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Abstract

We prove a Nekhoroshev type theorem for the nonlinear Schrödinger equation

iut = −∆u+ V ⋆ u+ ∂ūg(u, ū) , x ∈ T
d,

whereV is a typical smooth potential andg is analytic in both variables. More precisely we
prove that if the initial datum is analytic in a strip of widthρ > 0 with a bound on this strip
equals toε then, ifε is small enough, the solution of the nonlinear Schrödingerequation above
remains analytic in a strip of widthρ/2 and bounded on this strip byCε during very long time
of orderε−α| ln ε|β for some constantsC > 0, α > 0 andβ < 1.
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1 Introduction and statements

We consider the nonlinear Schrödinger equation

iut = −∆u+ V ⋆ u+ ∂ūg(u, ū) , x ∈ T
d, t ∈ R, (1.1)

whereV is a smooth convolution potential andg is an analytic function on a neighborhood of
the origin inC2 which has a zero of order at least 3 at the origin and satisfiesg(z, z̄) ∈ R. In
more standard models, the convolution term is replaced by a multiplicative potential. The use
of a convolution potential makes easier the analysis of the resonances.
For instance wheng(u, ū) = a

p+1 |u|2p+2 with a ∈ R andp ∈ N, we recover the standard

NLS equationiut = −∆u + V ⋆ u + a|u|2pu. We notice that (1.1) is a Hamiltonian system
associated with the Hamiltonian function

H(u, ū) =

∫

Td

(

|∇u|2 + (V ⋆ u)ū+ g(u, ū)
)

dx.

and the symplectic structure inherent to the complex structure,idu ∧ dū.

This equation has been considered with Hamiltonian tools intwo recent works. In the first
one (see [BG03] and also [BG06] and [Bou96] for related results) Bambusi & Grébert prove a
Birkhoff normal form theorem adapted to this equation and obtain dynamical consequences on
the long time behavior of the solutions with small initial Cauchy data in Sobolev spaces. More
precisely they prove that if the Sobolev norm of indexs of the initial datumu0 is sufficiently
small (of orderε) then the Sobolev norm of the solution is bounded by2ε during very long
time (of orderε−r with r arbitrary). In the second one (see [EK]) Eliasson & Kuksin obtain
a KAM theorem adapted to this equation. In particular they prove that, in a neighborhood
of u = 0, many of the invariant finite dimensional tori of the linear part of the equation are
preserved by small Hamiltonian perturbations. In other words, (1.1) has many quasi-periodic
solutions. In both cases non resonances conditions (not exactly the same) have to be imposed
on the frequencies of the linear part and thus on the potential V .

Both results are related to the stability of the zero solution which is an elliptic equilibrium
of the linear equation. The first establishes the stability for polynomials times with respect to
the size of the (small) initial datum while the second provesthe stability for all time of certain
solutions. In the present work we extend the technic of normal form and we establish the sta-
bility for times of orderε−α| ln ε|β for some constantsα > 0 andβ < 1, ε being the size of the
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initial datum in an analytic space.

We now state precisely our result. We assume thatV belongs to the following space (m >
d/2, R > 0)

Wm = {V (x) =
∑

a∈Zd

vae
ia·x | v′a := va(1 + |a|)m/R ∈ [−1/2, 1/2] for anya ∈ Z

d} (1.2)

that we endow with the product probability measure. Here, for a = (a1, . . . , ad) ∈ Z
d,

|a|2 = a21 + · · · + a2d.
For ρ > 0, we denote byAρ ≡ Aρ(T

d;C) the space of functionsφ that are analytic on
the complex neighborhood ofd-dimensional torusTd given byIρ = {x + iy | x ∈ T

d, y ∈
R
d and |y| < ρ} and continuous on the closure of this strip. We then denote by| · |ρ the usual

norm onAρ

|φ|ρ = sup
z∈Iρ

|φ(z)|.

We note that(Aρ, | · |ρ) is a Banach space.
Our main result is a Nekhoroshev type theorem:

Theorem 1.1 There exists a subsetV ⊂ Wm of full measure, such that forV ∈ V, β < 1 and
ρ > 0, the following holds: there existC > 0 andε0 > 0 such that if

u0 ∈ A2ρ and |u0|2ρ = ε ≤ ε0

then the solution of(1.1) with initial datumu0 exists for times|t| ≤ ε−α(ln ε)β and satisfies

|u(t)|ρ/2 ≤ Cε for |t| ≤ ε−σρ| ln ε|β , (1.3)

with σρ = min{1
8 ,

ρ
2}.

Furthermore, writingu(t) =
∑

k∈Zd ξk(t)e
ik·x, we have

∑

k∈Zd

eρ|k|
∣

∣|ξk(t)| − |ξk(0)|
∣

∣ ≤ ε3/2 for |t| ≤ ε−σρ| ln ε|β . (1.4)

Estimate (1.4) asserts that there is almost no variation of the actions1 and in particular no possi-
bility of weak turbulence, i.e. exchanges between low Fourier modes and high Fourier modes.
This kind of turbulence may induce the growth of the Sobolev norm

∑

(1+ |k|s)2|ξk|2 (s > 1)
of the solution as recently proved in [CKSTT09].
In finite dimensionn, the standard Nekhoroshev result [Nek77] controls the dynamic over

times of orderexp
(

−α
ε1/(τ+1)

)

for someα > 0 and τ > n + 1 (see for instance [BGG85,

GG85, Pös93]) which is of course much better thanε−α| ln ε|β = e−α| ln ε|(1+β)
. Neverthe-

less this standard result does not extend to the infinite dimensional context. Actually, when
n → ∞, thatε−1/(τ+1) can be transformed in| ln ε|(1+β) is a good news!
The only previous work in the direction of Nekhoroshev estimates for PDEs was obtained by

1Here the actions are the modulus of the Fourier coefficients to the square,Ik = |ξk|2.
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Bambusi in [Bam99]. He also worked in spaces of analytic functions in a strip and for times
of ordere−α| ln ε|1+β

, nevertheless the control of the solution was not obtained uniformly in a
strip but in a complicated way involving the Fourier coefficients of the solution.

We now focus on the three main differences with the previous works on normal forms:

• we crucially use the zero momentum condition: in the Fourierspace, the nonlinear term
contains only monomialszj1 · · · zjk with j1 + · · · + jk = 0 (cf. Definition 2.4). This
property allows to control the largest index by the others.

• we useℓ1-type norms to control the Fourier coefficients and the vector fields instead of
ℓ2-type norms as usual. Of course this choice does not allow to work in Hilbert spaces
and makes obligatory a slight lost of regularity each time the estimates are transposed
from the Fourier space to the initial space of analytic functions. But it turns out that this
choice makes much more simpler the estimates on the vector fields (cf. Proposition2.5
below and [FG10] for a similar framework in the context of numerical analysis).

• we notice that the vector field of a monomial,zj1 · · · zjk containing at least three Fourier
modeszℓ with large indicesℓ induces a flow whose dynamics is under control during
very long time in the sense that the dynamic almost excludes exchanges between high
Fourier modes and low Fourier modes (see Proposition2.10). In [Bam03] or [BG06],
such terms were neglected since the vector field of a monomialcontaining at least three
Fourier modes with large indices is small inSobolev norm(but not in analytic norm) and
thus will almost keep invariant all the modes. This more subtle analysis for monomials
was still used in [FGP10].

Finally we notice that our method could be generalized by considering not only zero mo-
mentum monomials but also monomials with finite or exponentially decreasing momentum.
This would certainly allow to consider a nonlinear Schrödinger equation with a multiplicative
potentialV and nonlinearities depending periodically onx:

iut = −∆u+ V u+ ∂ūg(x, u, ū) , x ∈ T
d.

Nevertheless this generalization would generate a lot of technicalities and we prefer to focus
here on the simplicity of the arguments.

2 Setting and Hypothesis

2.1 Hamiltonian formalism

The equation (1.1) is a semi linear PDE locally well posed in the Sobolev spaceH2(Td) (see
for instance [Caz03]). Let u be a (local) solution of (1.1) and consider(ξ, η) = (ξa, ηa)a∈Zd

the Fourier coefficients ofu, ū respectively, i.e.

u(x) =
∑

a∈Zd

ξae
ia·x and ū(x) =

∑

a∈Zd

ηae
−ia·x. (2.1)
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A standard calculus shows thatu is solution inH2(Td) of (1.1) if and only if (ξ, η) is a solution
in2 ℓ22 × ℓ22 of the system







ξ̇a = −iωaξa − i ∂P∂ηa
, a ∈ Z

d,

η̇a = iωaηa − i ∂P∂ξa , a ∈ Z
d,

(2.2)

where the linear frequencies are given byωa = |a|2 + va where as in (1.2), V =
∑

vae
ia·x,

and the nonlinear part is given by

P (ξ, η) =
1

(2π)d

∫

Td

g(
∑

ξae
ia·x,

∑

ηae
−ia·x) dx. (2.3)

This system is reinterpreted in a Hamiltonian context endowing the set of couples(ξa, ηa) ∈
C
Zd × C

Zd
with the symplectic structure

i
∑

a∈Zd

dξa ∧ dηa. (2.4)

We define the setZ = Z
d × {±1}. Forj = (a, δ) ∈ Z, we define|j| = |a| and we denote by

j the index(a,−δ).
We identify a couple(ξ, η) ∈ C

Zd × C
Zd

with (zj)j∈Z ∈ C
Z via the formula

j = (a, δ) ∈ Z =⇒
{

zj = ξa if δ = 1,

zj = ηa if δ = −1.
(2.5)

By a slight abuse of notation, we often writez = (ξ, η) to denote such an element.
For a givenρ > 0, we consider the Banach spaceLρ made of elementsz ∈ C

Z such that

‖z‖
ρ
:=
∑

j∈Z

eρ|j||zj | < ∞,

and equipped with the symplectic form (2.4). We say thatz ∈ Lρ is real whenzj = zj for any

j ∈ Z. In this case, we writez = (ξ, ξ̄) for someξ ∈ C
Zd

. In this situation, we can associate
with z the functionu defined by (2.1).
The next lemma shows the relation with the spaceAρ defined above:

Lemma 2.1 Let u be a complex valued function analytic on a neighborhood ofT
d, and let

(zj)j∈Z be the sequence of its Fourier coefficients defined by(2.1) and (2.5). Then for all
µ < ρ, we have

if u ∈ Aρ then z ∈ Lµ and ‖z‖
µ
≤ cρ,µ|u|ρ ; (2.6)

if z ∈ Lρ then u ∈ Aµ and |u|µ ≤ cρ,µ‖z‖ρ , (2.7)

wherecρ,µ is a constant depending onρ andµ and the dimensiond.

2As usual,ℓ2
2
= {(ξa)a∈Zd |∑(1 + |a|2)|ξa|2 < +∞}.
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Proof. Assume thatu ∈ Aρ. Then by Cauchy formula, we have for allj ∈ Z, |zj | ≤
|u|ρe−ρ|j|. Hence forµ < ρ, we have

‖z‖
µ
≤ |φ|ρ

∑

j∈Z

e(µ−ρ)|j| ≤ |φ|ρ
(

2
∑

n∈Z

e
(µ−ρ)
√

d
|n|
)d

≤
(

2

1− e
(µ−ρ)
√

d

)d

|u|ρ.

Conversely, assume thatz ∈ Lρ. Then|ξa| ≤ ‖z‖
µ
e−ρ|a| for all a ∈ Z

d, and thus by (2.1), we

get for allx ∈ T
d andy ∈ R

d with |y| ≤ µ,

|u(x+ iy)| ≤
∑

a∈Zd

|ξa|e|ay| ≤ ‖z‖
ρ

∑

a∈Zd

e−(ρ−µ)|a| ≤
(

2

1− e
(µ−ρ)
√

d

)d

‖z‖
ρ
.

Henceu is bounded on the stripIµ.

For a functionF of C1(Lρ,C), we define its Hamiltonian vector field byXF = J∇F
whereJ is the symplectic operator onLρ induced by the symplectic form (2.4), ∇F (z) =
(

∂F
∂zj

)

j∈Z
and where by definition we set forj = (a, δ) ∈ Z

d × {±1},

∂F

∂zj
=















∂F

∂ξa
if δ = 1,

∂F

∂ηa
if δ = −1.

For two functionsF andG, the Poisson Bracket is (formally) defined as

{F,G} = ∇F TJ∇G = i
∑

a∈Zd

∂F

∂ηa

∂G

∂ξa
− ∂F

∂ξa

∂G

∂ηa
. (2.8)

We say that a Hamiltonian functionH is real if H(z) is real for all realz.

Definition 2.2 For a givenρ > 0, we denote byHρ the space of real HamiltoniansP satisfy-
ing

P ∈ C1(Lρ,C), and XP ∈ C1(Lρ,Lρ).

Notice that forF andG in Hρ the formula (2.8) is well defined. With a given Hamiltonian
functionH ∈ Hρ, we associate the Hamiltonian system

ż = XH(z) = J∇H(z)

which also reads

ξ̇a −−i
∂H

∂ηa
and η̇a = i

∂H

∂ξa
, a ∈ Z

d. (2.9)

We define the local flowΦt
H(z) associated with the previous system (for an interval of times

t ≥ 0 depending a priori on the initial conditionz). Note that ifz = (ξ, ξ̄) and ifH is real, the
flow (ξt, ηt) = Φt

H(z) is also real,ξt = η̄t for all t. Further, choosing the Hamiltonian given
by

H(ξ, η) =
∑

a∈Zd

ωaξaηa + P (ξ, η),
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P being given by (2.3), we recover the system (2.2), i.e. the expression of the NLS equation
(1.1) in Fourier modes.

Remark 2.3 The quadratic HamiltonianH0 =
∑

a∈Zd ωaξaηa corresponding to the linear
part of (1.1) does not belong toHρ. Nevertheless it generates a flow which mapsLρ into Lρ

explicitly given for all timet and for all indicesa byξa(t) = e−iωatξk(0), ηa(t) = eiωatηk(0).
On the contrary, we will see that, in our setting, the nonlinearity P belongs toHρ.

2.2 Space of polynomials

In this subsection we define a class of polynomials onC
Z .

We first need more notations concerning multi-indices: letℓ ≥ 2 andj = (j1, . . . , jℓ) ∈ Zℓ

with ji = (ai, δi), we define

• the monomial associated withj :

zj = zj1 · · · zjℓ ,

• the momentum ofj :
M(j) = a1δ1 + · · · + aℓδℓ, (2.10)

• the divisor associated withj :

Ω(j) = δ1ωa1 + · · · + δℓωaℓ (2.11)

where, fora ∈ Z
d, ωa = |a|2 + va are the frequencies of the linear part of (1.1).

We then define the set of indices withzero momentumby

Iℓ = {j = (j1, . . . , jℓ) ∈ Zℓ, with M(j) = 0}. (2.12)

On the other hand, we say thatj = (j1, . . . , jℓ) ∈ Zℓ is resonant, and we writej ∈ Nr,
if ℓ is even andj = i ∪ ī for some choice ofi ∈ Zℓ/2. In particular, ifj is resonant then
its associated divisor vanishes,Ω(j) = 0, and its associated monomials depends only on the
actions:

zj = zj1 · · · zjr = ξa1ηa1 · · · ξaℓ/2ηaℓ/2 = Ia1 · · · Iaℓ/2 ,

where for alla ∈ Z
d, Ia(z) = ξaηa denotes the action associated with the indexa.

Finally we note that ifz is real, thenIa(z) = |ξa|2 and we remark that for oddr the resonant
setNr is the empty set.

Definition 2.4 Let k ≥ 2, a (formal) polynomialP (z) =
∑

ajzj belongs toPk if P is real,
of degreek, have a zero of order at least2 in z = 0, and if

• P contains only monomials having zero momentum, i.e. such that M(j) = 0 when
aj 6= 0 and thusP reads

P (z) =
k
∑

ℓ=2

∑

j∈Iℓ

ajzj (2.13)

with the relationaj̄ = āj .
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• The coefficientsaj are bounded, i.e.∀ ℓ = 2, . . . , k, sup
j∈Iℓ

|aj | < +∞.

We endowPk with the norm

‖P‖ =

k
∑

ℓ=2

sup
j∈Iℓ

|aj |. (2.14)

The zero momentum assumption in Definition2.4 is crucial to obtain the following Proposi-
tion:

Proposition 2.5 Let k ≥ 2 and ρ > 0. We havePk ⊂ Hρ, and for P a homogeneous
polynomial of degreek in Pk, we have the estimates

|P (z)| ≤ ‖P‖ ‖z‖k
ρ

(2.15)

and
∀ z ∈ Lρ, ‖XP (z)‖ρ ≤ 2k‖P‖ ‖z‖k−1

ρ
. (2.16)

Eventually, forP ∈ Pk andQ ∈ Pℓ, then{P,Q} ∈ Pk+ℓ−2 and we have the estimate

‖{P,Q}‖ ≤ 2kℓ‖P‖ ‖Q‖ . (2.17)

Proof. Let
P (z) =

∑

j∈Ik

ajzj ,

we have
|P (z)| ≤ ‖P‖

∑

j∈Zk

|zj1 | · · · |zjk | ≤ ‖P‖ ‖z‖k
ℓ1

≤ ‖P‖ ‖z‖k
ρ

and the first inequality (2.15) is proved.
To prove the second estimate, let us takeℓ ∈ Z and calculate using the zero momentum
condition,

∣

∣

∣

∣

∂P

∂zℓ

∣

∣

∣

∣

≤ k‖P‖
∑

j∈Zk−1

M(j)=−M(ℓ)

|zj1 · · · zjk−1
|.

Therefore

‖XP (z)‖ρ =
∑

ℓ∈Z

eρ|ℓ|
∣

∣

∣

∣

∂P

∂zℓ

∣

∣

∣

∣

≤ k‖P‖
∑

ℓ∈Z

∑

j∈Zk−1

M(j)=−M(ℓ)

eρ|ℓ||zj1 · · · zjk−1
|.

But if M(j) = −M(ℓ),

eρ|ℓ| ≤ exp
(

ρ(|j1|+ · · ·+ |jk−1|)
)

≤
∏

n=1,...,k−1

eρ|jn|.

Hence, after summing inℓ we get3

‖XP (z)‖ρ ≤ 2k‖P‖
∑

j∈Zk−1

eρ|j1||zj1 | · · · eρ|jk−1||zjk−1
| ≤ 2k‖P‖ ‖z‖k−1

ρ

3Take care thatM(a, δ) = M(−a,−δ) whence the coefficient 2.
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which yields (2.16).
Assume now thatP andQ are homogeneous polynomials of degreesk andℓ respectively and
with coefficientsak, k ∈ Ik andbℓ, ℓ ∈ Iℓ. It is clear that{P,Q} is a monomial of degree
k + ℓ− 2 satisfying the zero momentum condition. Furthermore writing

{P,Q}(z) =
∑

j∈Ik+ℓ−2

cjzj ,

cj expresses as a sum of coefficientsakbℓ for which there exists ana ∈ Z
d andǫ ∈ {±1} such

that
(a, ǫ) ⊂ k ∈ Ik and (a,−ǫ) ⊂ ℓ ∈ Iℓ,

and such that if for instance(a, ǫ) = k1 and(a,−ǫ) = ℓ1, we necessarily have(k2, . . . , kk, ℓ2, . . . , ℓℓ) =
j. Hence for a givenj, the zero momentum condition onk and onℓ determines the value of
ǫa which in turn determines two possible value of(ǫ, a).
This proves (2.17) for monomials. The extension to polynomials follows from the definition
of the norm (2.14).
The last assertion, as well as the fact that the Poisson bracket of two real Hamiltonian is real,
immediately follow from the definitions.

2.3 Nonlinearity

The nonlinearityg in (1.1) is assumed to be complex analytic in a neighborhood of{0, 0} in
C
2. So there exist positive constantsM andR0 such that the Taylor expansion

g(v1, v2) =
∑

k1,k2≥0

1

k1!k2!
∂k1∂k2g(0, 0)v

k
1 v

ℓ
2

is uniformly convergent and bounded byM on the ball|v1| + |v2| ≤ 2R0 of C2. Hence,
formula (2.3) defines an analytic function on the ball‖z‖

ρ
≤ R0 of Lρ and we have

P (z) =
∑

k≥0

Pk(z)

where, for allk ≥ 0, Pk is a homogeneous polynomial defined by

Pk =
∑

k1+k2=k

∑

(a,b)∈(Zd)k1×(Zd)k1

pa,bξa1 · · · ξak1 ηb1 · · · ηbk2

with

pa,b =
1

k1!k2!
∂k1∂k2g(0, 0)

∫

Td

eiM(a,b)·x dx,

andM(a, b) = a1 + · · · + ak1 − b1 − · · · − bk2 is the moment ofξa1 · · · ξak1ηb1 · · · ηbk2 .
Therefore it is clear thatPk satisfies the zero momentum condition and thusPk ∈ Pk for all
k ≥ 0. Furthermore‖Pk‖ ≤ MR−k

0 .
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2.4 Non resonance condition

In order to control the divisors (2.11), we need to impose a non resonance condition on the
linear frequenciesωa, a ∈ Z

d.
For r ≥ 3 andj = (j1, . . . , jr) ∈ Zr, we defineµ(j) as the third largest integer amongst
|j1|, · · · , |jr| and we recall thatj ∈ Zr is said resonant ifr is even andj = i ∪ ī for some
i ∈ Zr/2.

Hypothesis 2.6 There existγ > 0, ν > 0 andc0 > 0 such that for allr ≥ 3 and all j ∈ Zr

non resonant, we have

|Ω(j)| ≥ γcr0
µ(j)νr

. (2.18)

Recall that forV =
∑

a∈Zd vae
ia·x in the spaceWm defined in (1.2), the frequencies read

ωa = |a|2 + va = |a|2 + Rv′a
(1 + |a|)m , a ∈ Z

d.

In Appendix we prove

Proposition 2.7 Fix γ > 0 small enough andm > d/2. There exist positive constantsc0 and
ν depending only onm, R andd, and a setFγ ⊂ Wm whose measure is larger than1− 4γ1/7

such that ifV ∈ Fγ then(2.18) holds true for all non resonantj ∈ Zr and all r ≥ 3.

Thus Hypothesis2.6 is satisfied for allV ∈ V where

V = ∪γ>0Fγ (2.19)

is a subset of full measure inWm.

2.5 Normal forms

We fix an indexN ≥ 1. For a fixed integerk ≥ 3, we set

Jk(N) = { j ∈ Ik | µ(j) > N}.

Definition 2.8 LetN be an integer. We say that a polynomialZ ∈ Pk is in N -normal form if
it can be written

Z =
k
∑

ℓ=3

∑

j∈Nℓ∪Jℓ(N)

ajzj

In other words,Z contains either monomials depending only of the actions or monomials
whose indicesj satisfiesµ(j) > N , i.e. monomials involving at least three modes with index
greater than N.

We now motivate the introduction of such normal form. First,we recall the

10



Lemma 2.9 let f : R → R+ a continuous function, andy : R → R+ a differentiable function
satisfying the inequality

∀ t ∈ R,
d

dt
y(t) ≤ 2f(t)

√

y(t).

Then we have the estimate

∀ t ∈ R,
√

y(t) ≤
√

y(0) +

∫ t

0
f(s) ds.

Proof. Let ǫ > 0 and defineyǫ = y+ ǫ which is a non negative function whose square root is
derivable. We have

d

dt

√

yǫ(t) ≤ 2f(t)

√

y(t)
√

yǫ(t)
≤ 2f(t)

and thus
√

yε(t) ≤
√

yǫ(0) +

∫ t

0
f(s) ds.

The claim is obtained whenǫ → 0.

For a given numberN andz ∈ Lρ we define

R
N
ρ (z) =

∑

|j|>N

eρ|j||zj |.

Notice that ifz ∈ Lρ+µ then
R
N
ρ (z) ≤ e−µN‖z‖

ρ+µ
. (2.20)

Proposition 2.10 LetN ∈ N andk ≥ 3. LetZ a homogeneous polynomial of degreek in N -
normal form. Letz(t) be a real solution of the flow associated with the HamiltonianH0 + Z.
Then we have

R
N
ρ (t) ≤ R

N
ρ (0) + 4k3‖Z‖

∫ t

0
R
N
ρ (s)2‖z(s)‖k−3

ρ
ds (2.21)

and

‖z(t)‖
ρ
≤ ‖z(0)‖

ρ
+ 4k3‖Z‖

∫ t

0
R
N
ρ (s)2‖z(s)‖k−3

ρ
ds (2.22)

Proof. Leta ∈ Z
d be fixed, and letIa(t) = ξa(t)ηa(t) the actions associated with the solution

of the Hamiltonian system induced byH0 + Z. We have using (2.17) andH0 = H0(I),

|e2ρ|a|İa| = |e2ρ|a|{Ia, Z}| ≤ 2k‖Z‖ |eρ|a|
√

Ia|
(

∑

M(j)=±a
2 indices>N

eρ|a||zj1 · · · zjk−1
|
)

Using the previous Lemma, we get

eρ|a|
√

Ia(t) ≤ eρ|a|
√

Ia(0) + 2k‖Z‖
∫ t

0

(

∑

M(j)=±a
2 indices>N

eρ|j1||zj1 | · · · eρ|jk−1||zjk−1
|
)

ds.

(2.23)
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Ordering the multi-indices in such way|j1| and|j2| are the largest, and using the fact thatz(t)
is real (and thus|zj | =

√
Ia for j = (a,±1) ∈ Z), we obtain after summation in|a| > N

R
N
ρ (z(t)) ≤ R

N
ρ (z(0)) + 4k3‖Z‖

∫ t

0

(

∑

|j1|,|j2|≥N
j3,··· ,jk∈Z

eρ|j1||zj1 | · · · eρ|jk−1||zjk−1
|
)

ds

≤ R
N
ρ (0) + 4k3‖Z‖

∫ t

0
R
N
ρ (s)2‖z(s)‖k−3

ρ
ds.

In the same way we obtain (2.22).

Remark 2.11 These estimates will be crucially used in the final bootstrapargument. In partic-
ular, along the solution associated with a Hamiltonian inN -normal formal and initial datum
‖z0‖2ρ = ε. Then asRN

ρ (z0) = O(εe−ρN ), Eqns. (2.21)-(2.22) guarantee thatRN
ρ (z(t))

remains of orderO(εe−ρN ) and the norm ofz(t) remains of orderε over exponentially long
timet = O(eρN ).

The next result is an easy consequence of the non resonance condition and the definition of the
normal forms:

Proposition 2.12 Assume that the non resonance condition(2.18) is satisfied, and letN be
fixed. LetQ be a homegenous polynomial of degreek. Then the homological equation

{χ,H0} − Z = Q (2.24)

admits a polynomial solution(χ,Z) homogeneous of degreek, such thatZ is in N -normal
form, and such that

‖Z‖ ≤ ‖Q‖ and ‖χ‖ ≤ Nνk

γck0
‖Q‖ (2.25)

Proof. Assume thatQ =
∑

j∈Ik
Qjzj and searchZ =

∑

j∈Ik
Zjzj andχ =

∑

j∈Ik
χjzj

such that (2.24) be satisfied. Then the equation (2.24) can be written in term of polynomial
coefficients

iΩ(j)χj − Zj = Qj , j ∈ Ik,
whereΩ(j) is defined in (2.11). We then define

Zj = Qj and χj = 0 if j /∈ Nk or µ(j) ≤ N,

Zj = 0 and χj =
Qj

iΩ(j) if j ∈ Nk andµ(j) > N.

In view of (2.18), this yields (2.25).

3 Proof of the main Theorem

3.1 Recursive equation

We aim at constructing a canonical transformationτ such that in the new variables, the Hamil-
tonianH0 + P is under normal form modulo a small remainder term. Using Lietransforms to

12



generateτ , the problem can be written: Find polynomialsχ =
∑r

k=3 χk andZ =
∑r

k=3 Zk

under normal form and a smooth HamiltonianR satisfying∂αR(0) = 0 for all α ∈ N
Z with

|α| ≥ r, such that
(H0 + P ) ◦Φ1

χ = H0 + Z +R. (3.1)

Then the exponential estimate will by obtained by optimizing the choice ofr andN .
We recall that forχ andK to Hamiltonian, we have for allk ≥ 0

dk

dtk
(K ◦ Φt

χ) = {χ, { · · · {χ,K}·}(Φt
χ) = (adkχK)(Φt

χ),

whereadχK = {χ,K}. On the other hand, ifK, L are homogeneous polynomials of degree
respectivelyk andℓ then{K,L} is a homogeneous polynomial of degreek+ l−2. Therefore,
we obtain by using the Taylor formula

(H0 + P ) ◦ Φ1
χ − (H0 + P ) =

r−3
∑

k=0

1

(k + 1)!
adkχ({χ,H0 + P}) +Or (3.2)

whereOr stands for any smooth functionR satisfying∂αR(0) = 0 for all α ∈ N
Z with

|α| ≥ r. Now we know that forζ ∈ C, the following relation holds:

(

r−3
∑

k=0

Bk

k!
ζk

)(

r−3
∑

k=0

1

(k + 1)!
ζk

)

= 1 +O(|ζ|r−2)

whereBk are the Bernoulli numbers defined by the expansion of the generating function z
ez−1 .

Therefore, defining the two differential operators

Ar =

r−3
∑

k=0

1

(k + 1)!
adkχ and Br =

r−3
∑

k=0

Bk

k!
adkχ,

we get
BrAr = Id + Cr

whereCr is a differential operator satisfying

CrO3 = Or.

Applying Br to the two sides of equation (3.2), we obtain

{χ,H0 + P} = Br(Z − P ) +Or.

Plugging the decompositions in homogeneous polynomials ofχ, Z andP in the last equa-
tion and equating the terms of same degree, we obtain after a straightforward calculus, the
following recursive equations

{χm,H0} − Zm = Qm, m = 3, · · · , r, (3.3)
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where

Qm = −Pm +

m−1
∑

k=3

{Pm+2−k, χk}

+

m−3
∑

k=1

Bk

k!

∑

ℓ1+···ℓk+1=m+2k
3≤ℓi≤m−k

adχℓ1
· · · adχℓk

(Zℓk+1
− Pℓk+1

).

(3.4)

Notice that in the last sum,ℓi ≤ m−k as a consequence of3 ≤ ℓi andℓ1+ · · · ℓk+1 = m+2k.
Once these recursive equations solved, we define the remainder term asR = (H0+P )◦Φ1

χ−
H0 − Z. By construction,R is analytic on a neighborhood of the origin inLρ andR = Or.
As a consequence, by the Taylor formula,

R =
∑

m≥r+1

m−3
∑

k=1

1

k!

∑

ℓ1+···ℓk=m+2k
3≤ℓi≤r

adχℓ1
· · · adχℓk

H0

+
∑

m≥r+1

m−3
∑

k=0

1

k!

∑

ℓ1+···ℓk+1=m+2k
3≤ℓ1+···ℓk≤r

3≤ℓk+1

adχℓ1
· · · adχℓk

Pℓk+1
.

(3.5)

Lemma 3.1 Assume that the non resonance condition(2.18) is fulfilled. Letr andN be fixed.
For m = 3, · · · , r, there exist homogeneous polynomialsχm andZm of degreem, withZm in
N−normal form, solutions of the recursive equation(3.3) and satisfying

‖χm‖ + ‖Zm‖ ≤ (CmNν)m
2

(3.6)

where the constantC does not depend onr or N .

Proof. We defineχm andZm by induction using Proposition2.12. Note that (3.6) is clearly
satisfied form = 3, providedC is big enough. Estimate (2.25), together with (2.17) and the
estimate on the Bernoulli numbers,|Bk| ≤ k! ck for somec > 0, yields for allm ≥ 3,

γcm0 N−νm‖χm‖ + ‖Zm‖ ≤ ‖Pm‖ + 2

m−1
∑

k=3

k(m+ 2− k)‖Pm+2−k‖ ‖χk‖

+ 2

m−3
∑

k=1

(Cm)k
∑

ℓ1+···ℓk+1=m+2k
3≤ℓi≤m−k

ℓ1‖χℓ1‖ · · · ℓk‖χℓk‖ ‖Zℓk+1
− Pℓk+1

‖ .
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for some constantC. We setβm = m(‖χm‖ + ‖Zm‖). Using‖Pm‖ ≤ MR−m
0 (see end of

subsection2.4), we obtain

βm ≤ β(1)
m + β(2)

m where

β(1)
m = (CNν)mm3

m−1
∑

k=3

βk and

β(2)
m = Nνm(Cm)m−1

m−3
∑

k=1

∑

ℓ1+···ℓk+1=m+2k
3≤ℓi≤m−k

βℓ1 · · · βℓk(βℓk+1
+ ‖Pℓk+1

‖)

whereC depends onM ,R0, γ andc0. It remains to prove by recurrence thatβm ≤ (CmNν)m
2
,

m ≥ 3. Again this is true form = 3 adaptingC if necessary. Thus assume thatβj ≤
(CjNν)j

2
j = 3, . . . ,m− 1, we then get for

β(1)
m ≤ (CNν)mm4(CmNν)(m−1)2 ≤ (CmNν)m

2−m+1 ≤ 1

2
(CmNν)m

2

as soon asm ≥ 4, and providedC > 2. On the other hand, since‖Pm‖ ≤ MR−m
0 , we can

assume that‖Pℓk+1
‖ ≤ βℓk+1

and we get

β(2)
m ≤ Nνm(Cm)m−1

m−3
∑

k=1

∑

ℓ1+···ℓk+1=m+2k
3≤ℓi≤m−k

(CNν(m− k))ℓ
2
1+···+ℓ2k+1 .

Notice that the maximum ofℓ21+· · ·+ℓ2k+1 whenℓ1+· · · ℓk+1 = m+2k and 3 ≤ ℓi ≤ m−k is
obtained forℓ1 = · · · = ℓk = 3 andℓk+1 = m−k and its value is(m−k)2+9k. Furthermore
the cardinal of{ℓ1 + · · · ℓk+1 = m + 2k, 3 ≤ ℓi ≤ m − k} is smaller thanmk+1, hence we
obtain

β(2)
m ≤ max

k=1,··· ,m−3
Nνm(Cm)m−1Cmk+2(CNν(m− k))(m−k)2+9k ≤ 1

2
(CmNν)m

2

for all m ≥ 4 and adapting againC if necessary.

3.2 Normal form result

For a numberR0 , we setBρ(R0) = {z ∈ Lρ | ‖z‖ρ < R0}.

Theorem 3.2 Assume thatP is analytic on a ballBρ(R0) for someR0 > 0 and ρ > 0.
Assume that the non resonance condition(2.18) is satisfied, and letβ < 1 andM > 1 be
fixed. Then there exist constantsε0 > 0 and σ > 0 such that for allε < ε0, there exists:
a polynomialχ, a polynomialZ in | ln ε|1+β normal form, and a HamiltonianR analytic on
Bρ(Mε), such that

(H0 + P ) ◦Φ1
χ = H0 + Z +R. (3.7)

Furthermore, for allz ∈ Bρ(Mε),

‖XZ(z)‖ρ + ‖Xχ(z)‖ρ ≤ 2ε3/2, and ‖XR(z)‖ρ ≤ ε e−
1
4
| ln ε|1+β

. (3.8)
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Proof. Using Lemma3.1, for all N andr, we can construct polynomial Hamiltonians

χ(z) =
r
∑

k=3

χk(z) and Z(z) =
r
∑

k=3

Zk(z),

with Z in N -normal form, such that (3.7) holds withR = Or. Now for fixedε > 0, we choose

N ≡ N(ε) = | ln ε|1+β and r ≡ r(ε) = | ln ε|β .
This choice is motivated by the necessity of a balance between Z andR in (3.7): The error
induced byZ is controlled as in Remark2.11, while the error induced byR is controlled by
Lemma3.1. By (3.6), we have

‖χk‖ ≤ (CkNν)k
2 ≤ exp(k(νk(1 + β) ln | ln ε|+ k lnCk))

≤ exp(k(νr(1 + β) ln | ln ε|+ r lnCr))
≤ exp(k| ln ε|(ν| ln ε|β−1(1 + β) ln | ln ε|+ | ln ε|β−1 lnC| ln ε|β))
≤ ε−k/8,

(3.9)

asβ < 1, and forε ≤ ε0 sufficiently small. Therefore using Proposition2.5, we obtain for
z ∈ Bρ(Mε)

|χk(z)| ≤ ε−k/8(Mε)k ≤ Mkε7k/8

and thus
|χ(z)| ≤

∑

k≥3

Mkε7k/8 ≤ ε3/2

for ε small enough. Similarly, we have for allk ≤ r,

‖Xχk
(z)‖

ρ
≤ 2kε−k/8(Mε)k−1 ≤ 2kMk−1ε7k/8−1

and
‖Xχ(z)‖ρ ≤

∑

k≥3

2kMk−1ε7k/8−1 ≤ Cε−1ε
21
8 ≤ ε3/2

for ε small enough. Similar bounds clearly hold forZ =
∑r

k=3 Zk, which shows the first
estimate in (3.8).
On the other hand, usingadχℓk

H0 = Zℓk + Qℓk (see (3.3)), then using Lemma3.1 and the

definition of Qm (see (3.4)), we get‖adχℓk
H0‖ ≤ (CkNν)ℓk

2 ≤ ε−ℓk/8, where the last

inequality proceeds as in (3.9). Thus, using (3.5), (3.9) and‖Pℓk+1
‖ ≤ MR

−ℓk+1

0 we obtain
by Proposition2.5that forz ∈ Bρ(Mε)

‖XR(z)‖ρ ≤
∑

m≥r+1

m−3
∑

k=0

m(Cr)3mε−
m+2k

8 εm−1 ≤
∑

m≥r+1

m2(Cr)3mεm/2 ≤ (Cr)3rεr/2.

Therefore, sincer = | ln ε|β , we get‖XR(z)‖ρ ≤ ε e−
1
4
| ln ε|1+β

for z ∈ Bρ(Mε) andε small
enough.

3.3 Bootstrap argument

We are now in position to prove the main theorem of Section 1 which is actually a consequence
of Theorem3.2.
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Let u0 ∈ A2ρ with |u0|2ρ = ε and denotes byz(0) the corresponding sequence of its
Fourier coefficients which belongs, by Lemma2.1, to in L 3

2
ρ with ||z(0)|| 3

2
ρ ≤ cρ

4 ε with

cρ = 2d+2

(1−e−ρ/2
√

d)d
. Let z(t) be the local solution inLρ of the Hamiltonian system associated

with H = H0 + P .
Let χ, Z andR given by Theorem3.2 with M = cρ and lety(t) = Φ1

χ(z(t)). We recall that

sinceχ(z) = O(‖z‖3), the transformationΦ1
χ is close to the identity,Φ1

χ(z) = z + O(‖z‖2)
and thus, forε small enough, we have‖y(0)‖ 3

2
ρ
≤ cρ

2 ε. In particular, as noticed in (2.20),

Rρ
N (y(0)) ≤ cρ

2 ε e
− ρ

2
N ≤ cρ

2 ε e
−σN whereσ = σρ ≤ ρ

2 .
Let Tε be maximum of timeT such thatRρ

N (y(t)) ≤ cρε e−σN and‖y(t)‖
ρ
≤ cρε for all

|t| ≤ T . By construction,

y(t) = y(0) +

∫ t

0
XH0+Z(y(s))ds +

∫ t

0
XR(y(s))ds

so using (2.21) for the first flow and (3.8) for the second one, we get for|t| < Tε,

Rρ
N (y(t)) ≤ 1

2
cρε e

−σN + 4|t|
r
∑

k=3

‖Zk‖ k3(cρε)
k−1e−2σN + |t|ε e− 1

4
| ln ε|1+β

≤
(

1

2
+ 4|t|

r
∑

k=3

‖Zk‖ k3(cρε)
k−2e−σN + |t|ε e− 1

8
| ln ε|1+β

)

cρε e
−σN

(3.10)

where in the last inequality we usedσ = min{1
8 ,

ρ
2} andN = ln |ε|1+β .

Using Lemma3.1, we then verify

Rρ
N (y(t)) ≤

(

1

2
+ C|t|ε e−σN

)

cρε e
−σN

and thus, forε small enough,

Rρ
N (y(t)) ≤ cρε e

−σN for all |t| ≤ min{Tε, e
σN}. (3.11)

Similarly we obtain

‖y(t)‖
ρ
≤ cρε for all |t| ≤ min{Tε, e

σN}. (3.12)

In view of the definition ofTε, (3.11) and (3.12) imply Tε ≥ eσN . In particular‖z(t)‖
ρ
≤ 2cρε

for |t| ≤ eσN = ε−σ| ln ε|β and using (2.7), we finally obtain (1.3) with C = 22d+5

(1−e−ρ/2
√

d)2d
.

Estimate (1.4) is an other consequence of the normal form result and Proposition 2.10. Actually
we use that the Fourier coefficients ofu(t) are given byz(t) which isε2-close toy(t) which
in turns is almost invariant: in view of (2.23) and as in (3.10), we have

∑

j∈Z

eρ|j|
∣

∣|yj(t)| − |yj(0)|
∣

∣ ≤
(

4|t|
r
∑

k=3

‖Zk‖ k3(cρε)
k−1e−2σN + |t|ε e− 1

4
| ln ε|1+β

)

from which we deduce
∑

j∈Z

eρ|j|
∣

∣|yj(t)| − |yj(0)|
∣

∣ ≤ |t| e−σN

and then (1.4).
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A Proof of the non resonance hypothesis

Instead of proving Proposition2.7, we prove a slightly more general result. For a multi-index
j ∈ Zr we define

N(j) =

r
∏

k=1

(1 + |jk|).

Proposition A.1 Fix γ > 0 small enough andm > d/2. There exist positive constantsC and
ν depending only onm, R andd, and a setFγ ⊂ Wm whose measure is larger than1 − 4γ
such that ifV ∈ Fγ then for anyr ≥ 1

|Ω(j) + ε1ωℓ1 + ε2ωℓ2 | ≥
Crγ7

N(j)α
(A.1)

for any j ∈ Zr, for any indexesl1, l2 ∈ Z
d, and for anyε1, ε2 ∈ {0, 1,−1} such that

(j, (ℓ1, ε1), (ℓ2, ε2)) /∈ Nr is non resonant.

In order to prove proposition2.7, we first prove thatΩ(j) cannot accumulate onZ. Pre-
cisely we have

Lemma A.2 Fix γ > 0 andm > d/2. There exist0 < C < 1 depending only onm, R and
d and a setF ′

γ ⊂ Wm whose measure is larger than1 − 4γ such that ifV ∈ F ′
γ then for any

r ≥ 1

|Ω(j)− b| ≥ Crγ

N(j)m+d+3
(A.2)

for any non resonantj ∈ Z
r and for anyb ∈ Z.

Proof. Let (α1, . . . , αr) 6= 0 in Z
r, M > 0 andc ∈ R. By induction we can prove that the

Lesbegue measure of

{x ∈ [−M,M ]r | |
r
∑

i=1

αixi + c| < η}

is smaller than(2M)r−12η. Hence givenj = (ai, δi)
r
i=1 ∈ Zr, andb ∈ Z, the Lesbegue

measure of

Xη :=

{

x ∈ [−1/2, 1/2]r :

∣

∣

∣

∣

∣

r
∑

i=1

δi(|ai|2 + xi)− b

∣

∣

∣

∣

∣

< η

}

is smaller than2η. Now consider the set

{V ∈ Wm | |Ω(j)− b| < η} =

{

V ∈ Wm |
∣

∣

∣

∣

∣

r
∑

i=1

δi(|ai|2 +
vaiR

(1 + |ai|)m
)− b

∣

∣

∣

∣

∣

< η

}

,

(A.3)
it is contained in the set of theV ’s such that(Rvai/(1 + |ai|)m)ri=1 ∈ Xη. Hence the measure
of (A.3) is smaller than2R−rN(j)mη. To conclude the proof we have to sum over all thej ’s
and all theb’s. Now for a givenj, remark that if|Ω(j)−b| ≥ η with η ≤ 1 then|b| ≤ 2N(j)2.
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So that to guarantee (A.2) for all possible choices ofj, b andr, it suffices to remove fromWm

a set of measure

4γ
∑

j∈Zr

Cr

RrN(j)m+3+d
N(j)m+2 ≤ 4γ





2C

R

∑

ℓ∈Zd

1

(1 + |ℓ|)d+1





r

.

ChoosingC ≤ 1
2R
(
∑

ℓ∈Zd
1

(1+|ℓ|)d+1

)−1
proves the result.

Proof of proposition A.1. First of all, for ε1 = ε2 = 0, (A.1) is a direct consequence of
lemmaA.2 choosingν ≥ m+ d+ 3, γ ≤ 1 andFγ = F ′

γ .
Whenε1 = ±1 andε2 = 0, (A.1) reads

|Ω(j)± ωℓ1 | ≥
Crγ

N(j)ν
. (A.4)

Notice that|Ω(j)| ≤ N(j)2 and thus, if|ℓ1| ≥ 2N(j), (A.4) is always true. When|ℓ1| ≤
2N(j), using thatN(j, ℓ) = N(j)(1 + |ℓ1|), we get applying lemmaA.2 with b = 0,

|Ω(j) + ε1ωℓ1 | = |Ω(j, (ℓ1, ε1))| ≥
Cr+1γ

N(j)m+d+3(3N(j))m+d+3
≥ C̃rγ

N(j)ν

with ν = 2(m + d + 3) andC̃ = C2

3m+d+3 . In the same way we prove (A.1) whenε1ε2 = 1
with the same choice ofν. So it remains to establish an estimate of the form

|Ω(δ, j) + ωℓ1 − ωℓ2 | ≥
C̃rγ4

N(j)ν
. (A.5)

Assuming|ℓ1| ≤ |ℓ2|, we have

|ωℓ1 − ωℓ2 − ℓ21 + ℓ22| ≤
∣

∣

∣

∣

R|vℓ1 |
(1 + |ℓ1|)m

− R|vℓ2 |
(1 + |ℓ2|)m

∣

∣

∣

∣

≤ R

(1 + |ℓ1|)m
.

Therefore if(1 + |ℓ1|)m ≥ 2R
CrγN(j)m+d+3, we obtain (A.5) directly from lemmaA.2 applied

with b = ℓ21 − ℓ22 and choosingν = m+ d+ 3, C̃ = C/2 andFγ = F ′
γ .

Finally assume(1 + |ℓ1|)m ≤ 2R
CrγN(j)m+d+3, taking into acount|Ω(j)| ≤ N(j)2, (A.5) is

satisfied whenℓ22 − ℓ21 ≤ 2N(j)2. So it remains to consider the case when

1 + |ℓ1| ≤ 1 + |ℓ2| ≤
[

(

2R

Crγ
N(j)m+d+3

)2/m

+ 2N(j)2

]1/2

≤
(

3R

Crγ

)
1
m

N(j)
m+d+3

m .

Again we use lemmaA.2 to conclude

|Ω(j) + ωℓ1 − ωℓ2 | ≥
Cr+2γ

[N(j)(1 + |ℓ1|)(1 + |ℓ2|)]m+d+3

≥
Cr+2γ

(

Crγ
3R

)
m+d+3

m

N(j)m+d+3N(j)2
(m+d+3)2

m

≥ C̃rγ4+3/m

N(j)ν

with ν = m+ d+ 3 + (m+ d+ 3)2/m andC̃ = C(4m+d+3)/m

3R .
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[FG10] E. Faou and B. Grébert,Hamiltonian interpolation of splitting approximations for
nonlinear PDEs.arXiv:0912.2882v1
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