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We consider composition operators in the Dirichlet space of the unit disc in the plane. Various criteria on boundedness, compactness and Hilbert-Schmidt class membership are established. Some of these criteria are shown to be optimal.

Introduction

In this note we consider composition operators in the Dirichlet space of the unit disc. A comprehensive study of composition operators in function spaces and their spectral behavior could be found in [START_REF] Cowen | Composition Operators on Spaces of Analytic Functions[END_REF][START_REF] Shapiro | Composition operators and classical function theory[END_REF][START_REF] Zhu | Operator theory in function spaces[END_REF]. See also [START_REF] Gallardo-Gutiérrez | Exceptional sets and Hilbert-Schmidt composition operators[END_REF][START_REF] Gallardo-Gutiérrez | Hilbert-Schmidt composition operators on Dirichlet spaces[END_REF][START_REF] Gallardo-Gutiérrez | Hausdorff measures, capacities and compact composition operators[END_REF][START_REF] Tjani | Compact composition operators on Besov spaces[END_REF][START_REF] Wirths | Global integral criteria for composition operators[END_REF][START_REF] Zorboska | Composition operators on weighted Dirichlet spaces[END_REF] for a treatment of some of the questions addressed in this paper.

Let D be the unit disc in the complex plane and let T = ∂D be its boundary. We denote by D the classical Dirichlet space. This is the space of all analytic functions f on D such that

D(f ) := D |f ′ (z)| 2 dA(z) < ∞,
where dA(z) = dxdy/π stands for the normalized area measure in D. We call D(f ) the Dirichlet integral of f . The space D is endowed with the norm

f 2 D := |f (0)| 2 + D(f ). It is standard that a function f (z) = ∞ n=0 f (n) z n , holomorphic on D, belongs to D if and only if n≥0 | f (n)| 2 (1 + n) < ∞,
and that this series defines an equivalent norm on D.

Since the Dirichlet space is contained in the Hardy space H 2 (D), every function f ∈ D has non-tangential limits f * almost everywhere on T. In this case, however, more can be said. Indeed, Beurling [START_REF] Carleson | Selected Problems on Exceptional Sets[END_REF] showed that if f ∈ D then f * (ζ) = lim r→1 f (rζ) exists for ζ ∈ T outside of a set of logarithmic capacity zero.

Let ϕ be a holomorphic self-map of D. The composition operator C ϕ on D is defined by

C ϕ (f ) = f • ϕ, f ∈ D.
We are interested herein in describing the spectral properties of the composition operator C ϕ , such as compactness and Hilbert-Schmidt class membership, in terms of the size of the level set of ϕ. For s ∈ (0, 1), the level set E ϕ (s) of ϕ is given by

E ϕ (s) = {ζ ∈ T: |ϕ(ζ)| ≥ s}.
We give new characterizations of Hilbert-Schmidt class membership in the case of the Dirichlet space. We also establish the sharpness of these results.

A general criterion

For α > -1, dA α will denote the finite measure on D given by

dA α (z) := (1 + α)(1 -|z| 2 ) α dA(z).
For p ≥ 1 and α > -1, the weighted Bergman space A p α consists of the holomorphic functions f on D for which

f p,α := D |f (z)| p dA α (z) 1/p < ∞.
We denote by D p α the space consisting of analytic functions f on D such that f p

D p α := |f (0)| p + f ′ p p,α < ∞.
Appropriate choices of the parameter α give, with equivalent norm, all the standard holomorphic function spaces. Indeed, The Hardy space H 2 can be identified with D 2 1 . The classical Besov space is precisely

D p p-2 , and if p < α + 1, D p α = A p α-2 .
Finally, the classical Dirichlet space D is identical to D 2 0 . We recall that, by the reproducing formula, one has

f (z) = D f (w) (1 -wz) 2+α dA α (w), z ∈ D, (1) 
for every f ∈ A p α (see [START_REF] Zhu | Operator theory in function spaces[END_REF]).

Lemma 2.1. Let p ≥ 1 and let σ > -1. Then, there exists a constant C depending only on p and σ such that

|f (z)| p ≤ C D |f (λ)| p |1 -λz| 2+σ dA σ (λ),
for every f ∈ A p σ and z ∈ D. Proof. By the above reproducing formula,

f (z) 1 -zw = D f (λ) 1 -λw dA σ (λ) (1 -λz) 2+σ , z, w ∈ D,
for every f ∈ A p σ . By Hölder's inequality, with q = p/(p -1),

|f (z)| p |1 -zw| p ≤ D |f (λ)| p dA σ (λ) |1 -λz| 2+σ × D dA σ (λ) |1 -λw| q |1 -λz| (2+σ)p p q .
Taking w = z, and using the standard estimate ([16, Lemma 3.10])

D dA c (λ) |1 -zλ| 2+c+d ≍ 1 (1 -|z| 2 ) d , if d > 0 , c > -1, (2) 
we get the desired conclusion.

For λ ∈ D, consider the test function

F λ,β (z) = 1 (1 -λz) 1+β , z ∈ D. If β ≥ 0 is chosen such that δ := δ(p, α, β) = 2 + β -(2 + α)/p > 0, by (2) 
, we have

F λ,β p D p α ≍ (1 -|λ| 2 ) -pδ .
The following theorem unifies and generalizes the previously known results of MacCluer [3, Theorem 3.12], Tjani [START_REF] Tjani | Compact composition operators on Besov spaces[END_REF]Theorem 3.5] and Wriths-Xiao [13, Theorem 3.2] on Hardy, Besov and weighted Dirichlet spaces, respectively.

As mentioned before, the proof we provide here is short and simple.

Theorem 2.2. Let p > 1. Suppose ϕ ∈ D p α satisfies ϕ(D) ⊂ D. Fix β ≥ 0 such that δ := δ(p, α, β) = 2 + β -(2 + α)/p > 0. Then (a) C ϕ is bounded on D p α ⇐⇒ sup λ∈D (1 -|λ| 2 ) δ F λ,β • ϕ D p α < ∞; (b) C ϕ is compact on D p α ⇐⇒ lim |λ|→1 (1 -|λ| 2 ) δ F λ,β • ϕ D p α = 0.
Proof. To prove (a), we observe that if C ϕ is bounded , then

F λ,β • ϕ D p α = O((1 -|λ| 2 ) -δ
). For the converse we may assume, without loss of generality, that ϕ fixes the origin. It follows from Lemma 2.1 that, for f ∈ D p α ,

D |ϕ ′ (z)| p |f ′ (ϕ(z))| p dA α (z) ≤ C D |ϕ ′ (z)| p D |f ′ (λ)| p |1 -λϕ(z)| (2+β)p dA 2p+βp-2 (λ) dA α (z) = C D |f ′ (λ)| p (1 -|λ| 2 ) 2p+βp-2-α D |ϕ ′ (z)| p |1 -λϕ(z)| (2+β)p dA α (z) dA α (λ) = C D |f ′ (λ)| p (1 -|λ| 2 ) pδ (F λ,β • ϕ) ′ p p,α dA α (λ).
Therefore part (a) follows.

(b) Without loss of generality we assume that ϕ(0

) = 0. Note that C ϕ is compact on D p α if and only if for every bounded sequence (f n ) n ⊂ D p α such that f n → 0 uniformly on compact subsets of D, we have C ϕ (f n ) D p α → 0, as n → ∞. Suppose that C ϕ is compact. Since (1 -|λ| 2 ) δ F λ,β → 0 uniformly on compact subsets of the unit disc, as |λ| → 1, we see that C ϕ (F λ,β ) D p α = o((1 -|λ| 2 ) -δ ). Conversely, assume that lim |λ|→1 (1 -|λ| 2 ) δ F λ,β • ϕ D p α = 0. Let (f n ) n be a bounded sequence of D p
α such that f n → 0 uniformly on compact sets. Since f ′ n → 0 uniformly on compact sets, it follows from the proof of part (a) and the hypothesis that, for r close enough to 1,

C ϕ (f n ) p D p α -|f n (0)| p ≤ rD |f ′ n (λ)| p (1 -|λ| 2 ) pδ (F λ,β • ϕ) p p,α dA α (λ) + D\rD |f ′ n (λ)| p (1 -|λ| 2 ) pδ (F λ,β • ϕ) ′ p p,α dA α (λ) → 0, n → ∞
which finishes the proof.

The following result is an immediate consequence of Theorem 2.2.

Corollary 2.3. Let ϕ : D → D such that ϕ ∈ D. (a) If sup n≥1 D(ϕ n ) < ∞, then C ϕ is bounded; (b) If lim n→∞ D(ϕ n ) = 0, then C ϕ is compact.
Proof. We consider the test function F λ,0 with β = α = 0 and p = 2. Both (a) and (b) follow from the following inequality:

D(F λ,0 • ϕ) ≤ 2 ( 1 -|λ| 2 ) 2 D |ϕ ′ (z)| 2 (1 -|λ| 2 ϕ(z)| 2 ) 4 dA(z) ≤ c (1 -|λ| 2 ) 2 n≥0 (n + 1) 3 |λ| 2n D |ϕ ′ (z)| 2 | ϕ n (z)| 2 dA(z) = c (1 -|λ| 2 ) 2 n≥0 (1 + n) |λ| 2n D(ϕ n+1 ) ≤ c lim sup n→∞ D(ϕ n+1 ).
Remarks 2.4.

1. The compactness criterion for C ϕ in the Bloch space is equivalent to ϕ n B → 0 as was shown in [START_REF] Wulan | Compact composition operators on BMOA and the Bloch space[END_REF] (see also [START_REF] Montes-Rodriguez | The essential norm of a composition operator on Bloch spaces[END_REF][START_REF] Tjani | Compact composition operators on Besov spaces[END_REF]). In the case of the Hardy space H 2 , however, we know that if C ϕ is compact on H 2 then ϕ n H 2 → 0 but the converse does not hold [START_REF] Cowen | Composition Operators on Spaces of Analytic Functions[END_REF]. Note that as before in the proof of Corollary 2.3 (β = 0, α = 1 and p = 2) if

ϕ n H 2 = o(1/ √ n), then C ϕ is compact on H 2 .
2. The characterization of compact composition operators on the Dirichlet space in terms of Carleson measures can be found in [START_REF] Cowen | Composition Operators on Spaces of Analytic Functions[END_REF][START_REF] Tjani | Compact composition operators on Besov spaces[END_REF][START_REF] Zorboska | Composition operators on weighted Dirichlet spaces[END_REF]. A positive Borel measure µ given on D satisfying

D |f (z)| 2 dµ(z) ≤ f 2 2,0 , f ∈ A 2 0 ,
is called a Carleson measure for A 2 0 , i.e., the identity map i 0 : A 2 0 → L 2 (µ) is a bounded operator. Such a measure has the following equivalent properties (see [START_REF] Zhu | Operator theory in function spaces[END_REF]Theorem 7.4]). A positive Borel measure µ is a Carleson measure for A 2 0 if and only if Let ϕ : D → D be analytic and denote by n ϕ (z) the multiplicity of ϕ at z. By the change of variable formula [START_REF] Shapiro | Composition operators and classical function theory[END_REF],

sup λ∈D (1 -|λ| 2 ) 2 D dµ(z) |1 -λz| 4 < ∞,
F λ,0 p 2,0 = (1 -|λ| 2 ) 2 D n ϕ (z) dA(z) |1 -λz| 4 .
Therefore, as a consequence of Theorem 2. 

       C ϕ is bounded in D ⇐⇒ sup I⊂T 1 |I| 2 S(I) n ϕ (z) dA(z) < ∞; C ϕ is compact in D ⇐⇒ lim |I|→0 1 |I| 2 S(I) n ϕ (z) dA(z) = 0.

Hilbert-Schmidt membership

In the case of the Hardy space H 2 , one can completely describe the membership of C ϕ in the Hilbert-Schmidt class in terms of the size of the level sets of the inducing map ϕ. Indeed, C ϕ is Hilbert-Schmidt in H 2 if and only if

n≥0 ϕ n 2 H 2 = T |dζ| 1 -|ϕ(ζ)| 2 < ∞.
Given an arbitrary measurable function f on T, consider the associated distribution function m f defined by

m f (λ) = |{ζ ∈ T : |f (ζ)| > λ|}, λ > 0.
It then follows that C ϕ is in the Hilbert-Schmidt class of H 2 if and only if

T |dζ| 1 -|ϕ(ζ)| 2 = ∞ 1 m (1-|ϕ| 2 ) -1 (λ) dλ ≍ 1 0 |E ϕ (s)| (1 -s) 2 ds < ∞.
It was shown by Gallardo-González [START_REF] Gallardo-Gutiérrez | Hausdorff measures, capacities and compact composition operators[END_REF]Theorem] that there is a mapping ϕ taking D to itself such that C ϕ is compact in H 2 , and that the level set E ϕ (1) has Hausdorff measure equal to one. Recall that the Hausdorff dimension of E

d(E) = inf{α : Λ α (E) = 0}
where Λ α (E) is the α-Hausdorff measure of E given by ) and E has Hausdorff dimension one. (such examples can be given by generalized Cantor sets [START_REF] Carleson | Selected Problems on Exceptional Sets[END_REF]). Let ω(t) = (log(e/t)) -2 , and consider the outer function given by

Λ α (E) = lim ǫ→0 inf i |∆ i | α : E ⊂ i ∆ i , |∆ i | < ǫ .
|f ω,E (ζ)| = e -w(d(ζ,E)) ,
a.e on T.

Since ω satisfies the Dini condition

0 ω(t) t dt < ∞, it follows that f ω,E ∈ A(D) := Hol(D) ∩ C(D)
, disc algebra (see [START_REF] Garnett | Bounded analytic functions[END_REF] p.105-106) and so E f ω,E (1) = E. On the other hand

T |dζ| 1 -|f ω,E (ζ)| 2 ≍ T |dζ| ω(d(ζ, E)) ≍ 0 |E t | ω ′ (t) ω(t) 2 dt,
(see [4, Proposition A.1 ] for the last equality). Since the last integral converges, C ϕ is a Hilbert-Schmidt operator in H 2 .

We have the following more precise result.

Theorem 3.1. Let E be a closed subset of T with Lebesgue measure zero. There exists a mapping ϕ : D → D, ϕ ∈ A(D) such that C ϕ is a Hilbert-Schmidt operator on H 2 and that E ϕ (1) = E.

Proof. The proof is based a well known construction of peak functions in the disc algebras. Let T \ E = ∪ n≥1 (e ian , e ibn ). For t ∈ (a n , b n ), we define

g(e it ) = τ n (b n -a n ) 1/2 ((b n -a n ) 2 -(2t -(b n + a n )) 2 ) 1/4 ,
where (τ n ) n ⊂ (0, ∞) will be chosen later, and g(e it ) := +∞ if e it ∈ E. Note that

2π 0 g(e it ) 2 dt = π ∞ n=1 τ 2 n (b n -a n ). Since ∞ n=1 (b n -a n ) = 2π, there exists a sequence (τ n ) n such that lim n→+∞ τ n = +∞ and ∞ n=1 τ 2 n (b n -a n ) < ∞.
Let U denote the harmonic extension of g on the unit disc given by

U(re iθ ) = 1 2π 2π 0 1 -r 2 |e it -re iθ | 2 g(e it ) dt = n∈Z g(n) r |n| e inθ .
Since τ n → ∞, one can easily verify that lim t→θ g(e it ) = +∞, for e iθ ∈ E.

Hence, lim

r→1 -U(re iθ ) = +∞, for e iθ ∈ E. Let V be the harmonic conjugate of U, with V (0) = 0. It is given by

V (re iθ ) = n =0 n |n| g(n) r |n| e inθ .
Now, since g is a C 1 function on T \ E, we see that the holomor-

phic function f = U + iV is continuous on D \ E. Knowing that lim r→1 -U(re it ) = +∞, for e it ∈ E, we get that ϕ = f f + 1 ∈ A(D), disc algebra, and E ϕ (1) = E. Finally 1 2π 2π 0 dt 1 -|ϕ(e it )| 2 = 1 2π 2π 0 (U(e it ) + 1) 2 + V 2 (e it ) (U(e it ) + 1) 2 -U 2 (e it ) dt ≤ 1 2π 2π 0 (U(e it ) + 1) 2 + V 2 (e it )dt ≤ 1 + 2 n∈Z | g(n)| 2 , which shows that C ϕ is Hilbert-Schmidt because g ∈ L 2 (T).
Let E be a closed subset of the unit circle T. Fix a non-negative

function w ∈ C 1 (0, π] such that T w(d(ζ, E)) |dζ| < ∞,
where d denotes the arclength distance. Now, let f w,E be the outer function given by

|f * w,E (ζ)| = e -w(d(ζ,E)) , a.e. on T. (3) 
The following lemma gives an estimate for the Dirichlet integral of f w,E in terms of w and the distance function on E. The proof is based on Carleson's formula, and can be achieved by slightly modifying the arguments used in [5, Theorem 4.1].

Lemma 3.2. Assume that the function ω is nondecreasing and ω(t γ ) is concave for all γ > 2. Then

D(f w,E ) ≍ T ω ′ (d(ζ, E)) 2 e -2w(d(ζ,E)) d(ζ, E) |dζ|.
Since the sequence {z n / √ n + 1} ∞ n=0 is an orthonormal basis of D, the operator C ϕ is Hilbert-Schmidt on the Dirichlet space if and only if 1

π D |ϕ ′ (z)| 2 (1 -|ϕ(z)| 2 ) 2 dA(z) = n≥1 D(ϕ n ) n < ∞.
Theorem 3.3. Assume that the function ω is nondecreasing and ω(t γ ) is concave for some γ > 2.

Then C f w,E is in the Hilbert-Schmidt class in D if and only if T ω ′ (d(ζ, E)) 2 w(d(ζ, E)) 2 d(ζ, E) |dζ| < ∞.
Proof. We first note that f n w,E = f nw,E . Therefore, by Lemma 3.2, we have d(ζ,E)), the result fllows.

D |f ′ w,E (z)| 2 (1 -|f w,E (z)| 2 ) 2 dA(z) = ∞ n=1 D(f nw,E ) n ≍ T ω ′ (d(ζ, E)) 2 d(ζ, E) ∞ n=1 ne -2nw(d(ζ,E)) |dζ| ≍ T ω ′ (d(ζ, E)) 2 [1 -e -2w(d(ζ,E)) ] 2 d(ζ, E) |dζ|. Since 1 -e -2w(d(ζ,E)) ≍ w(
Given a (Borel) probability measure µ on T, we define its α-energy, 0 ≤ α < 1, by

I α (µ) = ∞ n=1 | µ(n)| 2 n 1-α .
For a closed set E ⊂ T, its α-capacity cap α (E) is defined by cap α (E) := 1/ inf{I α (µ) : µ is a probability measure on E}.

If α = 0, we simply note cap(E) and this means the logarithmic capacity of E.

The weak-type inequality for capacity [START_REF] Carleson | Selected Problems on Exceptional Sets[END_REF] states that, for f ∈ D and

t ≥ 4 f 2 D , cap({ζ : |f (ζ)| ≥ t}) ≤ 16 f 2 D t 2 .
As a result of this inequality, we see that if lim inf ϕ n D = 0, then cap(E ϕ (1)) = 0. Indeed, since E ϕ (1) = E ϕ n (1), the weak capacity inequality implies that

cap(E ϕ (1)) = cap(E ϕ n (1)) ≤ 16 ϕ n 2 D .
Now let n → ∞. Hence, in particular, if the operator C ϕ is in the Hilbert-Schmidt class in D, then cap(E ϕ (1)) = 0. This result was first obtained by Gallardo-González [START_REF] Gallardo-Gutiérrez | Exceptional sets and Hilbert-Schmidt composition operators[END_REF][START_REF] Gallardo-Gutiérrez | Hilbert-Schmidt composition operators on Dirichlet spaces[END_REF] using a completely different method. Theorems 3.4 and 3.6 give quantitative versions of this result.

Theorem 3.4. If C ϕ is a Hilbert-Schmidt operator in D, then 1 0 cap(E ϕ (s)) 1 -s log 1 1 -s ds < ∞. (4) 
Proof. Fix λ ∈ T and let

ϕ λ (ζ) = log Re 1 + λϕ(ζ) 1 -λϕ(ζ) , ζ ∈ T. Since D |ϕ ′ (z)| 2 (1 -|ϕ(z) 2 |) 2 dA(z) < ∞,
it follows that ϕ λ ∈ D(T), see [START_REF] Gallardo-Gutiérrez | Exceptional sets and Hilbert-Schmidt composition operators[END_REF], where

D(T) := {f ∈ L 2 (T) : f 2 D(T) = n∈Z | f (n)| 2 (1 + |n|) < ∞}. Setting ∆ λ := {ζ ∈ T : |1 -λϕ(ζ)| ≥ 1}, we see that |ϕ λ (ζ)| ≍ log 1 1 -|ϕ(ζ)| 2 , ∀ζ ∈ ∆ λ .
Applying the strong capacity inequality [14, Theorem 2.2] to ϕ λ , we get

∞ > ϕ λ 2 D(T) ≥ c ∞ cap {ζ ∈ T : |ϕ λ (ζ)| > s} ds 2 = c ∞ cap ζ ∈ T : log 1 -|ϕ(ζ)| 2 |1 -λϕ(ζ)| 2 > s ds 2 ≥ c ∞ cap ζ ∈ T ∩ ∆ λ : log 1 -|ϕ(ζ)| 2 |1 -λϕ(ζ)| 2 > s ds 2 ≥ c ∞ cap ζ ∈ T ∩ ∆ λ : log 1 1 -|ϕ(ζ)| 2 > 4s ds 2 ≥ c 1 1 cap ζ ∈ T ∩ ∆ λ : |ϕ(ζ)| > u d log 1 1 -u 2 .
Since T = ∆ 1 ∪ ∆ -1 , the subadditivity of the capacity implies that

∞ > ϕ 1 2 D(T) + ϕ -1 2 
D(T) ≥ c 2 1 cap ζ ∈ T : |ϕ(ζ)| > u d log 1 1 -u 2 ,
and hence the theorem follows.

Remarks 3.5.

Since {z

n /(1 + n) 1-α 2 } ∞ n=0 is an orthonormal basis in D α , α ∈ (0, 1), C ϕ is a Hilbert-Schmidt operator in D α if and only if ∞ n=1 D α (ϕ n ) n 1-α ≍ D |ϕ ′ (z)| 2 (1 -|ϕ(z)| 2 ) 2+α dA α (z) < ∞.
Therefore, for fixed λ ∈ T, the function

ϕ λ (ζ) = Re 1 + λϕ(ζ) 1 -λϕ(ζ) -α/2 , (ζ ∈ T),
belongs to the weighted harmonic Dirichlet space

D α (T) := {f ∈ L 2 (T) : f 2 Dα(T) = n∈Z | f (n)| 2 (1 + |n|) 1-α < ∞},
(see [START_REF] Gallardo-Gutiérrez | Hilbert-Schmidt composition operators on Dirichlet spaces[END_REF]) . Applying again the strong capacity inequality [14, Theorem 2.2] for D α to ϕ λ , we get as before 

( 1 -|λ| 2 ) 2 D

 12 or, equivalently, sup I⊂T µ(S(I))/|I| 2 < ∞, for any subarc I ⊂ T with arclengh |I|, and S(I) is the Carleson box. The measure µ is called vanishing (or compact) Carleson measure for A 2 0 if the identity map i α : A 2 0 → L 2 (µ) is a compact operator. This happens if and only if lim |λ|→1 dµ(z) |1 -λz| 4 = 0 ⇐⇒ lim |I|→0 µ(S(I))/|I| 2 = 0.

  Given E ⊂ T and t > 0, let us write E t = {ζ : d(ζ, E) ≤ t} where d denotes the arclength distance and |E t | denotes the Lebesgue measure of E. Let E be a closed subset of T with |E t | = O((log(e/t)) -3

1 0Theorem 3 . 6 .

 136 cap α (E ϕ (s)) (1 -s) 1+α ds < ∞.The following theorem is the analogue of Proposition 3.1 for the Dirichlet space. It shows that condition (4) is optimal.Let h : [1, +∞[→ [1, +∞[ be a function such that lim x→∞ h(x) = +∞. Let E be a closed subset of T such that cap(E) = 0.Then there is ϕ ∈ A(D) ∩ D, ϕ(D) ⊂ D such that :(1) E ϕ (1) = E; (2) C ϕ is in the Hilbert-Schmidt class in D; Let k(x) = h(e x ), there exists a continuous decreasing functionψ such that +∞ ψ(x) dx 2 < ∞ and +∞ ψ(x) k(x) dx 2 = ∞. Set η(t) = ψ -1 (cap(E t )). We have 0 cap(E t ) |dη 2 (t)| ≍ 0 ψ(η(t)) |dη 2 (t)| ≍ +∞ ψ(x) dx 2 < ∞,and,0 cap(E t ) h(e η(t) )) |dη 2 (t)| ≍ 0 ψ(η(t)) k(η(t)) |dη 2 (t)| ≍ +∞ ψ(x) k(x) dx 2 = ∞. Since 0 cap(E t ) |dη 2 (t)| < ∞,by [4, Theorem 5], there exists a function f ∈ D such that Ref (ζ) ≥ η(d(ζ, E)) and |Imf (ζ)| < π/4, q.e. on T. By harmonicity, |Imf (z)| < π/4 , |z| < 1, Now take ϕ = exp(-e -f ).By a simple modification in the construction of f as in[START_REF] Brown | Some examples of cyclic vectors in Dirichlet space[END_REF], we can suppose that ϕ ∈ A(D). Hence E ϕ (1) = E andD |ϕ ′ (z)| 2 (1 -|ϕ(z)| 2 ) 2 ≍ D |f ′ (z)| 2 e -2 Ref (z) e -2 e -Ref (z) cos(Imf (z)) e -2 Ref (z) cos 2 (Imf (z)) dA(z) ≤ D |f ′ (z)| 2 exp(-√ 2 e -Ref (z) ) dA(z) ≤ c D |f ′ (z)| 2 dA(z) < ∞.Hence C ϕ is in the Hilbert-Schmidt class. Finally, since E ϕ (s) ⊇ {ζ ∈ T : η(d(ζ, E)) ≥ log(1/1 -s)}, we get 0 cap(E ϕ (s))h(1/1-s) d log(1/1-s) 2 ≥ 0 cap(E t )h(e η(t) ) |dη 2 (t)| = +∞.

  2, C ϕ is bounded in D if and only if n ϕ (z)dA(z) is a Carleson measure for A 2 0 and C ϕ is compact in D if and only if n ϕ (z)dA(z) is a vanishing Carleson measure for A 2 0 . More explicitly, we have
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