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Abstract

We prove a Nekhoroshev type theorem for the nonlinear Slimgér equation
iug = —Au+V «u+ dgg(u, @), =T

whereV is a typical smooth potential angis analytic in both variables. More precisely we
prove that if the initial datum is analytic in a strip of width> 0 with a bound on this strip
equals te then, ife is small enough, the solution of the nonlinear Schrodirggration above
remains analytic in a strip of width/2 and bounded on this strip e during very long time
of orders—!'m¢” for some constants' > 0, a > 0 andj < 1.
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1 Introduction and statements

We consider the nonlinear Schrodinger equation
iuy = —Au+V xu+ 0gzg(u,u) , reTe teR, (1.1

whereV is a smooth convolution potential agds an analytic function on a neighborhood of
the origin inC? which has a zero of order at least 3 at the origin and satigfies) € R. In
more standard models, the convolution term is replaced bylapiicative potential. The use
of a convolution potential makes easier the analysis ofésemances.

For instance wheg(u,u) = ﬁ\uy%? with @ € R andp € N, we recover the standard
NLS equationiu; = —Au + V x u + alu|*’u. We notice that1.1) is a Hamiltonian system
associated with the Hamiltonian function

H(u,u) = / (IVul* + (V % u)a + g(u, @)) dz.
Td
and the symplectic structure inherent to the complex siractdu A da.

This equation has been considered with Hamiltonian toot&arecent works. In the first
one (seeBG03 and also BG06] and [Bou9q for related results) Bambusi & Grébert prove a
Birkhoff normal form theorem adapted to this equation anhiolbdynamical consequences on
the long time behavior of the solutions with small initial€ay data in Sobolev spaces. More
precisely they prove that if the Sobolev norm of indeaf the initial datun is sufficiently
small (of ordere) then the Sobolev norm of the solution is bounded2byduring very long
time (of orders=" with r arbitrary). In the second one (s€el]) Eliasson & Kuksin obtain
a KAM theorem adapted to this equation. In particular theyverthat, in a neighborhood
of v = 0, many of the invariant finite dimensional tori of the linearipof the equation are
preserved by small Hamiltonian perturbations. In otherdspfl.1) has many quasi-periodic
solutions. In both cases non resonances conditions (notlgthe same) have to be imposed
on the frequencies of the linear part and thus on the potéritia

Both results are related to the stability of the zero sotutidnich is an elliptic equilibrium
of the linear equation. The first establishes the stabititypblynomials times with respect to
the size of the (small) initial datum while the second pravesstability for all time of certain
solutions. In the present work we extend the technic of nbfaren and we establish the sta-
bility for times of order=—* Inel” for some constants > 0 andg < 1, € being the size of the
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initial datum in an analytic space.

We now state precisely our result. We assume thaelongs to the following space( >
d/2, R > 0)

Wi ={V(z) = Z V€T | V] = va(1 + |a))™ /R € [-1/2,1/2] for anya € Z¢} (1.2)

acZ

that we endow with the product probability measure. Here,afo= (ay,...,aq) € Z¢,
la|* = af +--- + a.

Forp > 0, we denote by4d, = A,(T% C) the space of functiong that are analytic on
the complex neighborhood @tdimensional torug'? given byl, ={z+1iy|x ¢ T¢, y €
R4 and |y| < p} and continuous on the closure of this strip. We then denote pythe usual
norm onA,

|¢lp = sup [p(2)]-

z€l,

We note that A,, | - |,) is a Banach space.
Our main result is a Nekhoroshev type theorem:

Theorem 1.1 There exists a subs®t C W,, of full measure, such that fdr € V, 5 < 1 and
p > 0, the following holds: there exigt > 0 andey > 0 such that if

Uy € ./42p and |UO|2p =e<¢g
then the solution of1.1) with initial datumu exists for timest| < e~ and satisfies
u(t)], )2 < Ce for [t < eoollnel”, (1.3)

with o, = min{3, 5}.
Furthermore, writingu(t) = >_, .4 &(t)e™™®, we have

S Mg t)] - 6 (0)]| <€¥2 for o] < emoelinel”, (1.4)
kezd

Estimate {.4) asserts that there is almost no variation of the actiangl in particular no possi-
bility of weak turbulence, i.e. exchanges between low Fauriodes and high Fourier modes.
This kind of turbulence may induce the growth of the Sobolesm (1 + |k[*)?|&x|? (s > 1)

of the solution as recently proved iIGKSTT09.

In finite dimensionn, the standard Nekhoroshev resultek77 controls the dynamic over

times of orderexp (ﬁ) for somea > 0 and7 > n + 1 (see for instanceBGG85

GG85 Ps93) which is of course much better thaelnel? = ¢—allnel™?  Neverthe-
less this standard result does not extend to the infinite maal context. Actually, when
n — oo, thate =/ (7+1) can be transformed ifn ¢|(!*%) is a good news!

The only previous work in the direction of Nekhoroshev esties for PDEs was obtained by

'Here the actions are the modulus of the Fourier coefficientisa squarel;, = | |%.
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Bambusi in Bam99. He also worked in spaces of analytic functions in a strig fom times
of ordere—™m<l"*” ‘nevertheless the control of the solution was not obtaiméfbrmly in a
strip but in a complicated way involving the Fourier coetilis of the solution.

We now focus on the three main differences with the previoosks/on normal forms:

e we crucially use the zero momentum condition: in the FowgjErce, the nonlinear term
contains only monomials;, - - - z;, with j; 4 --- + j; = 0 (cf. Definition 2.4). This
property allows to control the largest index by the others.

e we use/!-type norms to control the Fourier coefficients and the wefittds instead of
¢2-type norms as usual. Of course this choice does not allowots W Hilbert spaces
and makes obligatory a slight lost of regularity each time ¢stimates are transposed
from the Fourier space to the initial space of analytic fiore. But it turns out that this
choice makes much more simpler the estimates on the vedus {&f. Propositior2.5
below and FG1( for a similar framework in the context of numerical anas)si

¢ we notice that the vector field of a monomig|,- - - z;, containing at least three Fourier
modesz, with large indices/ induces a flow whose dynamics is under control during
very long time in the sense that the dynamic almost exclugellamges between high
Fourier modes and low Fourier modes (see ProposRidf). In [Bam03 or [BGO],
such terms were neglected since the vector field of a monamwidhining at least three
Fourier modes with large indices is smallSobolev norngbut not in analytic norm) and
thus will almost keep invariant all the modes. This more lsuahalysis for monomials

was still used infFGP10Q.

Finally we notice that our method could be generalized bysictring not only zero mo-
mentum monomials but also monomials with finite or exporadigtidecreasing momentum.
This would certainly allow to consider a nonlinear Schriggir equation with a multiplicative
potentiall’ and nonlinearities depending periodically :on

iy = —Au+ Vu+ dgg(z,u, @), =T

Nevertheless this generalization would generate a lotabfriealities and we prefer to focus
here on the simplicity of the arguments.

2 Setting and Hypothesis

2.1 Hamiltonian formalism

The equation.1) is a semi linear PDE locally well posed in the Sobolev splééT?) (see
for instance Caz03). Let u be a (local) solution ofX(.1) and conside(&, n) = (€4, Ma)qezd
the Fourier coefficients af, u respectively, i.e.

u(x) = Z £, and a(x) = Z Nae T, (2.2)

a€Zd a€Zd



A standard calculus shows thats solution in/?(T) of (1.1) if and only if (¢, 1) is a solution
in? ¢% x (3 of the system

éa = —'l.waé.a - 13_517 ac Zd7
2.2)

. . aP
Na = Walla — 3¢, acZ4

where the linear frequencies are givendgy = |a|? + v, where as in1.2), V = 3 v,e!??,
and the nonlinear part is given by

P(&n) = # /]l‘d 90> €™, " nae” ") du. (2.3)

This system is reinterpreted in a Hamiltonian context endgwhe set of couple&,, n,) €
CZ" x CZ* with the symplectic structure

iy déq A dng. (2.4)

acZ4

We define the seg = Z¢ x {+1}. Forj = (a,§) € Z, we definglj| = |a| and we denote by
j the index(a, —9¢).
We identify a coupld¢, ) € CZ° x CZ* with (z;);cz € CZ via the formula

Zj = ga if 0= 1,

i = (a,0) € Z = 2.5
j=(a9) {zj = 1 If 0=-1 (5)

By a slight abuse of notation, we often write= (£, ) to denote such an element.
For a givenp > 0, we consider the Banach spa€g made of elements C?Z such that

2l == D" ez < o,
je€Z
and equipped with the symplectic foria.4). We say that € £, isreal whenzj = z; for any

j € Z. Inthis case, we write = (¢, ¢) for some¢ € CZ’. In this situation, we can associate
with z the functionu defined by 2.1).
The next lemma shows the relation with the spacedefined above:

Lemma 2.1 Letu be a complex valued function analytic on a neighborhoo@%fand let
(2j)jcz be the sequence of its Fourier coefficients defined2oi) and (2.5. Then for all
< p, we have

if weAd, then z€ L, and HzHu < cpululp; (2.6)

if zeL, then ue A, and |ul, < Cp,uHZ”p? (2.7)

wherec, , is a constant depending gnand i and the dimensiod.

2 usualf3 = {(€a)aezs | L1+ aP)lEl? < +oo).
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Proof. Assume that, € A,. Then by Cauchy formula, we have for gllc Z, |z;| <
u|,e~V1. Hence foru < p, we have

d
\la (u*p)n d 2
211, < lel, > el < jgl, (2 v ") < <7<)> lul,.

jez neZ 1—e vd

Conversely, assume thatc £,. Then|¢,| < Hz”u e~Plal for all o € Z4, and thus byZ.1), we
get for allz € T? andy € R? with |y| < p,

d
. a’ —(p— a 2
lulz +iy)| < Y lale™ < l2]) ) D el < (ﬁ) 121l -

a€Zd acZ
Henceu is bounded on the strip,. u
For a functionF of C'(£,,C), we define its Hamiltonian vector field by = JVF
where J is the symplectic operator ofi, induced by the symplectic forn2(4), VF(z) =
(C”F) __ and where by definition we set fgr= (a,8) € Z? x {£1},
je

Dz
or
oF 9%, if 0=1,
8zj_ Z?F
— if 6=-1
OMa '

For two functionsF’ andG, the Poisson Bracket is (formally) defined as

OF 0G  OF 9G

R . — 2.8
D 00 D O 28)

{F,G}=VFTIVG =i
Zd

We say that a Hamiltonian functiol is real if H(z) is real for all realz.

Definition 2.2 For a givenp > 0, we denote b§{, the space of real HamiltonianB satisfy-

ing
PeC(L,,C), and XpeC'(L, L,).

Notice that forF" and G in H, the formula 2.8) is well defined. With a given Hamiltonian
function H € H,, we associate the Hamiltonian system

2= Xp(z) =JVH(2)

which also reads

Eo — —z'gf and 7, = ig?H, aezl (2.9)

We define the local flowd?, (=) associated with the previous system (for an interval of $ime

t > 0 depending a priori on the initial conditior). Note that ifz = (£, ¢) and if H is real, the
flow (&, 7") = ®%,(2) is also real¢" = 7" for all t. Further, choosing the Hamiltonian given

by

H(f,’l’]) = Z Wafana + P(&?U)a

a€Zs



P being given by 2.3), we recover the systen2.Q), i.e. the expression of the NLS equation
(1.1 in Fourier modes.

Remark 2.3 The quadratic Hamiltoniandy = }_ ;4 wa&a7a COrresponding to the linear
part of (1.1) does not belong t@{,. Nevertheless it generates a flow which mépsnto £,
explicitly given for all timet and for all indicesa by &, (t) = e~™at£,(0), n4(t) = e™atn,(0).
On the contrary, we will see that, in our setting, the nordiriy P belongs ta,,.

2.2 Space of polynomials

In this subsection we define a class of polynomial€Con
We first need more notations concerning multi-indices? let 2 andj = (ji,...,j,) € Z*
with 7i = ((LZ', 51), we define

e the monomial associated wigh:
2§ = Fj T e

e the momentum of :
M(J) = a161 + - + agdy, (2.10)

e the divisor associated with:
Q(]) = 61wa1 —+ o+ 5@&)&[ (2.11)

where, fora € Z%, w, = |a|? + v, are the frequencies of the linear part of1).
We then define the set of indices witkro momentumby

Ty ={j=(r,....j0) € Z2° with M(j) =0} (2.12)

On the other hand, we say that= (j1,...,j4¢) € Z*isresonant and we writej € N,

if ¢is even andj = 4 U 4 for some choice of ¢ Z%2. In particular, ifj is resonant then

its associated divisor vanishe&3(j) = 0, and its associated monomials depends only on the
actions:

Zj = 2jy+ Zjp = EayMay * 'gauznaz/z =1Iq - Iaz/2>

where for alla € Z¢, I,(z) = &4, denotes the action associated with the index
Finally we note that if: is real, thenl,(z) = |¢,|> and we remark that for oddthe resonant
setN, is the empty set.

Definition 2.4 Letk > 2, a (formal) polynomialP(z) = )" a;z; belongs toPy if P is real,
of degreek, have a zero of order at leagtin z = 0, and if

e P contains only monomials having zero momentum, i.e. such/tg) = 0 when
a; # 0 and thusP reads

k
P(z) = Z Z a;z; (2.13)

(=2 j€I,

with the relationa; = a;.



e The coefficients; are bounded, i.ev (¢ = 2,...,k, sup |a;| < +o0.
J€L,
We endowpP;, with the norm
k
IP| = sup |aj]. (2.14)

(=2 J€ht

The zero momentum assumption in Definitidr is crucial to obtain the following Proposi-
tion:

Proposition 2.5 Letk > 2 andp > 0. We haveP, C H,, and for P a homogeneous
polynomial of degreé in P;., we have the estimates

k
[P < 1P =, (2.15)
and .
Vze Ly, [Xp()l, <2k[P[ =], (2.16)
Eventually, forP € P, and@ € P,, then{P,Q} € Pr.s_» and we have the estimate
I{P, QY <2k P Q] - (2.17)
Proof. Let
P(z) =) ajz;,
JELy
we have

k k
IPEOL<AIPL D Tzl -zl < NPl < 1P 2]
jeZk
and the first inequality2.15) is proved.
To prove the second estimate, let us tdke Z and calculate using the zero momentum
condition,

oP
I SHIPE Y ez
¢ s zk—1
JjEZ
M(G)=—M(0)

Therefore

IXp()l, =3 e

lez

oP
Tl<tPlY X sl

ez jezk-1
M(G)==M(0)

Butif M(j) = —M(0),
"M <exp (ol +- + i) < [ eV
n=1,...k—1
Hence, after summing ihwe gef

. . k—1
IXp()Il, < 26IPI D" ez |- etz | < 2k P 2]
jezk-1

I,

3Take care that(a, §) = M(—a, —5) whence the coefficient 2.
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which yields @.16).

Assume now thaP and@ are homogeneous polynomials of degreesd/ respectively and
with coefficientsag, k € Z;, andbg, £ € Z,. Itis clear that{ P, Q} is a monomial of degree
k + ¢ — 2 satisfying the zero momentum condition. Furthermore ngiti

P} = D e,
JETkyo—2
cj expresses as a sum of coefficiemts, for which there exists am € Z¢ ande € {1} such
that
(a,¢) Ck eI and (a,—¢) C £Ley,
and such that if for instande, €) = k; and(a, —¢) = ¢1, we necessarily havgs, . . . , ki, b2, ..., ly) =
J. Hence for a givery, the zero momentum condition dgnand onf determines the value of
ea Which in turn determines two possible value(efa).
This proves 2.17) for monomials. The extension to polynomials follows frone tefinition
of the norm R.14).

The last assertion, as well as the fact that the Poisson dratkwo real Hamiltonian is real,
immediately follow from the definitions. [ ]

2.3 Nonlinearity
The nonlinearityg in (1.1) is assumed to be complex analytic in a neighborhoo¢0of} in
C2. So there exist positive constants and R, such that the Taylor expansion
1 ko
g(vlv UQ) = Z Wa/ﬁa/@g(ov O)Ul U

k1,k2>0

is uniformly convergent and bounded By on the ball|v;| + |v2] < 2Ry of C2. Hence,
formula 2.3) defines an analytic function on the bﬁLHHp < Ry of £, and we have

P(z) = Y Pil2)
k>0

where, for allk > 0, P; is a homogeneous polynomial defined by

Pk = Z Z pa7b£a1 e gakl 77b1 e nka

k1+ka=Fk (a,b)e(Z4)k1 x (Z4)k1

with )
Pa,b = —81918]929(07 O) / eiM(a,b)-x dl‘,
’ k1!ks! Td
and M(a,b) = a; +--- +ag, — by — --- — by, iIs the moment OEal'”faklﬁbl S My, -

Therefore it is clear thaP, satisfies the zero momentum condition and tRusc P, for all
k > 0. Furthermorg| P || < M R;™.



2.4 Non resonance condition

In order to control the divisors2(11), we need to impose a non resonance condition on the
linear frequenciesy,, a € Z¢.

Forr > 3andj = (j1,...,Jr) € 2", we defineu(j) as the third largest integer amongst
l71], - -, |7-] and we recall thaj € Z" is said resonant if is even angj = i U ¢ for some
i€z,

Hypothesis 2.6 There existy > 0, v > 0 andc¢y > 0 such that for all > 3and allj € Z"
non resonant, we have

(2.18)

Recall that folV = 3~ ;. v,€'* in the spaceV,, defined in (.2), the frequencies read

R

_ Ve 74,
A+japm €

Wq = |a|2 t Ve = |a|2 +

In Appendix we prove

Proposition 2.7 Fix v > 0 small enough ane: > d/2. There exist positive constantgand
v depending only om, R andd, and a setF’, C W,, whose measure is larger than- 417
such that ift” € F, then(2.18) holds true for all non resonant € Z" and allr > 3.

Thus Hypothesi2.6is satisfied for allV € V where
V = U0k, (2.19)

is a subset of full measure W,,,.

2.5 Normal forms
We fix an index)V > 1. For a fixed integek > 3, we set
J(N) ={3j € Zx| n(j) > N}.
Definition 2.8 Let N be an integer. We say that a polynomiale P, is in N-normal form if
it can be written i
Z = Z Z ajzj

(=3 FENUT(N)

In other words,Z contains either monomials depending only of the actions onamials
whose indiceg satisfiesu(j) > N, i.e. monomials involving at least three modes with index
greater than N.

We now motivate the introduction of such normal form. Fiveg, recall the
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Lemma 2.9 let f : R — R, a continuous function, ang: R — R, a differentiable function
satisfying the inequality

VieR,  Tylt) <27(0V/).

Then we have the estimate

VEER, o) < \/y(0)+/0 F(s)ds

Proof. Lete > 0 and define). = y + ¢ which is a non negative function whose square root is
derivable. We have

v < 2002 <50
and thus .
Viel® < V@ + [ ) s
The claim is obtained when— 0. |

For a given numbelN andz € £, we define

Ri)v(z) = Z Pl 2.

liI>N

Notice that ifz € £, then
N —uN
Ry (2) <e™” Hszﬂt' (2.20)

Proposition 2.10 Let N € Nandk > 3. LetZ a homogeneous polynomial of degfem N-
normal form. Let:(¢) be a real solution of the flow associated with the Hamiltontan+ 2.

Then we have

Rp()<RN(O)+4k3\ZH/ R (5)?] 2 ()Hk ?ds (2.21)

and
l=@)l, < 1201, + 4%%| 2] / RY (s)2[12(s)]1, " ds (2.22)

Proof. Leta € Z¢ be fixed, and lef, () = &,(t)n,(t) the actions associated with the solution
of the Hamiltonian system induced By, + Z. We have usingd.17) and Hy = Hy(I),

el fy) = el {1, 21 < 2k Z)) eIl (S ez ez )
M(j)=+
2 indices> N

Using the previous Lemma, we get

ep‘a|\/— ep‘a|\/—+2kHZH / Z ep‘ﬁ'\z ’ ep‘ﬂk 1|‘Z ‘)

M(j)=
2 |nd|ce$N

(2.23)

11



Ordering the multi-indices in such way; | and|j2| are the largest, and using the fact thét)
is real (and thu$z;| = /I, for j = (a,£1) € Z), we obtain after summation jn| > N

RY () < RYGO) +48312) [ (30 ey etz )s

0 . R
71l,l72[=N
J3y - Jk€Z

t
k-3
<RYO)+412) [ RYGP 1)) s

In the same way we obtai2 22). [ ]

Remark 2.11 These estimates will be crucially used in the final bootstrgument. In partic-
ular, along the solution associated with a Hamiltonianitnormal formal and initial datum
Izoll,, = . Then asRl (z0) = O(ee ), Eqgns. (2.21)-(2.22) guarantee thaR’'(z(t))
remains of ordeiO(se~*"V) and the norm of(¢) remains of order over exponentially long
timet = O(e’N).

The next result is an easy consequence of the non resonamdiéi@o and the definition of the
normal forms:

Proposition 2.12 Assume that the non resonance conditf@riLg) is satisfied, and lefvV be
fixed. Let®) be a homegenous polynomial of degked hen the homological equation

Ho} -2 =Q (2.24)

admits a polynomial solutiofiy, Z) homogeneous of degrée such thatZ is in N-normal
form, and such that

NVk
12l < el and |ix]| < — <l (2.25)
)
Proof. Assume that) = > . Qjz; and searcll = 3 . - Zjz; andx = > .7 X%

such that 2.24) be satisfied. Then the equatiohZ4) can be written in term of polynomial
coefficients

Q)X — Zj =Qj, J €L,
where()(7) is defined in 2.11). We then define

Zj=Q; and x; =0 if j¢Nporu(j) <N,
Zj =0 and ijz-é% if jeN,andu(j) > N.

In view of (2.18), this yields @.25). [ ]

3 Proof of the main Theorem

3.1 Recursive equation

We aim at constructing a canonical transformaticsuch that in the new variables, the Hamil-
tonian Hy + P is under normal form modulo a small remainder term. Usingttaasforms to

12



generater, the problem can be written: Find polynomials= >, . xx andZ =5 . 7
under normal form and a smooth Hamiltoni&satisfyingo® R(0) = 0 for all o« € NZ with
|a| > r, such that

(Hy+ P)o®) = Hy+ Z +R. (3.1)

Then the exponential estimate will by obtained by optingzine choice of- and V.
We recall that fory and K to Hamiltonian, we have for ak > 0

dlc

(Ko o)) = {6 { - D K3H@Y) = (ad) K) (),

wheread, K = {x, K'}. On the other hand, ik’, L are homogeneous polynomials of degree
respectivelyk and/ then{ K, L} is a homogeneous polynomial of degie¢ [ — 2. Therefore,
we obtain by using the Taylor formula

%
|
w

(Ho+ P)o®, — (Hy+P) =

(kil)!adi({x,ﬂﬁp}) + 0, (3.2)

=
i

0

where O, stands for any smooth functioR satisfyingd“R(0) = 0 for all « € N with
|a| > r. Now we know that fol € C, the following relation holds:

r—3 Bk . r—3 1 . _2
> et ) = rroua)

k=0 k=0

whereBy, are the Bernoulli numbers defined by the expansion of thergéng function*.
Therefore, defining the two differential operators

w

<

r—3
By,

—a
k!
k=0

1

Ar = (k+1)!

k _ k
ady and B, = dy,

B
Il
o

we get
B, A, =1d+ C,

whereC. is a differential operator satisfying
C, 03 = O,.
Applying B, to the two sides of equatior.), we obtain
{x,Ho+ P} =B.(Z—-P)+ O,.

Plugging the decompositions in homogeneous polynomialg, & and P in the last equa-
tion and equating the terms of same degree, we obtain afteaigtgforward calculus, the
following recursive equations

{XWHHO}_Z :Qma m:37 , Ty (33)
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where

m—1

Qm = —Im+ Z{Pm+2—ka Xk}
= (3.4)

B
Z k! Z ady,, - ’adxzk (Zoir = Pryi)-

=1 Zl+£k+1:m+2k
3<l;<m—k

Notice that in the last sund; < m —k as a consequence ®K ¢; andly +- - {1 = m+2k.
Once these recursive equations solved, we define the reemaérth ask = (Hy+ P) o <I>}< —
Hy — Z. By construction iz is analytic on a neighborhood of the origindl), and R = O,..
As a consequence, by the Taylor formula,

1
= >, Z—, >, ady, ady, Ho

m>r+1 k=1 l14-Lp=m~+2k
3<t;<r

m—3 1
D D > ady, ---ady, P.,.

m>r+1 k=0 L1+l =m+2k
3<li+by <r
3<l 41

(3.5)

Lemma 3.1 Assume that the non resonance condi(ipri8) is fulfilled. Letr and N be fixed.
Form = 3,--- ,r, there exist homogeneous polynomigls and Z,,, of degreem, with Z,, in
N —normal form, solutions of the recursive equati@?3) and satisfying

xmll + 1 Zmll < (CaN¥)™ (3.6)
where the constant’ does not depend anor N.

Proof. We definey,,, and Z,,, by induction using PropositioB.12 Note that 8.6) is clearly
satisfied form = 3, providedC' is big enough. Estimate (25, together with 2.17) and the
estimate on the Bernoulli numbei&;| < k! ¢k for somec > 0, yields for allm > 3,

m—1

YN Xl + 11 Zm | < 1Pl +2 D k(m+2 = &) Pro—i | xall
k=3

m—3
2% (Cm) > Glixell - Cellxe I 1 Zey s — Py |l -
k=1

€1+~~~Zk+1=m+2k)
3<t;<m—k

14



for some constant’. We set3,, = m(||xm|| + [|Zm||). Using||Py,|| < MR;™ (see end of
subsectior.4), we obtain

Bm < B 4+ 82 where

m—1
BY = (CN")™m® Y B and
k=3

m—3
B = NCmm Ty Y Bu Bu(Bus +11Pas 1)
k=1 Z1+~~~Zk+1:m+2k
3<t;<m—k

whereC depends o/, Ry, y andcy. Itremains to prove by recurrence thigt < (CmN”)m2,
m > 3. Again this is true form = 3 adaptingC' if necessary. Thus assume thgt <
(CjNv)i* j =3,...,m — 1, we then get for

57(7%) < (CNV)mm4(CmNV)(m—1)2 < (CmNV)mQ—m-i-l < %(CmNV)m2
as soon asn > 4, and provided” > 2. On the other hand, sindgP,,|| < MR;™, we can
assume thatr, || < B, and we get

m—3
57(3) < Nym(Cm)m—l Z Z (CNV(’I’)’L o k))f%—i-"'—l-Z%Jrl'
k=1 €1+~~~ék+1=m+2k)
3<l;<m—k
Notice that the maximum af +- - -+£2+1 whenly+-- -l 1 = m+2kand3 < /¢; <m—kis
obtained for; = --- = ¢, = 3and/;,; = m—k and its value i§m — k)2 + 9k. Furthermore
the cardinal of{¢; + - - {341 = m + 2k, 3 < ¢; < m — k} is smaller thanmm*+1, hence we
obtain
1

57(7%) < k_lmax 3Num(0m)m—lcmk+2(CNu(m o k,))(m—k)2+9k < §(Cle/)m2
for all m > 4 and adapting agai@’ if necessary. [ ]

3.2 Normal form result

For a numberR, , we setB,(Ry) = {z € L, | ||sz < Ro}.

Theorem 3.2 Assume thaf” is analytic on a ballB,(Ry) for someR, > 0 andp > 0.
Assume that the non resonance condit{@riLg) is satisfied, and lett < 1 and M > 1 be
fixed. Then there exist constants > 0 ando > 0 such that for alle < ¢, there exists:
a polynomialy, a polynomialZ in |Ine|'*# normal form, and a Hamiltoniaik analytic on
B,(Me), such that

(Hy+ P)o®, = Hy+ Z+R. (3.7)

Furthermore, for allz € B,(Me),

Ling|t+h

X2, +IX () <292, and [X(:)], < e et (3.8)
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Proof. Using LemmaB.1, for all N andr, we can construct polynomial Hamiltonians

:Zxk(z) and Z ZZk
k=3

with Z in N-normal form, such thaB3(7) holds withR = OT. Now for fixede > 0, we choose
N=N(e) =|lne|™*? and r=r(e) =|Inel’.

This choice is motivated by the necessity of a balance betweand R in (3.7): The error
induced byZ is controlled as in RemarR.11, while the error induced by? is controlled by
Lemma3.1 By (3.6), we have

Ixell < (CENY)* < exp(k(vk(1 + 8)In|lne| + kIn Ck))

exp(k(vr(1+ B)In|lne| +rInCr)) (3.9)
exp(k|Ine|(v|Ing/’~1 (14 B)In|Ine| + |Ine/’~tInC|Ine|?)) '
< e

A

IN

asf < 1, and fore < ¢q sufficiently small. Therefore using Propositi@rb, we obtain for
z € B,(Me)
[Xk(2)] < e™H/E(Me)t < MFe™E
and thus
\X(Z)‘ < ZMkE7k/8 < 53/2
k>3
for e small enough. Similarly, we have for &ll< r,

X (2], < 2ke™ 3(Me)*t < 2khh 1T/

and

X (), < 3 2kMETIETHETL < 01T < &2

k>3

for ¢ small enough. Similar bounds clearly hold fgr = ") 5 Z;, which shows the first
estimate in 8.8).
On the other hand, usinzgszk Hy = Zy, + Qy, (see B8.9)), then using Lemma.1 and the
definition of Q,, (see 8.4)), we get|ad,, Hol < (CENV)o* < e~/8 where the last
inequality proceeds as i8©). Thus, using3.5), (3.9 and|| 7, .|| < MRO_Z’“+1 we obtain
by Propositior2.5that forz € B,,(Me)

||XR Z Z C’I" 3m _m+2k gm—1 < Z Cr)?:m m/2 ~ (CT)3T€T/2,

m>r+1 k=0 m>r+1

A, we get| Xr(2)|, <e e~ alm<l"""for 2 € B,(Me) ande small
enough. [ ]

3.3 Bootstrap argument

We are now in position to prove the main theorem of Section itkvs actually a consequence
of Theorem3.2
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Let ug € Ay, with |uglo, = ¢ and denotes by(0) the corresponding sequence of its
Fourier coefficients which belongs, by Lemridl, to in E%p with [|z(0) < Ze with

IE
2P
d+2 . . . . .
cp = m Let z(¢) be the local solution irC, of the Hamiltonian system associated

with H = Hy + P.
Let x, Z and R given by Theoren8.2with M = ¢, and lety(t) = ®} (z(¢)). We recall that

sincex(z) = O(|]zH3), the transformatiord; is close to the identityp} (z) = z + O(HzHZ)
and thus, for= small enough, we havigy(0)]| 5, < Ze. In particular, as noticed in2(20),
2

Let 7. be maximum of timel” such thatRfV(y(t))_g cpe eV and Hy(t)”p < cpe for all
|t| < T. By construction,

y(t) = y(0) + /O Xty 2(y(s))ds + /O Xn(y(s))ds

so using 2.21) for the first flow and 8.8) for the second one, we get fagt < 7,

RR.(y(0)) < Ze e 5N < Ze e=7N whereo = 0, < £.

1 T
R (y(t) < gepe e TN+ 4lt] Y11 Zell K (cpe)™ e N 4 Jtle el
k=3
. , 1 (3.10)
1
< (5 + A 100 Pt 2 e g
k=3

where in the last inequality we used= min{%, £} andN = In |e[* 7,
Using Lemma3.1, we then verify

R (y(t)) < (% + C|t|e e—oN) cpe &N

and thus, foe small enough,
R (y(t)) < cpe e forall |t| < min{T.,e ™} (3.11)
Similarly we obtain
Hy(t)Hp <cpe forall |t| < min{T:,e ™}, (3.12)

In view of the definition ofl%, (3.11) and @.12 imply 7. > . In particular||z(¢)|| < 2c,e

[
p
for [¢t| < e?N = e=o™<l” and using 2.7), we finally obtain {.3) with C' = (l_%fi/f’fw

Estimate {.4) is an other consequence of the normal form result and Pitago2.10 Actually
we use that the Fourier coefficientswft) are given byz(t) which ise2-close toy(t) which
in turns is almost invariant: in view o2(23 and as in 8.10, we have

Ze”‘jwyj(t)] — ly;(0)]] < (4\’5\ Z 12| K3 (cpe)Le2N 1 [t|e 6_}1|1n51+6>

JEZ k=3
from which we deduce
> ey )] — [y (0)]] < [t e
JEZ
and then {.4).
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A Proof of the non resonance hypothesis

Instead of proving PropositioR.7, we prove a slightly more general result. For a multi-index
Jj € Z" we define

T

N(G) =TT +Ll).

k=1

Proposition A.1 Fix v > 0 small enough andr > d/2. There exist positive constarsand
v depending only om», R andd, and a setf’, C W,, whose measure is larger than— 4~
such that ift” € F, then for anyr > 1

Cr,.y7
N(G)*

for anyj € Z7, for any indexed;, I, € Z%, and for anye;,e, € {0,1,—1} such that
(7,(l1,e1), (l2,e2)) ¢ N, is non resonant.

7)) + erwe, + eowy,| >

(A1)

In order to prove propositio.7, we first prove thaf)(j) cannot accumulate o#. Pre-
cisely we have

LemmaA.2 Fix~y > 0andm > d/2. There exist < C' < 1 depending only om:, R and
d and a setF’;, C W,, whose measure is larger than— 4~ such that ifi” € F. then for any
r>1

Cry

2(5) -0 = NGy

(A.2)

for any non resonanj € Z" and for anyb € Z.

Proof. Let(ai,...,a,) #0inZ", M > 0 andc € R. By induction we can prove that the
Lesbegue measure of

{we[-M,M]" || o+ <n}
i=1

is smaller than2M)"~12n. Hence givenj = (a;,8;)"_; € Z", andb € Z, the Lesbegue

measure of
T

R
Sillaif® + —2 =) b
Z (lai” + (1+|ail)m)

=1

Z(L(‘CLZ‘Z +1‘Z') —-b

i=1

Xy = {x €e[-1/2,1/2]" :

is smaller thar2rn. Now consider the set

{VGWmIIQ(J')—bI<77}={V€Wm|

)
(A.3)
itis contained in the set of thié’s such that Rv,, /(1 + |a;])™)i_, € &,. Hence the measure

of (A.3) is smaller tharR R~"N(3)™n. To conclude the proof we have to sum over all jte
and all theb's. Now for a givenj, remark that if2(j) — b| > n withp < 1then|b| < 2N (5)2.
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So that to guaranted\(2) for all possible choices of, b andr, it suffices to remove froriV,,,
a set of measure

2C 1 '
R 2 (1+ e)d+1] '

cr _—
) NG W) = Ay
ez

JjeEZ"

ChoosingC' < L R( >,z W)_l proves the result. u

Proof of proposition A.1. First of all, fore; = 5 = 0, (A.1) is a direct consequence of
lemmaA.2 choosingy > m +d+ 3,y <landF, = F§
Whene; = +1 andey = 0, (A.1) reads
Cv
NG
Notice that|Q(5)| < N(j)? and thus, if|¢;| > 2N (5), (A.4) is always true. Whet¢;| <
2N (g), using thatNV (7, ¢) = N(3)(1 + |¢1]), we get applying lemma.2 with b = 0,
CT—H’}/ C«r,y
>
N(j)m+d+3(3N(j))m+d+3 - N(J)V

(7)) £we | = (A.4)

1Q(F) + e1we, | = [Q(F, (1,€1))] >

with v = 2(m + d + 3) andC = 3"2—3” In the same way we prové\(1) wheneies = 1

with the same choice of. So it remains to establish an estimate of the form

. C~”"7
— > . .
‘Q((sa]) +w51 wfz‘ fl N(])V (A 5)
Assuming|¢;| < |/2|, we have
R|vy, | R|vy,| R
Wi, —wp, — 2+ 03] < ‘ L - 2 .
e = e =BG TGy~ sl | < G

Therefore if(1 + |¢1])™ > g—ﬁN(j)med”, we obtain A.5) directly from lemmaA.2 applied
with b = ¢3 — ¢4 and choosing = m + d + 3, C = C/2 andF, = F.
Finally assume1 + |¢1])™ < L N(j)™*+3, taking into acountQ(j)| < N(j)* (A.5) is
satisfied wherf — ¢2 < 2N (5)2. So it remains to consider the case when

1/2 1
2R 2/m 3R\ ™ m+d+3
N(g)mtd+s IN(§)?| < N@G) .
(Gevarmn) " eanGr| < ()" V)

Again we use lemma.2 to conclude

L4+ 6] <14 Jbs] <

Cr 2
[N(F) (1 + [0 ]) (1 + |fo])]m+a+3

- m+d+3
- CT+2’7 (%) " - ér,y4+3/m
B N(j)m+d+3N(j)2W - NG

‘Q(J) +w£1 - wfz‘ 2

With v = m + d+3 + (m + d + 3)* /m andC = CX :
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