mining algo-
rithms that rely on the ordering of the data, the summarized dataset
preserves the structure and the sequentiality of tuples of the original
dataset.

3. Mining service: This service provides analysis tools, in particular Fre-
quent Pattern Mining. In this case, the service identifies frequent
patterns in either the structured data or the summarized data.
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Figure 1: STEAD analysis framework

As we have mentioned in the introduction, mining frequent patterns
in financial news is a very challenging task. The framework we propose
here is designed so that each challenge can be addressed independently.
Each service can be extended to account for works in domains such as text
processing and information retrieval. In this perspective, we will mainly
focus our work on the summarization service to provide a support structure
for FPM. Therefore, we provide in the following section all the necessary
background on FPM for adequately designing the summary.

3 Preliminaries

3.1 Frequent pattern mining

Frequent pattern mining was first proposed by Agrawal and Srikant in
1995[2]. In this section, we briefly overview the main concepts and notations
as used in this article.

Definition 1 (Time Sequence) A time sequence S is a sequence S =
〈e1, . . . , ek〉 of events where ei are events and k is the length of the se-
quence. The order is defined by a timestamp attached to events and denoted
by e.time. We use the notation ei ≺ ej when ei.time < ej .time (we suppose
that the timestamp is precise enough for all events to be strictly ordered).

In our approach, events represent descriptions of news. They can be
represented using one or several categorical attributes. For example, events
could be defined on attribute Interest rate with values in {low, high} and
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attribute Inflation with values in {low, moderate, high}. An example of
event is then e = (low, moderate). However, for the purpose of mining,
the individual attribute values taken separately are not important. It is its
modality, i.e., the event taken as a as a whole with all its attribute values,
that is important. In the rest of the paper, we will denote modalities using
capital letters and sequences using strings formed with these capital letters.
For instance, if A = (low, moderate) and B = (high, low) then the sequence
S = 〈(low, moderate), (high, low)〉 will be denoted by 〈A, B〉.

Definition 2 (Subsequence) A sequence Ssub is a subsequence of S and
we note Ssub ⊑ S iff all the tuples of Ssub also appear in the same order in
S, consecutively or not. For example, if Ssub = 〈A, B, C〉 and if we have
Ssub ⊑ S, then S has the form S = 〈∗A ∗ B ∗ C∗〉, where ∗ represents any
sequence of events, possibly empty. We also say that S contains Ssub.

When mining frequent patterns, we consider as input a collection C =
{S1, . . . , Sn} of time sequences. Given this input, we are interested in finding
sequences of events, called in this case patterns, that are subsequences of
sequences in C.

Definition 3 (Support of a pattern) The support of a pattern p in a
collection of time sequences C is the number, denoted suppC(p), of time
sequences of C which contain p. When there is no ambiguity as to which
collection C we refer to, we will denote the support simply by supp(p).

Using these notations, the problem of frequent pattern mining can be
defined as follows:

Definition 4 (The frequent pattern mining problem) Considering a
collection C of time sequences and an expert-defined support suppmin, iden-
tify all the patterns p that satisfy the condition suppC(p) ≥ suppmin, i.e. all
the patterns which are found in more than suppmin sequences of C.

3.2 Evaluating the interestingness of frequent patterns

As mentioned earlier, we supposed that the global stream of news is prepro-
cessed by the “Preprocessing Service” in the STEAD analysis framework
and categorical descriptions are output by the service. The consequences
of this preprocessing step are as follows. When breaking down the global
stream of news to create news time sequences, each news item ni that con-
cerns several objects of interest (e.g. Microsoft and Google) needs to be
duplicated into their respective news time sequences. By doing so, we artifi-
cially augment ni’s individual support. ni can potentially become frequent
(i.e. supp(ni) ≥ suppmin) by duplication and bias the mining results.
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When generalizing this phenomenon, we can expect (i) a combinatory
explosion at candidate generation time for algorithms based on a generate
and prune strategy (e.g., Apriori-based algorithms such as in [2, 14]) and (ii)
the length of frequent patterns can possibly be increased by duplicates. An
important work needs to be done to evaluate the interestingness of patterns
and to distinguish those from surrounding noise.

3.3 Noisy patterns

Interesting patterns are sequences of events such that the order between
events has some significance, e.g. “salary increase” followed by a “home
loan subscription”. Suppose that two news A and B both occur frequently.
We will observe that most of the patterns formed by A and B (〈A, A〉,
〈A, B〉, 〈B, B〉, 〈B, A〉, 〈A, A, A〉, 〈A, A, B〉, etc...) may be frequent. Such
patterns however may have very limited significance since the fact that a
pattern 〈A, B〉 is frequent is a mere coincidence and may not reveal any
correlation between A and B: the order between these two events has no
significance.BB: a concrete example to illustrate this will be better
than A, B, etc. Such patterns are called noisy patterns because there ex-
istence complicate the mining task by creating numerous candidate patterns
that need to be individually explored, thereby impacting very significantly
the overall performance of mining algorithms. We will discuss in Section 4.2
how our approach can leverage the issue of noisy patterns.

Interestingness measure.

The evaluation of the interestingness of patterns mined over news can be
used as an indicator for pruning noisy patterns. This issue of noisy patterns
can be leveraged by introducing an objective[13] measure at mining time.
During the preprocessing step, we propose to tag all nis with a duplication
score, e.g. number of time sequences ni is duplicated into. This score can be
used at mining time to describe a candidate pattern pk by an interestingness
metric I(pk), where 0 ≤ I(pk) ≤ 1. This metric indicates to what extent pk

is made of news ni with low duplication scores. We introduce the metric as
in Equation 1 where |X| denotes the cardinality of the set X. The lower the
duplication scores of each ni composing pk, the more pk is interesting. The
most informative case is when pk is only made of non-split items, i.e. ∀ni ∈
pk, score(ni) = 1 in which case I(pk) → 1 with |Objects of interest| ≫ |pk|,
and the worst case is when all ni a are split into all sequences, i.e. ∀ni ∈
pk, score(ni) = number of objects of interest in which case I(pk) = 0.

I(pk) = 1 −
1

|Objects of interest|
.
Σni∈pk

score(ni)

|pk|
(1)

Another solution for evaluating the interestingness of patterns and dis-
card noisy patterns is to use subjective[13] measures a posteriori. We can
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refer the reader to some recent work such as Xin et al.’s [16].

4 The Time-Aware Content Summary (TACS)

We present in this section our Time-Aware Content Summarization (TACS)
approach for supporting FPM algorithms. The algorithm considers as input
a set of sequences of news categorical descriptions. These descriptions are
represented using tuples of attribute-value pairs. The output of the algo-
rithm is a set sequences of news categorical descriptions represented on the
same attributes (or a subset of those), expressed in a less precise but more
concise form. The summarization algorithm operates in two steps: Gener-
alization and Merging.

- Generalization: Incoming tuples ti are generalized into t′i using con-
cept hierarchies (e.g. Figure 2). The generalization considers each attribute
of the tuple by rewriting its associated value to a more general concept as
specified by the expert. These concept hierarchies can be either manually
defined or automatically generated using general purpose (e.g. WordNet[1])
or domain specific ontologies. All t′i are then called generalized tuples.

- Merging: Identical generalized tuples are grouped together. Even
if two successive tuples ti and ti+1 are different on certain attributes, their
generalized representation, respectively t′i and t′i+1, can be identical. In such
case, ti and ti+1 are said to be similar from expert point of view. Thus,
t′i+1 is merged with t′i and a COUNT attribute—indicating the number of
original tuples represented by t′i— and a reference to ti+1 are maintained.
Generalized tuples that have been merged are then called summarized tu-
ples. We give the general algorithm in Algorithm 1.

We mentioned earlier that FPM algorithms rely on the sequentiality of
the data to perform. To preserve this ordering property, we need to consider
if an incoming generalized tuple t′i+1 is identical to the previous one—in
which case these tuples are merged—. Otherwise, t′i+1 will be added to the
summary by itself and incoming generalized tuples will be compared to it.
Incrementally, the summarized tuples keep the ordering of the original data
w.r.t. Definition 5 and Corollary 1 as defined in section 4.1.

4.1 Trading off content precision for attribute domain reduc-
tion

During the generalization step, each attribute value of an incoming tuple is
generalized to a expert-desired level of abstraction using concept hierarchies.
The idea is to allow the expert to express in the form of concept hierarchies
and in her own vocabulary how the attribute values are generalized. From
these concept hierarchies, she can decide to reduce attribute domains by
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Algorithm 1 General ST summarization algorithm

Input:

– DB Database to summarize

– Listω List of ω previously summarized tuples
(in the base algorithm, ω = 1)

– A = {A1, A2, ..., An} Attributes to summarize

– H = {H1, H2, ..., Hn} Concept hierarchies over A

Output:

– Z Time-Aware Content Summary

Initialize Z
for all tuple ti in DB do

Generalize ti into t′i using H
if listω is void then

Add t′i into listω
Initialize t′i’s COUNT to 1;
Initialize t′i’s list of tuple IDs (TIDs) with ti;

else
if t′i ∈ listω (Suppose t′j ∈ listω and t′i = t′j) then

Increment t′j ’s COUNT ;
Add ti’s tuple ID into t′j ’s TIDs;

else
Pop out oldest tuple t′last in listω
Add t′last to Z with its COUNT and TIDs
Add t′i to listω
Initialize t′i COUNT and TIDs

end if
end if

end for
Add all remaining tuples in listω into Z
return Z
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trading off content precision. No generalization means keeping the precise
attribute value as precise as possible and thereby the lower the domain
reduction.

On the other hand, if the precision of attribute value is not significant,
she may decide to generalize it to more generic forms thereby augmenting
the domain reduction, e.g., the root Any Location is the most generic label
in Figure 2.

Figure 2: Example of concept hierarchy for the Location attribute

This generalization approach is a simple yet powerful tool for allow-
ing experts to express their needs, trade attribute domain reduction and
mining capabilities with content precision. Concretely, suppose each at-
tribute Ai in A = {A1, ..., An} is associated with a concept hierarchy Hi in
H = {H1, ..., Hn} where each concept hierarchy Hi is a tree on the domain
of Ai. Each edge in Hi is an is-a relationship over the literals in Ai. If there
is an edge in Hi from the literal p to the literal c, we call p a parent of c and
c a child of p: p is a generalization or subsumer of c.

When the expert decides to trade away the content precision regarding
the value aij of an attribute Ai for increased domain reduction by generaliz-
ing aij k times, the generalization algorithm seeks aij ’s kth subsumer in Hi.
For example, “Europe” is the second generalization of “France”. This is an
operation with a constant and low cost as concept hierarchies often have few
number of intermediary levels and nodes, and many leaves as illustrated in
Figure 2. This cost can be further optimized by incrementally maintaining
indexes as generalizations are found.

We mentioned earlier that once incoming tuples are generalized, it is pos-
sible that two successive generalized tuples t′i and t′i+1 have similar descrip-
tions from expert’s point of view, in which case they are merged together.
Merging together contiguous and similar generalized tuples allows to keep
the original ordering of tuples. We formally define an Order-Preserving
(OP) summary in Definition 5 with the total order relation ≺ as defined in
Definition 1.
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Definition 5 (Order-Preserving (OP) summary) Let f be a summa-
rization function and f(ti) = zi the summarized value of tuple ti; by ex-
tension f(R) = Z is the summary of table R. Z is an Order-Preserving
(OP) summary of R when there is a total order relation �Z on Z defined
as: ∀(t, t′) ∈ R2, t ≺ t′ ⇔ f(t) �Z f(t′).

Corollary 1 (Monotony) Let f be a summarization function where f(R) =
Z is an OP summary as defined in Definition 5. f is monotone and increas-
ing.

Representing attribute values in a less precise form has an impact on the
types of the discovered frequent patterns. Indeed, mining a summary will
provide the expert with frequent patterns of summarized tuples that we call
trends. In some cases, knowing the trends in the news is enough for an expert
to make a decision (e.g. buy or sell stocks). In other cases, this information
is interesting but not precise enough to make an informed decision. Because
summarized tuples represent subsets of news and store the IDs of the actual
data, it is possible for the expert to use the frequent patterns of interest to
filter the original data. Doing so, she can select smaller subsets of the actual
data and reiterate the (summarization and) mining process.

4.2 Trading off temporal precision for tuple numerosity re-
duction

Combining attribute domain reduction and generalized tuple merging allows
to produce summarized news time sequences containing less tuples than
the original input. The basic TACS algorithm outputs a summary that
strictly complies to Definition 5. Unfortunately, the total order relation
is a constraint that makes the summary inefficient regarding two different
aspects: (i) numerosity reduction and (ii) noisy patterns.

We can illustrate the intuition behind our approach with the examples in
Figure 3 and 4. In these examples, the non order-preserving summary gen-
erates 4 summarized tuples versus 7 for the order-preserving summary. This
simple observation shows that strictly respecting the total order relation can
require a trade off on the size of the summary.

The concept of time differs from one expert to another: some experts
might be more interested in information on a daily basis whereas other might
be interested in monthly events for instance. In the former case, the expert
is interested in a snapshot of each day and requires that ordering considers
daily events. In the latter case, the order in which news have arrived during
the month is not important provided a general snapshot of the month is
given. This observation allows us to provide the expert with an additional
mechanism for making the summary more concise by reducing the numeros-
ity of tuples in the summary. When a coarser time-grain is acceptable for
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Figure 3: Non Order-Preserving summary

Figure 4: Order-Preserving summary

the expert, she can reduce the temporal precision of the summary by locally
violating the total order relation, e.g., for all elements in a window spanning
over a month.

We introduce temporal precision in TACS as follows: Let ω be a time
span defined by an expert where ω can be expressed (i) as a duration or
(ii) as a number of tuples (ω ∈ N). We call W of temporal precision ω
a window of reduced temporal precision (or precision window for short) in
which the relation �Z is locally violated and disorder withing tuples is
allowed. W can be either (i) a fixed window or (ii) a sliding window over
the summarized tuples. The choices of ω and the precision window W define
the way temporal precision is handled in TACS.

Temporal precision ω.

Expressing ω as a duration (e.g., ω = 1 hour) allows experts to setup the
temporal precision. She exactly knows what events happened within the
time span ω but has no guarantee in their exact order. As a consequence,
all elements in a burst of events that fits into W will be merged together,
e.g., if events 〈A, B, C, D, C, B, A〉 arrive within 1 hour, they will be merged
into 〈A, B, C, D〉.

Defining ω as a number of tuples allows the summarization to be done
with variable temporal precision. Provided ω is defined small enough (e.g.,
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ω = 3 tuples), this approach can limit the merging of bursting events as all
tuples will not be merged together and information on their sequentiality
will be preserved. The main risk with this approach is to merge together
events very distant in time when ω is set too high. In financial applications,
it is not rare to witness rapid chain reactions when important events happen,
e.g., company takeovers. Therefore, we choose in our work to express ω as
a number of tuples to be able to address these bursting events.

Precision window W .

The second parameter for reducing temporal precision in TACS is the way
the precision window is moved during the summarization, i.e., in a fixed or
sliding way. Figures 5 and 6, where “[” and “]” delimit the position of W
(ω = 3 tuples), illustrate the summarization of a sequence S into a sum-
mary Z with these two different methods. Given a precision ω, these figures
show that it is possible to merge repetitive subsequences (e.g., 〈A, B, C〉
in our example) when using a sliding precision window (e.g., subsequence
〈A, B, C, A, B, C〉 is merged into 〈A, B, C〉). This is a desirable feature as
repetitive patterns in a sequence are not always of interest and can be con-
sidered as noisy patterns. Therefore, in the rest of our work, we chose to
design W as a sliding window.

Figure 5: TACS with a fixed window

Figure 6: TACS with a sliding window

In a nutshell, defining the temporal precision of TACS with ω expressed
as a number of tuples and W as a sliding window allows to reduce the
temporal precision w.r.t. the expert’s own perception of time. The extreme
cases when defining ω are:

– ω = 1: The summarization algorithm has to strictly respect the total
order relation and no temporal concession is done;

– ω = ∞: The summarization algorithm does not respect the total order
relation and converges toward a semantic summarization algorithm as
presented in Section 6.

Suppose we take Figure 4 and define a temporal precision of ω = 2 tuples
using a sliding precision window. As tuples arrive into the system and are
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generalized, t′3 will be merged into t′1, t′6 into t′4 and t′7 into t′5 as shown
in Figure 7. The output is a summary with 4 summarized tuples, exactly
those obtained in Figure 3. The difference with the output in Figure 3 is
the ordering of summarized tuples which in our case follows a partial order
given by the sequentiality of incoming tuples and ω.

Figure 7: Order-preserving summary with temporal precision of ω = 2 tuples

Reducing the temporal precision has two benefits for frequent pattern
mining approaches: (i) the numerosity of tuples is further reduced and (ii)
all combinations of frequent tuples within a window ω are merged together.
For example, if ω = 2, combinations of two frequent tuples A and B such
as 〈A, B, A, A, B〉, 〈A, B, A, B, B〉, 〈B, A, B, B, A〉, 〈B, A, B, A, A〉, ... are
merged into 〈A, B〉 or 〈B, A〉. Thereby, reducing temporal precision has the
nice property of locally merging noisy patterns which would have burdened
the FPM algorithm.

However, merging noisy patterns also comes with a trade off in the num-
ber and diversity of sequences in the summary. Indeed, some sequences
can be potentially lost while merging generalized tuples. The order in which
summarized tuples appear in a summary Z completely depends on the order
in which the generalized tuples appeared in the sequence, e.g., Z = 〈A, B〉
means A have arrived first, followed by B. Therefore, different sequences hav-
ing the same generalized tuples can be summarized into a same summary, de-
pending on which items have arrived first. For example, 〈A,B, A, A, B〉 and
〈A,B, A, B, B〉 are merged into 〈A,B〉, and 〈B,A, B, B, A〉, 〈B,A, B, A, A〉
are merged into 〈B,A〉, but both 〈A,B〉 and 〈B,A〉 can not appear simulta-
neously within the same precision window W .

In some cases, the sequence 〈B,A〉 might be more informative but could
have been lost. Hence, this merging capability leads to a trade off on the
recall of sequences. The conditions in which a summary with reduced tem-
poral precision can lose such sequences need to be determined. In the fol-
lowing section, we identify, define and prove these minimal requirements for
containing the loss of sequences during the summarization.
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4.3 Minimal requisites for trading off temporal precision

When reducing the temporal precision of TACS, we mentioned that there
is a risk of loosing sequences during the merging phase of the process. It
is important to be able to determine the conditions in which such loss can
occur. In the following paragraphs, given a subsequence S1 of S, we define
the conditions for S2 (obtained by permutations of tuples in S1) to be found
as a subsequence of S.

Let S1 = 〈t′1, t
′
2, ..., t

′
m〉, |S1| = m > 2, be a sequence of summarized tu-

ples. Let S2 = 〈u′
1, u

′
2, ..., u

′
m〉 = perm(S1) = 〈t′

perm(1), t
′
perm(2), ..., t

′
perm(m)〉

also be a sequence of m summarized tuples and S2 is the result of any k > 0
permutations of summarized tuples in S1.

Let S be a summarized news time sequence with a temporal precision
of ω ≥ 2 using a sliding precision window W , |W | = ω tuples. T =
〈t′T1

, t′T2
, ..., t′Tn

〉 denotes the sequence of generalized tuples to come and to
be summarized. Then, we can express S as:

S = 〈t′1, t
′
2, ..., t

′
m

︸ ︷︷ ︸

S1

, t′T1
, t′T2

, ..., t′Tn
︸ ︷︷ ︸

T

〉, n → ∞

Property.

We use α to denote the number of contiguous tuples in S following S1 and
which do not appear in S1, e.g, if S = 〈t′1, t

′
2, ..., t

′
m

︸ ︷︷ ︸

S1

, x, y〉, α = |{x, y}| = 2.

For S1 and S2 to be consecutive subsequences in a same sequence S, the
number α of tuples separating S1 and S2 must meet one of the following
conditions:

1. Case (|S1| − ω) ≥ 2, i.e. the window of temporal precision is smaller
than the sequence S1 by at least 2 tuples, then there is no requirement
on α.

2. Case (|S1| − ω) = 1, i.e. the window of temporal precision is smaller
than the sequence S1 by 1 tuple, then α ≥ 1.

3. Case (|S1| − ω) < 1, i.e. the window of temporal precision is bigger
than the sequence S1, then α ≥ 2 + ω − |S1|.

If these conditions are not true, it is not possible for S2 to be a subse-
quence of S and appearing in S after S1. When the condition on α is not
true and tuples in S2 arrive after S1, they will be merged into S1 during
the summarization process. The full proof of this property can be found
in Appendix A. It is not possible to theoretically quantify this information
loss as it completely depends on the distribution and ordering of incoming
tuples. However, in practice, trading off temporal precision for more tuple
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reduction does not have a significant impact on the patterns that can be
mined for two reasons.

First, our preliminary experimental evaluation of TACS in Section 5 on
a month worth of Reuters’ news shows that a summarization and mining
cycle can be done in a very limited time, i.e. in the order of minutes.
Therefore, the summary makes it possible for experts to mine news in an
interactive and iterative way. Suppose a sequence 〈A, B, C〉 is present in
TACS and sequence 〈C, B, A〉 was lost during the summarization process.
Assuming 〈A, B, C〉 is a frequent pattern, the set of news N = {n1, ..., nm}
represented by summarized tuples A, B and C in pattern 〈A, B, C〉 will be
exactly the same as those represented by pattern 〈C, B, A〉. Thus, if the
expert decides to reiterate the summarization and mining cycle with higher
temporal precision (and eventually higher semantic precision), all news in
N will still be selected for this new task without any loss.

Second, we consider that patterns of interests in financial news are rela-
tively short (with more or less have a length of 6-10 tuples). BB: is there
any reference that supports this statement.PQK: I need to inves-
tigate further In general, a temporal precision of ω = 5 tuples for most
companies represents a couple of days to a couple of weeks worth of news:
this setup fits into the conditions of case (|S1| − ω) = 1 (α ≥ 1). Because
of the very large number of modalities in financial news, the requirement of
α ≥ 1 is very easily fulfilled.

5 Experimental evaluation

In this section, we report our experimental results on the performance of
TACS while summarizing and while performing FPM tasks. Our interest is
to determine the impact of different temporal precision parameters on the
summary itself and on the frequent patterns mined.

All the experiments were performed on a 2GHz Core2Duo laptop with
2GB of main memory, running Microsoft Windows XP SP2. The DBMS
installed is PostgreSQL version 8.0.7 running on a 5400rpm hard drive. The
summarization algorithm and PrefixSpan[11] are written in C# and are
using the Microsoft .NET framework 2.0. During all the tests, the GUI was
minimized and hidden so that the true running times of the algorithms were
recorded.

The dataset used is one month worth of financial news (January 2004)
obtained from Reuters. The original sources have been preprocessed and
filtered so that news can be categorized on a set of 12 attributes (e.g. com-
modities, location, etc...) and objects of interest are the company names
the news are related to. Throughout the rest of the paper, we will refer to
this dataset as the raw news. Concept hierarchies on these attributes were
designed manually using Reuters codification of their news and WordNet[1]
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ontologies. The description of news items can have undefined values, in
which case “none!!” is the default value. This default value is considered to
be different from any other value, e.g. different from any label in concept
hierarchies.

We have focused our efforts on the core of our contribution, i.e. handling
the time dimension in TACS through different settings of the temporal pre-
cision ω. Therefore, we fixed the semantic precision by allowing only one
generalization of attribute values during the summarization process. Our
experiments show that the use of TACS allows to mine trends in financial
news at higher support levels and in acceptable processing times (i.e. in the
order of hours) whereas mining raw news only starts giving results(patterns
of length > 5 − 6) at lower support levels and with processing times that
can reach the order of tens of hours.

5.1 Impact of temporal precision on the construction of TACS

The objective of the first set of experiments on Reuters’ raw news is to deter-
mine the processing time and the tuple reduction capability when building
and storing TACS. Figure 8 and 9 respectively give the time necessary to
build TACS and its tuple reduction ratio with a set of different temporal
precisions. ω ranges from 1, i.e. strict compliance to the OP constraint, to
ω → ∞ (in practice, we fixed ω = 5000). These figures show that reducing
the temporal precision does not have any penalty on processing time and
can sensibly increase tuple reduction. The slight decrease in processing time
is only due to the increased tuple reduction: higher tuple reduction means
less tuples to write into the output database for storage.

5.2 Mining a TACS at different levels of temporal precision

Once the summaries built, we carried the FPM task with our implementation
of PrefixSpan on the raw news and on summaries with w ∈ {1, 5, 10, 15}.
The results are given in Figure 10 and 11. Figure 10 gives the time necessary
for our PrefixSpan implementation to completely compute (on raw news and
on summaries) at different levels of support. Concurrently, Figure 11 gives
the maximum length attained by frequent patterns mined.

This latter figure shows that mining frequent patterns on the raw news
only starts yielding results with very low support levels, e.g. starting with
suppmin = 7 the maximum length of patterns is only 2. This observation is
very coherent with our earlier intuition that when news are described with
high precision, the chances of finding identical news in several sequences is
very low. In this matter, the raw news dataset is the most precise possible
description of the news. From this point on, lowering further suppmin gives
as result longer maximum patterns but increases exponentially the process-
ing time with hops from a couple of minutes (suppmin = 6) to around 10
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Figure 8: Summarizing time

Figure 9: Tuple reduction ratio

Figure 10: FPM processing time
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Figure 11: Frequent pattern maximum length

minutes (suppmin = 5) and finally to tens of hours (at suppmin = 4 the
process did not complete after more than 71 hours).

On the other hand, mining frequent patterns on TACS also yields inter-
esting results. Further analysis of Figure 11 reveals that mining TACS at
higher levels of support (e.g. suppmin = 17) gives frequent patterns of length
> 2 for all values of ω. It is therefore possible to start discovering trends
when mining at higher levels of support. Lowering step by step the support
also gives longer patterns but the process reaches a limit when suppmin = 8
and ω = 1 where the processing time just explodes.

Indeed, when suppmin = 8 and (ω = 1 or ω = 5), the maximum length of
the patterns mined are much more important than patterns mined over the
raw news. This effect is a direct consequence of the generalization step in
the summarization algorithm. Indeed, if a tuple ti does not have minimum
support, i.e. supp(ti) < suppmin, by generalizing ti into t′i, t′i can have
minimum support, i.e. supp(t′i) ≥ suppmin. This phenomenon is due to the
reduction of the overall number of modalities in the dataset by generalizing
tuples. Noisy patterns are then potentially introduced and has the drawback
of burdening the FPM algorithm as more paths need to be explored. This
explains the increased maximum length of the frequent patterns mined as
well as the high computational cost, e.g. completion of the mining with
suppmin = 8 and ω = 1 took more than 12 hours.

However, this phenomenon can be leveraged. When reducing further the
temporal precision of the summaries, e.g. ω = 10, the maximum length of
frequent patterns is reduced as well as the processing time. This observation
backs up our earlier intuition that reducing the temporal precision has the
nice property of locally merging noisy patterns. The sweet spot ωopt is then
somewhere between ω = 5 and ω = 10 where both processing time and
frequent patterns’ length are short and acceptable.
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6 Related work

The Time-Aware Content Summarization approach is a work relating to
several areas of research which are (i) time series representation, (ii) semantic
compression and (iii) semantic summarization.

The term “time series”, by contrast to “time sequences”, refers to se-
quences of one or more numerical values. Various numerical methods, e.g.
moving average [10], can be applied for reducing the number of data point
in time series. They essentially consist of computing aggregates of several
data points over a period of time and can not be applied to textual time
sequences since such aggregates can not be computed for textual data.

SAX [9] is a technique capable of handling data reduction using a sym-
bolic representation of numerical time series. Due to its symbolic nature,
this method is more likely applicable to textual time sequence summariza-
tion. Indeed, first, the authors compute aggregates by Piecewise Aggregate
Approximation (PAA). Then, these PAA are converted into a limited vocab-
ulary, e.g. {a,b,c,...}. However, this vocabulary does not yield any semantics
from the expert’s point of view in the sense they do not provide her with an
immediate understanding. For example, an increase of 15%-20% on Googles
stock represented by the literal a is very poor compared to the expression
strong increase. By contrast with this automated approach, aggregation of
textual description requires an explicit model of the semantic of descriptor,
e.g., an ontology.

When considering the data reduction aspect of the summary, the do-
mains of semantic compression and semantic summarization are strongly
related. The intuition in these domains is that data reduction can be done
by exploiting the underlying semantics of the data and one can use the
dependency between attribute values and tuples to regroup similar infor-
mation together. We show however that the objectives are not entirely the
same. Indeed, the objective of semantic compression algorithms is to use
the underlying semantics of data aiming at reducing its storage. Algorithms
such as Fascicles[8], Spartan[4] and ItCompress[7] were designed for opti-
mizing a data size. To do so, they focus on finding a subset of attributes
and tuples which are similar enough, given some error tolerance parame-
ters, and represent those tuples using a common representation. In the case
of Spartan, this common representation is a Classification and Regression
Tree (a.k.a. Cart) which is a prediction model. In Fascicles, Jagadish et
al. reorder the data and regroup tuples that have similar attribute values
over k attributes into a kD-fascicle. On the other hand, ItCompress keeps
the ordering of the data by representing similar tuples with Representative
Rows (RR) grouped in a separate table and outliers in another table. These
semantic compression algorithms are not well suited as support structure
for frequent pattern mining in financial news as: (i) the ordering of tuples
is not kept (e.g. Fascicles), (ii) the number of tuples is not reduced and (iii)
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processing is not incremental and has high complexity.
In contrast with semantic compression techniques, semantic summariza-

tion approaches aim at representing data in a more reduced and concise form
by both reducing attribute domains and tuple numerosity. Saint-Paul et al.
proposed in [12] SaintEtiQ which is a linguistic summarization algorithm
that uses background knowledge made of fuzzy partitions over attribute do-
mains to build a hierarchy of summaries. Each node in the hierarchy is a
summary representing a subset of the initial data. The closer to the leaves
of the hierarchy, the more precise the representation. Unfortunately, this
hierarchical structure does not preserve the ordering of the tuples which is
crucial for conventional FPM algorithms. The summarization technique we
propose was inspired by the Attribute Oriented Induction (AOI) process for
supporting data mining [5]. The AOI algorithm takes as input a table of tu-
ples of attribute-value pairs and outputs a smaller table of tuples expressed
at higher conceptual levels. Provided a concept hierarchy is defined for each
attribute, at each iteration of the algorithm, an attribute Ai is selected and
all tuples are generalized on attribute Ai. Identical and contiguous general-
ized tuples are then merged together and counts maintained in a COUNT
attribute. This process is repeated until the table attains a minimum desired
level of generalization defined by the expert. The main limitations of this
approach regarding FPM are: (i) the lack of control in the generalization
of each attribute which could be over-generalized and lead to non appropri-
ate information loss, (ii) its iterative aspect and (iii) the lack of temporal
control in the process. Our vision is that a tuple oriented approach can be
performed in an incremental way and benefit environments and applications
that allow limited processing steps—often one— over the data.

7 Conclusion and future work

In this paper, we have tackled the issue of designing a support structure for
mining financial news. Frequent Pattern Mining in financial news has many
applications among which a most desired one is to be able to anticipate
future events, e.g., for marketing purposes. However, the inherent nature
of financial news brings many challenges in the mining task. We have high-
lighted these challenges and introduced in this paper a summary structure
capable of seamlessly supporting classical analysis algorithms in such en-
vironment. Our Time-Aware Content Summary represents news data in a
more reduced and concise form using both its content and temporal infor-
mation.

To the best of our knowledge, this is the first summary structure designed
to take into account both content and temporal aspects of data. The pre-
liminary experiments shows that the proposed summary is an inexpensive
structure to build while providing a solid basis for finding patterns expressed
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in a higher level of abstraction (trends) in limited time (e.g. in the order
of minutes). Such characteristics allow to envision a very interactive way
of mining financial news. Mining over the summary gives trends over the
original news data. If not satisfied with the granularity of the patterns,
an expert can choose to focus on a portion of the output (e.g. patterns
with news relating to high interest rates and low inflation), and reiterate
the summarization and mining cycle with more precise settings (e.g. ω and
suppmin). The advantage of this interactive mining approach is the selec-
tion of smaller subsets of the original news at each iteration. This interactive
mining allows experts to timely access to the information they need with-
out having to perform the mining directly on the raw news at low levels of
support which can eventually not be completed in acceptable times.
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A Proof

We denote W = 〈t′W1
, ..., t′Wω

〉 the sequence of ω last tuples summarized in
S. Given a window of precision ω ≥ 2 we consecutively prove these three
cases as follows:

1. Case (|S1| − ω) ≥ 2. The last ω tuples in S1 are in W , i.e., W =
{t′W1

= t′m−ω, ..., t′Wω
= t′m}, and at least the first 2 tuples of S1 are not in

W . We denote W = {t′1, t
′
2, ...} the set of tuples in S1 and not in W thereby

S = 〈t′1, t
′
2, ...

︸ ︷︷ ︸

|W |

, [t′m−ω, ..., t′m
︸ ︷︷ ︸

|W |

]〉, where “[” and “]” materialize the span of the

window W . †† Consequently there is a possibility for at least |W | ≥ 1 tuples
(all except t′1) to be the first tuple of S2. Suppose t′T1

arrives and t′T1
= t′2 =

u′
1 ∈ W , then window W is moved forward, giving W = 〈t′W2

, ..., t′Wω
, t′2〉,

W = {t′1, t
′
W1

(= t′m−ω), ...} and S = 〈t′1, t
′
2, ..., t

′
m−ω, [t′m−ω+1, ..., t

′
m, t′2]

︸ ︷︷ ︸

|W |

〉. In

the following iteration, there are |W | ≥ 2 choices for tuple u′
2. Recursively,

we prove it is possible to have all tuples u′
i of S2 in S. This proves that S2

can be found in S without any requirements on α.
2. Case (|S1| − ω) = 1. The last ω tuples in S1 are in W , i.e.
W = {t′W1

= t′2, ..., t
′
Wω

= t′m}, W = {t′1} and

S = 〈 t′1
︸︷︷︸

|W |

, [t′2, ..., t
′
Wω

]
︸ ︷︷ ︸

|W |

〉. If |W | = 1 then u′
1 = t′1 and recursively, all

u′
i = t′i, thus S2 = S1: |W | = 1 is not acceptable. We need at least 2 tuples

in W to be in the situation †† of case (|S1|−ω) ≥ 2. The following incoming
generalized tuple is t′T1

:
If t′T1

∈ S1, t′T1
will be merged into S, recursively, ∀t′Ti

∈ T and t′Ti
∈ S1,

t′Ti
will be merged into S. Therefore, α = 0 is not possible, meaning at least

α ≥ 1.
If t′T1

/∈ S1, then t′T1
will be added to S, W is moved forward and α ≥ 1.♦

As a result, |W | = |{t′1, t
′
W1

(= t′2)}|) = 2 and S = 〈t′1, t
′
2

︸︷︷︸

|W |

, [t′3, ..., t
′
Wω

]
︸ ︷︷ ︸

|W |

〉. This

case brings us back to the situation †† of case (|S1| − ω) ≥ 2 where we
showed that no more requirements are needed for α. Therefore, α ≥ 1 is the
minimal condition to find S2 as a subsequence in S.

3. Case (|S1| − ω) < 1. All generalized tuples in S1 are in W , i.e.:
W = S = 〈[t′1, t

′
2, ..., t

′
m

︸ ︷︷ ︸

|S1|

, ∅, ∅, ..., ∅
︸ ︷︷ ︸

ω−|S1|

]〉 and W = ∅. For any incoming generalized

tuple t′Ti
∈ T , if t′Ti

∈ S1 then t′Ti
is merged into S. It is impossible to find

S2 with W = ∅. Therefore, W needs to be filled up with ω − |S1| distinct
tuples t′Ti

∈ T and t′Ti
/∈ S1 which leads to α ≥ β + ω − |S1| where β is a

constant to be determined.
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Suppose ω − |S1| distinct generalized tuples are added to S, thus S =
〈[t′1, t

′
2, ..., t

′
m, t′T1

, ..., t′Tω−|S1|
]

︸ ︷︷ ︸

|W |

〉. For any incoming generalized tuple t′Tω−|S1|+1
∈

T :
If t′Tω−|S1|+1

∈ W (= S) then t′Tω−|S1|
is merged into S.

If t′Tω−|S1|+1
/∈ W (= S) then t′Tω−|S1|+1

is added to S and window W is

moved forward, consequently:
S = 〈 t′1

︸︷︷︸

|W |

, [t′2, ..., t
′
m, t′T1

, ..., t′Tω−|S1|+1
]

︸ ︷︷ ︸

|W |

〉, W = {t′1} and β ≥ 1. Similarly,

we show that if incoming generalized tuple t′
ω−|S1|+2 ∈ T and t′

ω−|S1|+2 /∈ W

then t′
ω−|S1|+2 is added to S and window W moved forward. Consequently,

W = {t′1, t
′
2} and β ≥ 2. The situation is then the same as ♦ in case

(|S1| − ω) = 1. Therefore, we demonstrate that α ≥ 2 + ω − |S2| is the
minimal condition to find S2 as a subsequence in S.


