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I. Introduction

Cette étude rentre dans le cadre de la commande des actionneurs pneumatiques dans des tâches de prise-dépose des robots parallèles. Le but étant de remplacer les actionneurs électriques coûteux utilisés dans ce type de robots mais aussi de permettre le déplacement de charges plus élevées, le rapport poids/puissance de ce type d'actionneurs étant largement supérieur à celui des moteurs électriques. Le prix réduit des actionneurs électropneumatiques se justifie par leur principe de fonctionnement simple qui ne nécessite pas l'emploi de procédés de fabrication complexe. Cependant, l'énergie pneumatique et du fait de la compressibilité de l'air est une technologie fortement non linéaire difficile à modéliser et à commander. Cet article traite de la problématique de commande robuste des actionneurs électropneumatiques. L'état de l'art met en évidence l'utilisation d'une multitude de techniques de commande de ces actionneurs. De nombreuses commandes non linéaires ont été synthétisées comme les modes glissants [START_REF] Girin | Position-pressure robust control of an electropneumatic actuator[END_REF] [2] [START_REF] Van Damme | Sliding mode control of a 2-dof planar pneumatic manipulator[END_REF] ou encore la com-mande adaptative [START_REF] Zhu | Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles[END_REF], [START_REF] Xiaocong | Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles[END_REF]. D'autres auteurs ont privilégié la synthèse de contrôleurs linéaires après avoir effectué une linéarisation entrée/sortie [START_REF] Isidori | Nonlinear Control Systems. Third edition. Communications and Control Engineering Series[END_REF] [START_REF] Michel | Flatness and defect of non-linear systems : introduc-Comparaison de résultats de commande Commande en cascade Modes glissants Signal d'erreur[END_REF]. C'est le cas notamment de [START_REF] Osuka | H infinity control of a certain nonlinear actuator[END_REF] et [9] pour la commande H ∞ . Cependant, la linéarisation exacte avec comme sortie de commande la position implique l'existence d'une dynamique des zéros pour laquelle aucune preuve de stabilité globale n'existe encore [START_REF] Brun | Commandes linéaires et non linéaires en électropneumatique[END_REF]. C'est l'une des raisons qui conduisent à privilégier une stratégie de commande en cascade avec une linéarisation exacte dans la boucle de pression. A notre connaissance, seulement deux études de commande en cascade des actionneurs pneumatiques ont été menées jusqu'à présent [START_REF] Xiang | Block-oriented approximate feedback linearization for control of pneumatic actuator system[END_REF] [START_REF] Lee | A study on tracking position control of pneumatic actuators[END_REF]. Les auteurs utilisent uniquement de simples régulateurs PID dans les deux boucles de commande. Dans notre cas, deux contrôleurs avancés ont été synthétisés. Il s'agit d'abord de la commande prédictive qui est particulièrement adaptée aux tâches de robotique industrielle (les références futures étant connues a priori ). Il s'agit aussi de prouver l'applicabilité de la commande prédictive pour les actionneurs pneumatiques en se basant sur un modèle non linéaire (sans pour autant nécessiter une optimisation en ligne pour calculer le gain du contrôleur prédictif). Dans les deux seules applications de la commande prédictive sur les vérins électropneumatiques trouvées dans la littérature, les auteurs utilisent soit un modèle linéarisé autour d'un point d'équilibre [START_REF] Song | Improved control of a pneumatic actuator pulsed with pwm[END_REF]. ou alors un modèle déduit par apprentissage en utilisant les réseaux de neurones artificiels [START_REF] Norgaard | Intelligent predictive control of nonlinear processes using neural networks[END_REF]. Pour la boucle interne de pression, les inégalités matricielles (ou LMI pour Linear Matrix Inequalities) sont utilisées car elles permettent de combiner de façon intuitive des contraintes de placement de placement et des performances robustes H ∞ . Cet article est organisé comme suit. La section 2 introduit brièvement le banc d'essai expérimental ainsi que les modèles utilisés. En section 3, les techniques de commande sont présentées ainsi que la stratégie de commande en cascade qui sera appliquée. Les résultats expérimentaux sont finalement exposés en section 4. La pression atmosphérique est notée p 0 . Toute variation de volume de la chambre ou de la pression est décrite par la loi polytropique suivante [START_REF] Hildebrandt | A cascaded tracking control concept for pneumatic muscle actuators[END_REF] : 

p 1 V γ 1 = p 2 V γ 2 (1) 
dp dt = γ V (s) [rT q m (u, p) -p dV ds ṡ] (3) 
où u représente l'entrée de commande de la valve, s est la position du piston dans le cas des cylindres. q m (u, p) représente le débit massique ( dm dt = q m (u, p)) qui est fonction de la pression et de la tension d'entrée. La relation 

V i (s) = V i (0) ± A i s où V i (0) = A i l 2 est
le volume initial de la chambre i (La position initiale est le milieu du vérin). l représente la course du vérin. A i est la section du piston des deux côtés de la chambre. Dans le cas du vérin sans tige, les sections sont égales (A 1 = A 2 ). Le modèle de la valve a été approximé -après identification au sens des moindres carrés-par l'expression suivante (plus de détails dans [START_REF] Belgharbi | Analytical model of the flow stage of a pneumatic servodistributor for simulation and nonlinear control[END_REF]) :

q m (u, p) = ϕ(p) + ψ(p)u (4) 
ϕ et ψ sont des fonctions polynômiales d'ordre 5 en p.

Pour la partie mécanique, le principe fondamental de la dynamique est appliqué en négligeant les frottements 5 :

s = 1 M [A 1 p 1 -A 2 p 2 ] ( 5 
)
où M représente la masse équivalente des parties en mouvement ramenées au cylindre. Lors de la synthèse de la commande, M est considérée constante. La dépendance force pression -relation nécessaire lors de la synthèse de la commande-est linéaire et est donnée par :

F standard = A 1 p 1 -A 2 p 2 + F g (6) 
F g est le terme prenant en compte les effets de la gravité.

Pour le vérin sans tige, nous avons la même expression avec

A 1 = A 2 = A.

III. Stratégie de commande pour les vérins électropneumatiques

La linéarisation exacte est présentée dans un premier temps. Celle-ci est basée sur des concepts de géométrie différentielle [START_REF] Isidori | Nonlinear Control Systems. Third edition. Communications and Control Engineering Series[END_REF] ou encore de platitude [START_REF] Michel | Flatness and defect of non-linear systems : introduc-Comparaison de résultats de commande Commande en cascade Modes glissants Signal d'erreur[END_REF]. Dans un second temps et une fois le système linéarisé obtenu, les techniques de commande utilisées (GPC et H ∞ avec contraintes LMI) ainsi que le schéma en cascade sont développés et expliqués dans cette section.

A. Linéarisation exacte

Il est très facile de prouver -dans le cas de la tension de la valve comme entrée de commande et la différence de pression entre les deux chambres du vérin comme sortie à commander-qu'aussi bien les critères de platitude ainsi que ceux de géométrie différentielle (linéarisation complète du système) sont satisfaits. Cependant, quand la position est choisie comme variable de sortie à commander, le degré relatif du système est égal à trois. Il est donc inférieur à la dimension du système d'état (qui est égale à 4). Les équations d'états sont les deux équations de variation de pression [START_REF] Michel | Flatness and defect of non-linear systems : introduc-Comparaison de résultats de commande Commande en cascade Modes glissants Signal d'erreur[END_REF], l'équation ds dt = ṡ et l'équation [START_REF] Xiaocong | Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles[END_REF]. Une dynamique des zéros existe donc et le système n'est pas complètement linéarisable. Comme il n'existe pas de preuve de stabilité globale de cette dynamique résiduelle (voir [START_REF] Brun | Commandes linéaires et non linéaires en électropneumatique[END_REF]), on a donc tout intérêt à prendre la différence de pression comme sortie pour la linéarisation.

dp 1 dt = γrT V 1 (s) φ(p 1 ) - γ V 1 (s) p 1 dV 1 ds ṡ + γrT V 1 (s) ψ(p 1 )u dp 2 dt = γrT V 2 (s) φ(p 2 ) - γ V 2 (s) p 2 dV 2 ds ṡ - γrT V 2 (s) ψ(p 2 )u (7) 
5. Une compensation de frottement qui ne se base pas sur un modèle de frottement est privilégiée Dans ces équations, on a considéré que u = u 1 = -u 2 ce qui veut dire que les chambres utilisent la même source de pression et que la commande utilisée dans une chambre est l'opposée de celle utilisé dans la seconde. Cette hypothèse implique de fait deux avantages : le système devient monoentrée ce qui simplifie la synthèse du contrôleur. L'utilisation d'une seule servovalve devient alors suffisante (comme cela est représenté en Fig. 2).

Et en remplaçant la variation de volume par son expression (ie, dV1 ds = A = -dV2 ds ), les équations suivantes sont obtenues :

dp 1 dt = γrT V 1 (s) φ(p 1 ) - γA V 1 (s) p 1 ṡ + γrT V 1 (s) ψ(p 1 )u dp 2 dt = γrT V 2 (s) φ(p 2 ) + γA V 2 (s) p 2 ṡ - γrT V 2 (s) ψ(p 2 )u (8) 
La différence de pression est donnée par l'expression suivante :

d dt (p 1 -p 2 ) = [ γrT V 1 φ(p 1 ) - γrT V 2 φ(p 2 ) - γA V 1 p 1 ṡ - γA V 2 p 2 ṡ] f1(s, ṡ,p1,p2) + [ γrT V 1 ψ(p 1 ) + γrT V 2 ψ(p 2 )] f2(s, ṡ,p1,p2) u (9) 
Ainsi donc, la linéarisation exacte est obtenue en appliquant la commande suivante :

u = [ γrT V 1 ψ(p 1 ) + γrT V 2 ψ(p 2 )] -1 • [u aux -( γrT V 1 φ(p 1 ) - γrT V 2 φ(p 2 ) - γA V 1 p 1 ṡ - γA V 2 p 2 ṡ)] (10) 
Où, u aux est la nouvelle entrée de commande. Ceci conduit au système linéarisé suivant :

ṗ1 -ṗ2 = u aux (11) 
Le contrôleur commandant la différence de pression en se basant sur ce système linéarisé est synthétisé. Pour cela des performances H ∞ combinées à des placements de pôles sous forme de contraintes LMI ont été utilisés. Cette méthode est décrite dans la prochaine sous-section.

B. Synthèse de commande H ∞ avec contraintes de placement de pôles avec utilisation de LMI

Une LMI est une contrainte de la forme : 

A(x) = A 0 + x 1 A 1 + . . . + x N A N < 0 ( 12 
D = {z ∈ C : f D (z) < 0} (13) avec : f D (z) = α + zβ + zβ T = [α kl + β kl z + β lk z] 1≤k,l≤m.
Par exemple, les régions LMI de type disque centré en (-q, 0) et de rayon r qui seront utilisées dans cette étude, sont définies ci-dessous [START_REF] Chilali | H-infinity design with pole placement constraints : an lmi approach[END_REF] :

f D (z) = -r q + z q + z -r < 0 (14) 
Le problème de synthèse H ∞ sous contraintes peut être formalisé comme suit [START_REF] Chilali | H-infinity design with pole placement constraints : an lmi approach[END_REF]. En prenant comme système 

ẋ(t) = Ax(t) + B 1 ω(t) + B 2 u(t) e(t) = C 1 x(t) + D 11 ω(t) + D 12 u(t) y(t) = C 2 x(t) + D 21 ω(t) + D 22 u(t) (15 
ẋK (t) = A K x K (t) + B K y(t) u(t) = C K x K (t) + D K y(t) (16) 
Ainsi, T we (s

) = D cl + C cl (sI -A cl ) -1 B cl avec 7 : A cl = A + B 2 D K C 2 B 2 C K B K C 2 A K , B cl = B 1 + B 2 D K D 21 B K D 21 , C cl = (C 1 + D 12 D K C 2 , D 12 C K ) and D cl = D 11 + D 12 D K D 21 .
Dans [START_REF] Chilali | H-infinity design with pole placement constraints : an lmi approach[END_REF], il est montré que la contrainte de placement de pôles est satisfaite si et seulement si il existe X D > 0 tel que :

[α kl X D + β kl A cl X D + β lk X D A T cl ] 1≤k,l≤m < 0 (17)
Quant à elle, la contrainte assurant les performances H ∞ est donnée sous forme de la LMI suivante :

  A cl X ∞ + X ∞ A T cl B cl X ∞ C T cl B T cl -γI D T cl C cl X ∞ D cl -γI   < 0 (18)
Ainsi, le problème de formulation du problème de synthèse H ∞ combiné aux problèmes de placement de pôles -en supposant que la même matrice de Lyapunov X > 0 est requise-est :

Trouver X > 0 et un contrôleur K(s) > 0 ≡ Ω K qui satisfont (17) et (18) avec X = X D = X ∞ ( 19 
)
La matrice du contrôleur est notée de la manière suivante :

Ω K = A K B K C K D K ( 20 
)
La difficulté dans cette formulation est que la combinaison des relations ( 17) et ( 18) implique des termes non linéaires de la forme B Ω K CX conduisant à une formulation du problème qui n'est plus convexe. Elle ne peut donc pas être formulée sous forme de LMI. Chilali et Gahinet [START_REF] Chilali | H-infinity design with pole placement constraints : an lmi approach[END_REF] ont résolu ce problème en proposant le changement de variable suivant :

B K = N B K + SB ∈ D K C K = C K M T + D K C ∈ R A K = N A K M T + N B K C ∈ R + SB∈C K M T + S(A + B 2 D K C 2 )R (21) 
où R, S, N et M correspondent à la partition de X et de son inverse sous la forme

X = R M M T U , X -1 = S N N T V R ∈ R n×n , S ∈ R n×n (22) 
La résolution du problème est donnée sous la forme du théorème suivant [START_REF] Chilali | H-infinity design with pole placement constraints : an lmi approach[END_REF] : Théorème : Soit D une région LMI arbitraire qui se trouve dans le demi-plan gauche du plan complexe et soit ( 13) sa fonction caractéristique. Dans ce cas, le problème modifié [START_REF] Maciejowski | Predicitve Control with Constraints[END_REF] admet -après changement de variables-une solution si l'ensemble des LMIs suivant est faisable.

Trouver R = R T ∈ R n×n , S = S T ∈ R n×n , et les matrices A K , B K ,C K et D K telles que R I I S > 0 (23) α kl R I I S + β kl Φ + β lk φ T k,l < 0 (24) Ψ 11 Ψ T 21 Ψ 21 Ψ 22 < 0 (25) avec la notation Φ = AR + B 2 C K A + B 2 D K C 2 A K SA + B K C ∈ (26) 
les termes Ψ 11 , Ψ 12 et Ψ 22 sont détaillés dans [START_REF] Chilali | H-infinity design with pole placement constraints : an lmi approach[END_REF]. Pour toute solution à cette LMI : -Calculer via la décomposition en valeurs singulières (SVD) la factorisation de rang plein M N T = I -RS de la matrice I -RS (M et N sont des matrices carrées inversibles) -Résoudre le système d'équations linéaires [START_REF] Ning | High steady-state accuracy pneumatic servo positioning system withPVA/PV control and friction compensation[END_REF] pour

B K , C K etA K (dans cet ordre). -calculer K(s) := D K + C K (sI -A K ) -1 B K .
Ainsi, K(s) est un contrôleur d'ordre n qui place les pôles en boucle fermée dans D tout en assurant T we ∞ < γ.

C. Commande prédictive généralisée (GPC)

La motivation de la commande prédictive est assez triviale, le problème de connaissance des trajectoires futures ne se posant pas pour des tâches de robotique industrielle. A cela, s'ajoutent tous les avantages inhérents à la commande prédictive, à savoir : l'applicabilité à une large classe de procédés dont les systèmes instables (c'est le cas de la fonction de transfert à commander), réduction du temps de réponse de façon intuitive et existence d'une solution explicite dans le cas monovariable linéaire. Toute commande prédictive s'appuie sur trois principes : l'utilisation d'un modèle de prédiction sous forme explicite, l'utilisation d'un critère de prediction à optimiser, et enfin le recalage de l'horizon de prédiction à chaque instant t, la commande étant réactualisée à chaque temps d'échantillonnage. Dans le cas de la GPC, l'algorithme utilise le modèle de prédiction CARIMA donné par :

A(z -1 )y(t) = z -d B(z -1 )u(t -1) + C(z -1 )e(t) (27) 
où u(t) et y(t) sont respectivement les séquences de commande et de sortie du procédé et e(t) est un bruit blanc.

A, B et C sont des polynômes en z -1 . Ils sont donnés par :

A(z -1 ) = 1 + a 1 z -1 + a 2 z -2 + ... + a na z -na , B(z -1 ) = b 0 + b 1 z -1 + b 2 z -2 + ... + b nb z -nb et C(z -1 ) = 1 + c 1 z -1 + c 2 z -2 + ... + c nc z -nc et = 1 -z -1
. Afin de simplifier les calculs, il est supposé que C -1 est égal à 1. L'algorithme de la GPC consiste à appliquer une séquence de commande qui minimise la fonction coût multidimensionnelle suivante :

J(N 1 , N 2 , N u ) = N2 j=N1 δ(j)[ŷ(t + j|t) -w(t + j)] 2 + N2 j=1 λ(j)[ u(t + j -1)] 2
(28) où ŷ(t + j|t) est l'optimum sur un horizon j calculé à l'instant t, N 1 et N 2 sont les horizons de prédiction minimum et maximum, N u représente l'horizon de commande, δ(j) et λ(j) sont les séquences de pondération et w(t + j) est la référence future. La minimisation de la fonction coût conduit à l'obtention de la future séquence de commande u(t), u(t + 1), ... où la sortie y(t + j) est proche de w(t + j).

L'expression de la sortie prédite peut être mise sous la forme compacte suivante :

y = Gu + f (29)
Le terme G et f sont définis dans [START_REF] Bordons | Model Predicitve Control. Second Edition[END_REF] ou [START_REF] Maciejowski | Predicitve Control with Constraints[END_REF]. Le critère peut être ainsi réécrit :

J = (Gu + f -w) T (Gu + f -w) + λu T u (30) 
où w = [w(t + d + 1), w(t + d + 1) . . . w(t + d + N )] T . L'équation (30) prend la forme :

J = 1 2 u T Hu + b T u + f 0 (31) avec H = 2(G T G + λI), b T = 2(f -w) T G et f 0 = (f -w) T (f -w)
Ainsi, le minimum de J est déterminé en annulant le gradient de J, ce qui donne :

u = -H -1 b = (G T G + λI) -1 G T (w -f ) (32)
Puisque le signal de commande qui est appliqué au procédé est le premier élément du vecteur u (recalage), l'expression de la commande est donnée par :

u(t) = K(w -f ) (33)
où K représente le premier élément de la matrice (G T G + λI) -1 G T . Contrairement aux contrôleurs conventionnels, les régulateurs prédictifs dépendent uniquement des entrées futures.

D. Stratégie de commande en cascade position/pression

Le schéma global de la stratégie de commande en cascade est représenté en Fig. 4. La boucle interne est celle qui commande la différence de pression entre les chambres. Pour cela, le régulateur H ∞ sous contraintes présenté précédemment a été implementé. Pour la boucle externe, le régulateur GPC a été synthétisé en se basant sur la fonction transfert en boucle fermé de la boucle de pression en série avec la mécanique du bras (double intégration pour obtenir en sortie la position). Comme présenté précédemment, le système linéarisé de la boucle de pression est un intégrateur. Ainsi, les équations du système prennent la forme suivante :

ẋ = (0)x + 1 0 b v + (1)u y u = -1 0 x + 1 0 0 0 b v + 0 1 u y = (1)x + 0 1 b v + (0)u (34) 
où ω = (b v) T et e = (y u) T ont été définis préalablement. Les hypothèses classiques pour la synthèse H ∞ sont facilement vérifiables 8 . Le résultat de l'optimisation LMI [START_REF] Gahinet | The lmi control toolbox[END_REF] donne le contrôleur de la forme suivante :

K(s) = K 1 s + K 2 s + K 3 (35) 8. (A, B 2 ) commandable et (C 2 , A) observable
Ainsi, la fonction de transfert équivalente en boucle fermée est de la forme

G clpressure (s) = K 1 s + K 2 s 2 + (K 1 + K 3 )s + K 2 (36) 
En se basant sur cette fonction de transfert, dont la sortie est la différence de pression, il est facile de reconstruire la position en divisant par la masse et en intégrant deux fois la sortie [START_REF] Xiaocong | Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles[END_REF]. Ainsi, le régulateur GPC est synthétisé en se basant sur la fonction de transfert suivante :

G position (s) = K 1 s + K 2 M s 2 (s 2 + (K 1 + K 3 )s + K 2 ) = G clpressure M s 2 (37) 
IV. Résultats expérimentaux Différents tests ont été menés de façon à prouver expérimentalement l'intérêt d'une telle approche de commande en cascade. Durant les différents tests, le terme F g dans ( 6) a été négligé. Il a été observé qu'il n'a pas un grand impact sur les performances. Ainsi, le processus de synthèse est simplifié et ceci nous permet de dire que la commande synthétisée est robuste vis-à-vis des effets de la gravité et des variations de l'orientation du bras. En 
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 2 Fig. 1.Photo du banc expérimental.

  ) une région LMI D, et des performances H ∞ données par γ > 0, il s'agit de trouver la loi de commande u = K(s)y telle que : (1) les pôles en boucle fermée sont dans D et (2) T we ∞ < γ où T we (s) est la fonction de transfert en boucle fermée ayant pour entrée ω et comme sortie e. Ceci est schématisé en Fig. 3. avec le vecteur d'entrée

Fig. 3 .

 3 Fig. 3. Schéma de commande et notations

7 .

 7 D 22 = 0, cette hypothèse simplifie beaucoup les différents calculs. (Il est à noter qu'il est toujours possible d'avoir D 22 = 0 en faisant de simples changements de variables)

Fig. 5 ,

 5 un test de commande avec le bras sans masse est réalisé. La fréquence d'échantillonnage est de 0, 2khz. Pour le contrôleur H ∞ , une région LMI de type disque a été Suivi de la différence de pression [bar] Commande en position [degrés]

Fig. 5 .

 5 Fig. 5. Réponse à un signal carré (vérin sans tige)

  ) où A 0 . . . A N sont des matrices symétriques données et x T = (x 1 . . . x N ) est le vecteur des variables inconnues. Dans[START_REF] Lee | A study on tracking position control of pneumatic actuators[END_REF], le symbole < veut dire définie négative6 . Une sous région D du plan complexe est appelée région LMI s'il existe une matrice symétrique α = [α kl ] ∈ R m×m et une matrice β = [β kl ] ∈ R m×m telles que :

Une façon intuitive de synthèse d'un contrôleur H ∞ tout en agissant sur le régime transitoire est de combiner performances H ∞ et placement de pôles. Les pôles seront contraints à être dans des régions appelées régions LMI et introduites pour la première fois dans

[START_REF] Chilali | H-infinity design with pole placement constraints : an lmi approach[END_REF]

.

6. la plus grande valeur singulière est négative Définition : Régions LMI.

Le contrôleur prédictif a été synthétisé en se basant sur la fonction de transfert donnée dans (37). Le système a été discrétisé avec un temps d'échantillonnage de T s = 5ms. Les polynômes du modèle CARIMA ainsi obtenus sont :

La pondération λ a été choisie égale à 5 • 10 -6 et δ a été fixé à 1. L'horizon de prédiction est égal à 50. Sur la Fig. 5, un signal carré d'amplitude égale à -+ 15˚a été testé. Le temps de montée est très faible et est égal à 0, 045s. Le temps de réponse est quant à lui égal à 0, 24s. L'erreur statique est inférieure à 0, 01˚. Le saut observé à t = 3s est dû au phénomène du redécollage des actionneurs électropneumatiques (voir chapitre 3 de [START_REF] Brun | Commandes linéaires et non linéaires en électropneumatique[END_REF]). Ce problème a été résolu par deux approches différentes. La première consiste à agir sur les gains de la boucle de pression via l'emplacement des pôles en boucle fermée. Ceci est illustré en Fig. 6 où les pôles ont été déplacés vers un cercle centré en (-450, 0). L'apport de cette approche est montré en Fig. 7 où l'erreur statique est inférieure à 0, 01˚. Une autre approche a consisté à intégrer au schéma de commande de la Fig. 4 l'algorithme de compensation de frottement proposé par [START_REF] Ning | High steady-state accuracy pneumatic servo positioning system withPVA/PV control and friction compensation[END_REF]. Les résultats obtenus sont similaires à ceux de la méthode précédente. Un test de robustesse est effectué en rajoutant une masse de 5kg qui n'est pas prise en compte dans le modèle de commande. Les résultats sont montrés en Fig. 8. Les résultats sont satisfaisants et il est intéressant de voir la réaction du système par un saut dans la différence de pression (et donc dans la force) qui correspond à la charge additionnelle qui a été rajoutée. Le contrôleur en pression réagit automatiquement à ce changement de consigne et de ce point de vue, la structure en cascade assure déjà une robustesse naturelle qui est renforcée par le choix des techniques de commande. Un test de comparaison avec les modes glissants [START_REF] Smaoui | Commandes non linéaires robustes mono et multidimensionnelles de dispositifs électropneumatiques : synthèse et applications[END_REF] a été V. Conclusion Une stratégie de commande en cascade intégrant une boucle externe de position et une boucle interne de différence de pression est proposée pour les vérins électropneumatiques. Pour la position, un contrôleur de type GPC est synthétisé. Le choix de la commande prédictive permet de réduire de façon naturelle le temps de réponse du système qui anticipe tout changement dans la consigne. Pour la boucle interne, un régulateur H ∞ avec contraintes de placement de pôles est synthétisé par optimisation LMI. La synthèse des régulateurs est faite en se basant sur le modèle linéarisé du vérin et ce après linéarisation exacte de ce modèle.

Les lois de commande ont été implémentées expérimentalement sur banc de commande et les résultats montrent bien l'apport d'une telle approche en termes de performances et de robustesse.