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We consider a regression model with errors-in-variables: (Y, X), where Y = f (Z) + ξ and X = Z + W . Our goal is to estimate the unknown regression function f and its derivatives under mild assumptions on ξ (only finite moments of order 2 are required). To reach this goal, we develop a new adaptive wavelet estimator based on a hard thresholding rule. Taking the minimax approach under the mean integrated squared error over Besov balls, we prove that it attains a sharp rate of convergence.

several papers for various models (but never (1.1)) starting with [START_REF] Bhattacharya | Estimation of a probability density function and its derivatives[END_REF]. For references using wavelet methods, see e.g. [START_REF] Chaubey | Wavelet based estimation of the derivatives of a density for m-dependent random variables[END_REF][START_REF] Chaubey | Wavelet based estimation of the derivatives of a density with associated variables[END_REF][START_REF] Chesneau | Wavelet estimation of the derivatives of an unknown function from a convolution model[END_REF][START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF].

Another feature of the study concerns ξ 1 , . . . , ξ n : to estimate f (d) (including f = f (0) ), we only assume that ξ 1 has finite moments of order 2. And thus we do not need to know the distribution of ξ 1 . Moreover, this relaxes the assumption on ξ 1 in [START_REF] Comte | Nonparametric estimation of the regression function in an errors-in-variables model[END_REF] where finite moments of order > 6 are required.

Under this general framework, considering the ordinary smooth case on g (see (2.2)), we estimate f (d) by a new wavelet estimator based on a hard thresholding rule. It has the originality to combine a singular value decomposition (SVD) approach similar to the one of [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF] and some technical tools introduced in wavelet estimation theory by [START_REF] Delyon | On minimax wavelet estimators[END_REF]. We evaluate its performances by taking the minimax approach under the mean integrated squared error (MISE) over a wide class of functions: the Besov balls B s p,r (M ) (to be defined in Section 3). We prove that our estimator attains the rate of convergence v n = (ln n/n) 2s/(2s+2δ+2d+1) , where δ is a factor related to the ordinary smooth case.

This rate of convergence is sharp in the sense that it is the one attains by the best nonrealistic linear wavelet estimator up to a logarithmic term. The paper is organized as follows. Assumptions on the model and some notations are introduced in Section 2. Section 3 briefly describes the periodized wavelet basis on [0, 1] and the Besov balls. The estimators are presented in Section 4. The results are set in Section 5. The proofs are gathered in Section 6.

Assumptions and notations

We assume in the sequel that f (d) and g belong to L 2 per ([0, 1]), the space of periodic functions of period one that are square-integrable on [0, 1]:

L 2 per ([0, 1]) = h; h is 1-periodic and h 2 = 1 0 h 2 (x)dx 1/2 < ∞ .
We assume that there exists a known constant C * > 0 such that

f ∞ = sup x∈[0,1] |f (x)| ≤ C * < ∞. (2.1) Any function h ∈ L 2 per ([0, 1]
) can be represented by its Fourier series

h(t) = ∈Z F(h)( )e 2iπ t , t ∈ [0, 1],
where the equality is intended in mean-square convergence sense, and F(h)( ) denotes the Fourier coefficient given by

F(h)( ) = 1 0 h(x)e -2iπ x dx, ∈ Z,
whenever this integral exists. The notation • will be used for the complex conjugate. We consider the ordinary smooth case on g: there exist three constants, c g > 0, C g > 0 and δ > 1, such that, for any ∈ Z, the Fourier coefficient of g, i.e. F(g)( ), satisfies

c g (1 + 2 ) δ/2 ≤ | F(g)( )| ≤ C g (1 + 2 ) δ/2 . (2.2)
This assumption controls the decay of the Fourier coefficients of g, and thus the smoothness of g. It is a standard hypothesis usually adopted in the field of nonparametric estimation for deconvolution problems. See e.g. [START_REF] Fan | Wavelet deconvolution[END_REF][START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF][START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF].

3 Wavelets and Besov balls

Periodized Meyer Wavelets

We consider an orthonormal wavelet basis generated by dilations and translations of a "father" Meyer-type wavelet φ and a "mother" Meyer-type wavelet ψ. The main features of such wavelets are:

1. they are bandlimited, i.e. the Fourier transforms of φ and ψ have compact supports respectively included in [-4π/3, 4π/3] and [-8π/3, -2π/3] ∪ [2π/3, 8π/3].

for any frequency in

[-2π, -π] ∪ [π, 2π],
there exists a constant c > 0 such that the magnitude of the Fourier transform of ψ is lower bounded by c.

3. the functions (φ, ψ) are C ∞ as their Fourier transforms have a compact support, and ψ has an infinite number of vanishing moments as its Fourier transform vanishes in a neighborhood of the origin, i.e. for any u ∈ N,

∞ -∞ x u ψ(x)dx = 0.
For the purpose of this paper, we use the periodized Meyer wavelet bases on the unit interval. For any x ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2 j -1}, let

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k)
be the elements of the wavelet basis, and

φ per j,k (x) = l∈Z φ j,k (x -l), ψ per j,k (x) = l∈Z ψ j,k (x -l),
their periodized versions. There exists an integer j * such that the collection B = {φ per j * ,k , k ∈ {0, . . . , 2 j * -1}; ψ per j,k , j ∈ N -{0, . . . , j * -1}, k ∈ {0, . . . , 2 j -1}} forms an orthonormal basis of L 2 per ([0, 1]). In what follows, the superscript "per" will be dropped to lighten the notation.

Let j c be an integer such that j c ≥ j * . A function h ∈ L 2 per ([0, 1]) can be expanded into a wavelet series as

h(x) = 2 jc -1 k=0 α jc,k φ jc,k (x) + ∞ j=jc 2 j -1 k=0 β j,k ψ j,k (x), x ∈ [0, 1],
where

α j,k = 1 0 h(x)φ j,k (x)dx, β j,k = 1 0 h(x)ψ j,k (x)dx. (3.1)
See [20, Vol. 1 Chapter III.11] for a detailed account on periodized orthonormal wavelet bases.

Besov balls

Let M > 0, s > 0, p ≥ 1 and r ≥ 1. Set β j * -1,k = α j * ,k . A function h belongs to the Besov balls B s p,r (M ) if and only if there exists a constant M * > 0 such that the wavelet coefficients (3.1) satisfy

   ∞ j=j * -1   2 j(s+1/2-1/p)   2 j -1 k=0 |β j,k | p   1/p    r    1/r ≤ M * .
For a particular choice of parameters s, p and r, these sets contain the Hölder and Sobolev balls. See [START_REF] Meyer | Ondelettes et Opérateurs[END_REF].

Estimators

Wavelet coefficient estimators. The first step to estimate f (d) consists in expanding f (d) on B and estimating its unknown wavelet coefficients.

For any integer j ≥ j * and any k ∈ {0, . . . , 2 j -1}, we estimate α j,k =

1 0 f (d) (x)φ j,k (x)dx by α j,k = 1 n n v=1 ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) Y v e -2iπ Xv , (4.1) 
C j = supp (F(φ j,0 )) = supp (F (φ j,k )), and

β j,k = 1 0 f (d) (x)ψ j,k (x)dx by β j,k = 1 n n v=1 G v 1 {|Gv|≤ηj } , (4.2) 
where

G v = ∈Dj (2iπ ) d F (ψ j,k )( ) F(g)( ) Y v e -2iπ Xv , D j = supp (F(ψ j,0 )) = supp (F (ψ j,k
)), for any random event A, 1 A is the indicator function on A, and the threshold η j is defined by δ+d) . The estimators α j,k and β j,k are constructed via a SVD approach similar to the one of [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF]. The idea of the thresholding in (4.2) is to operate a selection on the observations: when, for v ∈ {1, . . . , n}, f is "too noisy" by ξ v , the observation (Y v , X v ) is neglected. Such a technique has been introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF] in wavelet estimation. Statistical properties of α j,k and β j,k are given in Propositions 6.1, 6.2 and 6.3.

η j = θ2 (δ+d)j n ln n , (4.3) 
θ = C * * (C 2 * + E (ξ 2 1 )), C * is (2.1) and C * * = 2 δ-1 (2(2π) 2d /c 2 g )(8π/3) 2(
We consider two wavelets estimators for f (d) : a linear estimator and a hard thresholding estimator. Linear estimator. Assuming that f (d) ∈ B s p,r (M ) with p ≥ 2, we define the linear estimator f L d by

f L d (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x), (4.4) 
where α j,k is defined by (4.1) and j 0 is the integer satisfying

2 -1 n 1/(2s+2δ+2d+1) < 2 j0 ≤ n 1/(2s+2δ+2d+1) .
It is not adaptive since it depends on s, the smoothness parameter of f (d) .

Hard thresholding estimator. We define the hard thresholding estimator f H d by

f H d (x) = 2 j * -1 k=0 α j * ,k φ j * ,k (x) + j1 j=j * 2 j -1 k=0 β j,k 1 {| β j,k |≥κλj } ψ j,k (x), (4.5) 
where α j,k and β j,k are defined by (4.1) and (4.2), j 1 is the integer satisfying

2 -1 n 1/(2δ+2d+1) < 2 j1 ≤ n 1/(2δ+2d+1) ,
κ ≥ 8/3 + 2 + 2 16/9 + 4 and λ j is the threshold

λ j = θ2 (δ+d)j ln n n . (4.6)
The definitions of η j and λ j are chosen to minimize the MISE of f H and to make it adaptive. Further statistical results on the hard thresholding estimator for the standard regression model can be found in [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF][START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Donoho | Minimax estimation via wavelet shrinkage[END_REF].

Results

Theorem 5.1. Consider (1.1) under the assumptions of Section 2. Suppose that f (d) ∈ B s p,r (M ) with s > 0, p ≥ 2 and r ≥ 1. Let f L d be (4.4). Then there exists a constant C > 0 such that

E 1 0 f L d (x) -f (d) (x) 2 dx ≤ Cn -2s/(2s+2δ+2d+1) .
The proof of Theorem 5.1 uses a moment inequality on (4.1) and a suitable decomposition of the MISE.

Since the distribution of ξ 1 is unknown, we can not use the likelihood function related to the model and the optimal lower bound seems difficult to determine (see e.g. [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]25]). For this reason, our benchmark will be the rate of convergence attains by the "optimal non-realistic" f L d , i.e. v n = n -2s/(2s+2δ+2d+1) . Note that, under the standard Gaussian assumption on ξ 1 , one can prove that v n is optimal in the minimax sense. 

E 1 0 f H d (x) -f (d) (x) 2 dx ≤ C ln n n 2s/(2s+2δ+2d+1)
.

The proof of Theorem 5.2 is based on several probability results (moment inequalities, concentration inequality,. . . ) and a suitable decomposition of the MISE.

Theorem 5.2 proves that f H d attains v n up to the logarithmic term (ln n) 2s/(2s+2δ+2d+1) .

Conclusion and perspectives.

We have constructed a new adaptive estimator f H d for f (d) under mild assumption on ξ 1 . It is based on wavelet and thresholding. It has "nearoptimal" minimax properties for a wide class of functions f (d) . Possible perspectives of this work are -to potentially improve the estimation of f (d) by considering other kinds of thresholding rules as the block thresholding one introduced by [START_REF] Cai | Adaptive Wavelet Estimation: A Block Thresholding And Oracle Inequality Approach[END_REF],

-to investigate the random design case where the distribution of X 1 is unknown.

Proofs

In this section, C represents a positive constant which may differ from one term to another.

Auxiliary results

Proposition 6.1. For any integer j ≥ j * and any k ∈ {0, . . . , 2 j -1}, let α j,k be the wavelet coefficient (3.1) of f (d) and α j,k be (4.1). Then there exists a constant C > 0 such that

E ( α j,k -α j,k ) 2 ≤ C2 2(δ+d)j 1 n .
Proof of Proposition 6.1. For any v ∈ {1, . . . , n}, let us set

H v = ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) Y v e -2iπ Xv .
Since X 1 , W 1 and ξ 1 are independent, using the convolution product between f and g, i.e.

(f g)(x) = 1 0 f (x -y)g(y)dy, we have E Y 1 e -2iπ X1 = E f (X 1 -W 1 )e -2iπ X1 + E (ξ 1 ) E e -2iπ X1 = E f (X 1 -W 1 )e -2iπ X1 = 1 0 1 0 f (x -y)g(y)e -2iπ x dxdy = 1 0 (f g)(x)e -2iπ x dx = F(f g)( ) = F(f )( )F(g)( ).
Moreover, since f is 1-periodic, for any u ∈ {0, . . . , d}, f (u) is 1-periodic and f (u) (0) = f (u) [START_REF] Bhattacharya | Estimation of a probability density function and its derivatives[END_REF]. By d integrations by parts, for any ∈ Z, we have

(2iπ ) d F(f )( ) = F f (d) ( ).
The Parseval-Plancherel theorem gives

E(H 1 ) = ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) E Y 1 e -2iπ X1 = ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) F(f )( )F(g)( ) = ∈Cj F (φ j,k )( )(2iπ ) d F(f )( ) = ∈Cj F (φ j,k )( )F f (d) ( ) = 1 0 φ j,k (x)f (d) (x)dx = α j,k . (6.1) Hence E ( α j,k ) = α j,k . So E ( α j,k -α j,k ) 2 = V ( α j,k ) = V 1 n n v=1 H v = 1 n 2 n v=1 V(H v ) = 1 n V(H 1 ) ≤ 1 n E H 2 1 . (6.2)
Since X 1 , W 1 and ξ 1 are independent with E(ξ 1 ) = 0 and |f (X

1 -W 1 )| ≤ f ∞ ≤ C * < ∞, we have E H 2 1 = E   f 2 (X 1 -W 1 )   ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) e -2iπ X1   2    + 2E(ξ 1 )E   f (X 1 -W 1 )   ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) e -2iπ X1   2    + E ξ 2 1 E      ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) e -2iπ X1   2    = E   f 2 (X 1 -W 1 )   ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) e -2iπ X1   2    + E ξ 2 1 E      ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) e -2iπ X1   2    ≤ C 2 * + E ξ 2 1 E      ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) e -2iπ X1   2    . (6.
3)

The assumption (2.2) implies

sup ∈Cj (2π ) 2d |F(g)( )| 2 ≤ (2π) 2d c 2 g sup ∈Cj 2d (1 + 2 ) δ ≤ 2 δ-1 (2π) 2d c 2 g sup ∈Cj 2d (1 + 2δ ) ≤ 2 δ-1 2(2π) 2d c 2 g 8π 3 
2(δ+d)
2 2(δ+d)j = C * * 2 2(δ+d)j . (6.4)

Using the fact that (e -2iπ x ) ∈Z is an orthonormal basis of L 2 per ([0, 1]), (6.4) and the Parseval-Plancherel theorem, we obtain

E      ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) e -2iπ X1   2    = 1 0   ∈Cj (2iπ ) d F (φ j,k )( ) F(g)( ) e -2iπ x   2 dx = ∈Cj (2π ) 2d |F (φ j,k ) ( )| 2 |F(g)( )| 2 ≤ C * * 2 2(δ+d)j ∈Cj |F (φ j,k ) ( )| 2 = C * * 2 2(δ+d)j 1 0 |φ j,k (x)| 2 dx = C * * 2 2(δ+d)j . (6.5) 
Putting (6.3) and (6.5) together, we obtain

E H 2 1 ≤ θ 2 2 2(δ+d)j . (6.6) 
It follows from (6.2) and (6.6) that

E ( α j,k -α j,k ) 2 ≤ C2 2(δ+d)j 1 n .
Proposition 6.2. For any integer j ≥ j * and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient (3.1) of f (d) and β j,k be (4.2). Then there exists a constant C > 0 such that

E β j,k -β j,k 4 ≤ C2 4(δ+d)j (ln n) 2 n 2 .
Proof of Proposition 6.2. Proceeding as in (6.1) (with ψ instead of φ), we have

β j,k = 1 0 f (d) (x)ψ j,k (x)dx = E (G v ) = E(G v 1 {|Gv|≤ηj } ) + E(G 1 1 {|G1|>ηj } ). (6.7) 
We have

E β j,k -β j,k 4 = E   1 n n v=1 G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } -E G 1 1 {|G1|>ηj } 4   ≤ 8(A + B), (6.8) 
where

A = E   1 n n v=1 G v 1 {|Gv|≤ηj } -E(G v 1 {|Gv|≤ηj } ) 4   and B = E(|G 1 |1 {|G1|>ηj } ) 4 .
Let us bound A and B, in turn. To bound A, we need the Rosenthal inequality presented in lemma below (see [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF]). 

E n v=1 U v p ≤ C max nE (|U 1 | p ) , nE U 2 1 p/2 .
Applying the Rosenthal inequality with p = 4 and, for any v ∈ {1, . . . , n},

U v = G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } ,
we obtain

A = 1 n 4 E   n v=1 U v 4   ≤ C 1 n 4 max nE U 4 1 , nE U 2 1 2 .
Using (6.6) (with ψ instead of φ), we have, for any a ∈ {2, 4},

E (U a 1 ) ≤ 2 a E G a 1 1 {|G1|≤ηj } ≤ 2 a η a-2 j E G 2 1 ≤ 2 a θ 2 η a-2 j 2 2(δ+d)j .
Hence

A ≤ C 1 n 4 max η 2 j θ 2 2 2(δ+d)j n, θ 2 2 2(δ+d)j n 2 = C 1 n 4 max 2 4(δ+d)j n 2 ln n , 2 4(δ+d)j n 2 = C2 4(δ+d)j 1 n 2 . (6.9)
Let us now bound B. Using again (6.6) (with ψ instead of φ), we obtain

E |G 1 |1 {|G1|>ηj } ≤ E G 2 1 η j ≤ 1 θ2 (δ+d)j ln n n 2 2(δ+d)j θ 2 = θ2 (δ+d)j ln n n . (6.10) 
Hence B ≤ C2 4(δ+d)j (ln n) 2 n 2 . (6.11)

Combining (6.8), (6.9) and (6.11), we have

E β j,k -β j,k 4 ≤ C 2 4(δ+d)j 1 n 2 + 2 4(δ+d)j (ln n) 2 n 2 ≤ C2 4(δ+d)j (ln n) 2 n 2 .
Proposition 6.3. For any integer j ≥ j * and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient (3.1) of f (d) and β j,k be (4.2). Then, for any κ ≥ 8/3+2+2 16/9 + 4,

P | β j,k -β j,k | ≥ κλ j /2 ≤ 2n -2 .
Proof of Proposition 6.3. Using (6.7), we have

| β j,k -β j,k | = 1 n n v=1 G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } -E G 1 1 {|G1|>ηj } ≤ 1 n n v=1 G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } + E |G 1 |1 {|G1|>ηj } .
Using (6.10), we obtain

E |G 1 |1 {|G1|>ηj } ≤ θ2 (δ+d)j ln n n = λ j .
Hence

S = P | β j,k -β j,k | ≥ κλ j /2 ≤ P 1 n n v=1 G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } ≥ (κ/2 -1)λ j .
Now we need the Bernstein inequality presented in the lemma below (see [START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF]).

Lemma 6.2 (Bernstein's inequality). Let n ∈ N * and (U v ) v∈{1,...,n} be n zero mean i.i.d. random variables such that there exists a constant M > 0 satisfying, for any v ∈ {1, . . . , n}, |U v | ≤ M < ∞. Then, for any λ > 0, holds

P n v=1 U v ≥ λ ≤ 2 exp - λ 2 2 nE (U 2 1 ) + λM 3 .
Let us set, for any v ∈ {1, . . . , n},

U v = G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } .
Then E(U 1 ) = 0,

|U v | ≤ G v 1 {|Gv|≤ηj } + E |G v |1 {|Gv|≤ηj } ≤ 2η j
and, using again (6.6) (with ψ instead of φ),

E U 2 1 = V G 1 1 {|G1|≤ηj } ≤ E G 2 1 ≤ θ 2 2 2(δ+d)j .
It follows from the Bernstein inequality that

S ≤ 2 exp   - n 2 (κ/2 -1) 2 λ 2 j 2 θ 2 n2 2(δ+d)j + 2n(κ/2-1)λj ηj 3   .
Since

λ j η j = θ2 (δ+d)j ln n n θ2 (δ+d)j n ln n = θ 2 2 2(δ+d)j , λ 2 j = θ 2 2 2(δ+d)j ln n n ,
we have, for any κ ≥ 8/3 + 2 + 2 16/9 + 4,

S ≤ 2 exp   - (κ/2 -1) 2 ln n 2 1 + 2(κ/2-1) 3   ≤ 2n -2 .

Proofs of the main results

Proof of Theorem 5.1. We expand the function f (d) as

f (d) (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x) + ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x),
where

α j0,k = 1 0 f (d) (x)φ j0,k (x)dx, β j,k = 1 0 f (d) (x)ψ j,k (x)dx.
We have

f L d (x) -f (d) (x) = 2 j 0 -1 k=0 ( α j0,k -α j0,k ) φ j0,k (x) - ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x) 
.

Hence E 1 0 f L d (x) -f (d) (x) 2 dx = A + B,
where

A = 2 j 0 -1 k=0 E ( α j0,k -α j0,k ) 2 , B = ∞ j=j0 2 j -1 k=0 β 2 j,k .
Using Proposition 6.1, we obtain

A ≤ C2 j0(1+2δ+2d) 1 n ≤ Cn -2s/(2s+2δ+2d+1) . Since p ≥ 2, we have B s p,r (M ) ⊆ B s 2,∞ (M ). Hence B ≤ C2 -2j0s ≤ Cn -2s/(2s+2δ+2d+1) . So E 1 0 f L d (x) -f (d) (x) 2 dx ≤ Cn -2s/(2s+2δ+2d+1) .
The proof of Theorem 5.1 is complete.

Proof of Theorem 5.2. We expand the function f (d) as

f (d) (x) = 2 j * -1 k=0 α j * ,k φ j * ,k (x) + ∞ j=j * 2 j -1 k=0 β j,k ψ j,k (x),
where

α j * ,k = 1 0 f (d) (x)φ j * ,k (x)dx, β j,k = 1 0 f (d) (x)ψ j,k (x)dx.
We have

f H d (x) -f (d) (x) = 2 j * -1 k=0 ( α j * ,k -α j * ,k )φ j * ,k (x) + j1 j=j * 2 j -1 k=0 β j,k 1 {| β j,k |≥κλj } -β j,k ψ j,k (x) - ∞ j=j1+1 2 j -1 k=0 β j,k ψ j,k (x) 
.

Hence

E 1 0 f H d (x) -f (d) (x) 2 dx = R + S + T, (6.12) 
where R =

2 j * -1 k=0 E ( α j * ,k -α j * ,k ) 2 , S = j1 j=j * 2 j -1 k=0 E β j,k 1 {| β j,k |≥κλj } -β j,k 2 and T = ∞ j=j1+1 2 j -1 k=0 β 2 j,k .
Let us bound R, T and S, in turn.

Using Proposition 6.1, we have

R ≤ C2 j * (1+2δ+2d) 1 n ≤ C 1 n ≤ C ln n n 2s/(2s+2δ+2d+1) . (6.13) 
For r ≥ 1 and p ≥ 2, we have

B s p,r (M ) ⊆ B s 2,∞ (M ). So T ≤ C ∞ j=j1+1 2 -2js ≤ C2 -2j1s ≤ Cn -2s/(2δ+2d+1) ≤ C ln n n 2s/(2s+2δ+2d+1)
.

For r ≥ 1 and p ∈ [1, 2), we have

B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ ( 
M ). Since s > (2δ+2d+1)/p, we have (s + 1/2 -1/p)/(2δ + 2d + 1) > s/(2s

+ 2δ + 2d + 1). So T ≤ C ∞ j=j1+1 2 -2j(s+1/2-1/p) ≤ C2 -2j1(s+1/2-1/p) ≤ Cn -2(s+1/2-1/p)/(2δ+2d+1) ≤ C ln n n 2s/(2s+2δ+2d+1)
.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2d + 1)/p}, we have

T ≤ C ln n n 2s/(2s+2δ+2d+1) . (6.14) 
The term S can be decomposed as

S = e 1 + e 2 + e 3 + e 4 , (6.15) 
where

e 1 = j1 j=j * 2 j -1 k=0 E β j,k -β j,k 2 
1 {| β j,k |≥κλj } 1 {|β j,k |<κλj /2} , e 2 = j1 j=j * 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k |≥κλj } 1 {|β j,k |≥κλj /2} , e 3 = j1 j=j * 2 j -1 k=0 E β 2 j,k 1 {| β j,k |<κλj } 1 {|β j,k |≥2κλj } and e 4 = j1 j=j * 2 j -1 k=0 E β 2 j,k 1 {| β j,k |<κλj } 1 {|β j,k |<2κλj } .
Let us analyze each term e 1 , e 2 , e 3 and e 4 in turn.

Upper bounds for e 1 and e 3 . We have

| β j,k | < κλ j , |β j,k | ≥ 2κλ j ⊆ | β j,k -β j,k | > κλ j /2 , | β j,k | ≥ κλ j , |β j,k | < κλ j /2 ⊆ | β j,k -β j,k | > κλ j /2 and | β j,k | < κλ j , |β j,k | ≥ 2κλ j ⊆ |β j,k | ≤ 2| β j,k -β j,k | . So max(e 1 , e 3 ) ≤ C j1 j=j * 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k -β j,k |>κλj /2} .
It follows from the Cauchy-Schwarz inequality and Propositions 6.2 and 6.3 that 

E β j,k -β j,k 2 1 {| β j,k -β j,k |>κλj /2} ≤ E β j,k -β j,k 4 1/2 P | β j,k -β j,k | > κλ j /2 1/2 ≤ C2
E β j,k -β j,k 2 ≤ E β j,k -β j,k 4 1/2 
≤ C2 2(δ+d)j ln n n .

Hence

e 2 ≤ C ln n n j1 j=j * 2 2(δ+d)j 2 j -1 k=0 1 {|β j,k |>κλj /2} .
Let j 2 be the integer defined by

2 -1 n ln n 1/(2s+2δ+2d+1) < 2 j2 ≤ n ln n 1/(2s+2δ+2d+1) . (6.17) 
We have We have Let j 2 be the integer (6.17). We have 

e 2,1 ≤ C ln n n j2 j=j * 2 j(1+2δ+2d) ≤ C ln n n 2 j2(1+2δ+2d) ≤ C ln n n 2s/(2s+2δ+2d+1) . For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), e 2,2 ≤ C ln n n j1 j=j2+1 2 2(δ+d)j 1 λ 2 j 2 j -1 k=0 β 2 j,k = C ∞ j=j2+1 2 j -1 k=0 β 2 j,k ≤ C2 -2j2s ≤ C ln n n 2s/(2s+2δ+2d+1) . For r ≥ 1, p ∈ [1, 2) and s > (2δ + 2d + 1)/p, since B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ ( 
Combining (6.12), (6.13), (6. .

The proof of Theorem 5.2 is complete.
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Theorem 5 . 2 .

 52 Consider (1.1) under the assumptions of Section 2. Let f H d be (4.5). Suppose that f (d) ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2d + 1)/p}. Then there exists a constant C > 0 such that

Lemma 6 . 1 (

 61 Rosenthal's inequality). Let p ≥ 2, n ∈ N * and (U v ) v∈{1,...,n} be n zero mean i.i.d. random variables such that E(|U 1 | p ) < ∞. Then there exists a constant C > 0 such that

e 2 ≤ e 2 , 1 + e 2 1 k=0 1

 221211 {|β j,k |>κλj /2} .

2 . 1

 21 M ) and (2s + 2δ + 2d + 1)(2 -p)/2 + (s + 1/2 -1/p + δ + d -2(δ + d)/p)p = 2s, we have e So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2d + 1)/p}, Upper bound for the term e 4 . We have {|β j,k |<2κλj } .

e 4 ≤ e 4 , 1 + e 4 For r ≥ 1 4 . 4

 4414144 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), we have e For r ≥ 1, p ∈ [1, 2) and s > (2δ + 2d + 1)/p, since B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ (M ) and (2 -p)(2s + 2δ + 2d + 1)/2 + (s + 1/2 -1/p + δ + d -2(δ + d)/p)p = 2s, we have e

  [START_REF] Fan | Wavelet deconvolution[END_REF]) and (6.20), we have, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2d + 1)/p},

  2(δ+d)j ln n n 2 .Upper bound for the term e 2 . Using Proposition 6.2 and the Cauchy-Schwarz inequality, we obtain

	Hence						
	max(e 1 , e 3 ) ≤ C	ln n n 2	j1 j=j *	2 j(1+2δ+2d) ≤ C	ln n n 2 2 j1(1+2δ+2d)
	≤ C	ln n n	≤ C	ln n n	2s/(2s+2δ+2d+1)	.	(6.16)

  So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 2d + 1)/p},

			1/p+δ+d-2(δ+d)/p)p ≤ C	ln n n	2s/(2s+2δ+2d+1)	.
	e 4 ≤ C	ln n n	2s/(2s+2δ+2d+1)	.		(6.19)
	It follows from (6.15), (6.16), (6.18) and (6.19) that		
	S ≤ C	ln n n	2s/(2s+2δ+2d+1)	.	
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