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A mixed GPC-H∞ robust cascade position-pressure
control strategy for electropneumatic cylinders

Lotfi Chikh †, Philippe Poignet ‡, François Pierrot ‡ and Cédric Baradat †

Abstract—A robust cascade strategy combining an outer po-
sition predictive control loop and an inner H∞ pressure control
loop is proposed and tested on an electropneumatic testbed
for parallel robotic applications. Two types of cylinders are
tested, the standard double acting cylinder and the rodless one.
A position/pressure difference (or force) strategy is developed
and implemented. As the behavior of the nonlinear cylinders
is nonlinear, a feedback linearization strategy is adopted. A
Generalized Predictive Controller (GPC) is synthesized for the
position outer loop and a constrained LMI based H∞ controller
is synthesized for the pressure inner loop. Experimental results
show the feasibility of the control strategies and good perfor-
mances in terms of robustness and dynamic tracking.

I. INTRODUCTION

The paper is motivated by pick-and-place parallel robotic
applications. Within this context, the purpose is to evaluate the
position control performances of pneumatic cylinders which
are widespread in industry and interesting because of their low
cost. Parallel robots have a lot of advantages which have made
their success. Particularly, they can be very fast as the actuators
are transferred to the base frame reducing considerably the
inertia of the moving links. This enables reaching speeds
and accelerations which were unbelievable a decade ago. For
instance, the fastest industrial robot in the world -the Quattro-
has a parallel structure and can reach an acceleration of 15g
[1]. Recently, the Par2 robot which is not yet industrialized
has reached 43g while keeping a low tracking error [2].
However, a major obstacle for parallel robot expansion is
their expensive price due to the cost of their motors. In this
context, considering other types of actuation such as pneumatic
actuators is appealing as they are cheap actuators with low
maintenance costs, and with a good force/weight ratio. As
a major obstacle of industrial use of pneumatic actuation in
robotics is the difficulty in their control, this paper focuses on
that topic.

Numerous techniques have been studied in literature and
among them a large part concerns robust control. Robust
controllers are mandatory to deal with disturbances and uncer-
tainties and to ensure high precision positioning. They have
been applied as a nonlinear feedback using sliding modes [3]
[4] [5] or adaptive control techniques [6], [7] or by using
linear robust control techniques such as H∞ control [8] [9]
after feedback linearization [10] [11]. The major drawback
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of nonlinear controllers is the difficulty in the synthesis of
the control law and the high computational amount. In case
of feedback linearization with position as a control output, a
zero dynamic exists and there is no global proof of its stability
[12].
In this paper, a novel robust cascade strategy which combines
an outer position predictive controller and an inner H∞
pressure controller is proposed. The advantage of the pro-
posed strategy is a simplified control synthesis as only linear
robust controllers are implemented. There is no remaining
zero dynamic as feedback linearization is applied only for
the pressure inner pressure loop. At the same time cascade
control enables to make tracking control of two outputs in
a SISO (Single Input Single Output) manner. A Generalized
Predictive Controller (GPC) is synthesized for the outer loop.
As far as we know, only two experimental studies of GPC
on pneumatic cylinder have been carried out so far [13] [14].
The model used in [13] is a linear one which limits greatly
the performances of the controller. In [14], the authors used
a model estimation based on Neural network theory [14]. No
application of GPC based on an explicit nonlinear model has
been found in literature. In our case, the linearization allows
to obtain an explicit solution to the predictive optimization
problem and the obtained controller is easy to implement.
Another intuitive motivation for using predictive theory in
pick-and-place robotic applications is that most trajectories
are determined a priori and therefore, future trajectory is
known. For the inner pressure loop, a constrained H∞ con-
troller is developed based on LMI optimization [15] [16].
In addition to the classical advantages of H∞ control [17]
[18] in terms of robustness, disturbance rejection, systematic
synthesis of MIMO controllers and powerful combination of
both frequency domain synthesis and state space synthesis,
the LMI approach enables the addition of constraints in an
intuitive manner. Therefore, pole placement constraints have
been added to the H∞ performances in order to have a better
control of the transitory temporal behavior of the pressure
controller.

This paper is organized as follows. Section II presents the
versatile electropneumatic testbed for robotic applications and
its nonlinear modeling. Section III deals with the control
of the cylinders. After introducing the feedback linearization
equations, both of GPC controller background and LMI based
H∞ multi-objective approach are presented. The cascade
strategy which combines these two control techniques is then
introduced. Finally in section IV, the robust cascade strategy
is implemented experimentally and various control tests, in-
cluding robustness tests, are presented and analyzed.
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II. EXPERIMENTAL PNEUMATIC TESTBED AND
NONLINEAR MODELING

In the long term, our aim is to design efficient parallel robots
which rely on pneumatic actuation with robust control: the
moving arm of this testbed is very similar to the arms used
for various parallel robots such as Delta or Quattro robots[1]
which is represented in Fig. 2. At its extremity, different
masses can be attached for robustness tests of the controllers
as the load varies. The proposed setup shown in Fig. 1 replaces
expensive motor-and-gears system by low-cost pneumatic ac-
tuator. Three types of actuators are available here. The first one
is a standard double acting cylinder1 which is very widespread
in industry. It is one of the cheapest pneumatic actuators and
has been largely studied in literature ([19], [20], [21] and
[12]). The second one is the rodless cylinder2 which has the
advantage of being symmetric, that is to say, the maximum
force provided in one direction equals the one in the inverse
direction. Another important advantage for the rodless cylinder
is that it has generally a larger stroke than the double acting
one. Finally, Pneumatic Artificial Muscles3 (PAMs) are also
installed in the setup but not presented in this paper. It seems
that PAMs may be naturally advantaged in rehabilitation co-
manipulation tasks implying friendly robot designs [22]. It is
a common thing to use PAMs in agonist/antagonist way for
angle movement generation or torque control. More details
about PAMs can be found in [23] [24] and [5].

Fig. 1. Versatile electropneumatic
setup for robotic application.

Fig. 2. Adept Quattro [1].

All actuators can be driven by two 5/3-way proportional
valves4. Three types of sensors are used on the setup; a high
resolution incremental encoder, two pressure sensors and two
force sensors.The real time prototyping environment is xPC
TargetTM from Mathworks.
In the sequel, we present some key elements of the nonlinear
model of the pneumatic cylinders. Every electropneumatic
positioning device includes an actuation element (the pneu-
matic cylinder), a command device (the valve), a mechanical
part and position, pressure and/or force sensors. A schematic
representation of the electropneumatic system is given in Fig.
3. Supply pressure ps is supposed to be constant. p0 denotes

1Double acting cylinder: FESTO DNC 32 320 PPV A
2Rodless cylinder: FESTO 532448 DGC 32300304132 ZR
3PAMs: FESTO MAS - 20-450N-AA-MC-K
4MPYE-5-1/4-010-B from FESTO

+

Fig. 3. Schematic representation of the experimental setup

the atmospheric pressure. It is supposed that any variation
of the chamber volume or pressure can be described by the
polytropic gas law [25]:

p1V
γ
1 = p2V

γ
2 (1)

where pi is the pressure in one of the two cylinder chambers
(indexes 1 and 2 are related to two pressure states) and Vi is
the volume of one chamber, γ is the polytropic constant. The
ideal gas equation describes the dependency of the gas mass:

m =
pV

rT
(2)

where m is the gas mass inside the cylinder chamber, T is
the air temperature which is considered to be equal to the
atmospheric temperature and r is the specific gas constant.
Therefore, combining equation (1) and (2) leads to the pressure
dynamic expression:

dp

dt
=

γ

V (s)
[rTqm(u, p)− pdV

ds
ṡ] (3)

where u represents the input voltage of the valve, s is the
position of the piston in case of the cylinders. qm(u, p)
represents the mass flow rate (dmdt = qm(u, p)). Dynamic
effects of the underlying position controller for the valve-slide
stroke are neglected. These hypotheses justify why the mass
flow is a function of the input voltage and the pressure in the
actuator chamber.

The relation between volume and displacement is given by
the following equations: Vi(s) = Vi(0) ± Ais where i refers
to one of the two chambers and Vi(0) = Ai

l
2 represents the

initial volume. l is the length of the cylinders. Ai represents
the piston section of each chamber. For the rodless cylinder,
sections are symmetric (i.e. A1 = A2). The valve model
has been approximated -after identification- by the following
expression (see [26] for details):

qm(u, p) = ϕ(p) + ψ(p)u (4)

ϕ and ψ defines 5th-order polynomials with respect to p.
For the mechanical part, neglecting the friction phenomena
and applying Newton’s second law lead to:

s̈ =
1

M
[A1p1 −A2p2] (5)
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where M represents the equivalent mass of the moving parts
considered at the cylinder side. In the design phase, M is
considered as constant.

For cascade control experiments, it is mandatory to deter-
mine the force/pressure dependency. This dependency is linear
and given by (for standard cylinder):

Fstandard = A1p1 −A2p2 + Fg (6)

where Fg is the term which takes into account the gravity
effects. For the rodless cylinder, we have the same expression
but A1 = A2 = A as we have piston area symmetry.

III. CONTROL OF THE ELECTROPNEUMATIC CYLINDERS

In this section, we first present the feedback linearization
equations for the cylinders. The approach used here is inspired
by differential geometry concepts [10] and differential flatness
theory [11]. Once the linearized system obtained, GPC and
LMI based constrained H∞ control techniques are presented.

A. Feedback linearization equations
It can be easily proved -in case of valve voltage as an

input and the pressure difference as an output- that differential
flatness criterion is satisfied and that the system is completely
linearizable (using differential geometry concepts [10]). How-
ever, when position is taken as a control output, the relative
degree is less than the dimension of the system. Therefore
the system is not completely linearizable. A nonlinear zero
dynamic remains. One of the advantages of the cascade
strategy is that it avoids dealing with the zero dynamic.

dp1
dt

=
γrT

V1(s)
φ(p1)− γ

V1(s)
p1
dV1
ds

ṡ+
γrT

V1(s)
ψ(p1)u

dp2
dt

=
γrT

V2(s)
φ(p2)− γ

V2(s)
p2
dV2
ds

ṡ− γrT

V2(s)
ψ(p2)u

(7)

In these equations, we have considered that u = u1 = −u2
which means that the chambers rely on the same pressure
source and use a control signal of an opposite sign. If we do
the assumption that the valve is symmetric, this means that
only one valve can be used for our control scheme which
is in fact an important advantage of this approach. This is
represented in Fig. 3 where only one valve is used for each
cylinder. By replacing the volume variation by its value (ie,
dV1

ds = A = −dV2

ds ) we get:

dp1
dt

=
γrT

V1(s)
φ(p1)− γA

V1(s)
p1ṡ+

γrT

V1(s)
ψ(p1)u

dp2
dt

=
γrT

V2(s)
φ(p2) +

γA

V2(s)
p2ṡ−

γrT

V2(s)
ψ(p2)u

(8)

Pressure difference is given by the following expression:
d

dt
(p1 − p2) = [

γrT

V1
φ(p1)− γrT

V2
φ(p2)− γA

V1
p1ṡ−

γA

V2
p2ṡ]︸ ︷︷ ︸

f1(s,ṡ,p1,p2)

+ [
γrT

V1
ψ(p1) +

γrT

V2
ψ(p2)]︸ ︷︷ ︸

f2(s,ṡ,p1,p2)

u

(9)

Therefore, the control input which linearizes the input/output
behavior of the system is given by:

u = [
γrT

V1
ψ(p1) +

γrT

V2
ψ(p2)]−1 · [uaux

− (
γrT

V1
φ(p1)− γrT

V2
φ(p2)− γA

V1
p1ṡ−

γA

V2
p2ṡ)]

(10)

This leads to the first integrator linearized system:

ṗ1 − ṗ2 = uaux (11)

A pressure controller for the first integrator system based
on H∞ theory is then synthesized in the next section.

B. Multi-objective output feedback pressure control via LMI
optimization

An LMI is any constraint of the form:

A(x) = A0 + x1A1 + . . .+ xNAN < 0 (12)

where A0 . . . AN are given symmetric matrices and xT =
(x1 . . . xN ) is the vector of unknown variables. In (12), the
symbol < refers to negative definite5.
One way of tuning simultaneously the H∞ performance and
transient behavior is to combine H∞ and pole placement
objectives using LMI optimization techniques. Poles are clus-
tered in regions which can be expressed in terms of LMIs. The
class of LMI region defined below has been introduced for the
first time by [16]. It turns out to be suitable for LMI-based
synthesis.
Def. LMI Regions. A subset D of the complex plane is
called an LMI region if there exists a symmetric matrix
α = [αkl] ∈ Rm×m and a matrix β = [βkl] ∈ Rm×m such
that:

D = {z ∈ C : fD(z) < 0} (13)

with: fD(z) := α+ zβ + z̄βT = [αkl + βklz + βlkz̄]1≤k,l≤m.
For instance, we use a disk LMI region centred at (−q, 0) with
radius r. It is defined below [16]:

fD(z) =

[
−r q + z
q + z̄ −r

]
< 0 (14)

The constrained H∞ problem under consideration can be
stated as follows [16]. Given an LTI plant:

ẋ(t) = Ax(t) +B1ω(t) +B2u(t)

e(t) = C1x(t) +D11ω(t) +D12u(t)

y(t) = C2x(t) +D21ω(t) +D22u(t)

(15)

an LMI stability region D, and some H∞ performance γ > 0,
find an LTI control law u = K(s)y such that: (1) the closed-
loop poles lie in D and (2) ‖Twe‖∞ < γ where ‖Twe(s)‖
denotes the closed-loop transfer function from ω to e. It is
represented on Fig. 4. where the input vector ω =

(
b v

)T
can be constituted for instance by a disturbance b and a second
input which can be a measure noise v. The output vector e =(
y u

)T
is composed by the controlled output y and the

control signal u. In our case, and as defined latter in (39), y
is the pressure difference between the chambers and u is the

5the largest eigenvalue is negative
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Fig. 4. System representation and notations

input voltage.
The controller transfer function is denoted K(s) and can be
represented in the following state-space form by:

ẋK(t) = AKxK(t) +BKy(t)

u(t) = CKxK(t) +DKy(t)
(16)

Then, Twe(s) = Dcl + Ccl(sI − Acl)
−1Bcl with6:

Acl :=

(
A+B2DKC2 B2CK

BKC2 AK

)
, Bcl :=(

B1 +B2DKD21

BKD21

)
, Ccl := (C1 +D12DKC2, D12CK)

and Dcl := D11 +D12DKD21.
We first examine each specification separately. It is shown

in [16] that the pole placement constraint is satisfied if and
only if there exists XD > 0 such that:

[αklXD + βklAclXD + βlkXDA
T
cl]1≤k,l≤m < 0 (17)

Meanwhile, the H∞ constraint is expressed in terms of LMIs: AclX∞ +X∞A
T
cl Bcl X∞C

T
cl

BTcl −γI DT
cl

CclX∞ Dcl −γI

 < 0 (18)

Then the problem formulation of H∞ synthesis with pole
placement - assuming that the same Lyapunov matrix X > 0
is required - is:

Find X > 0 and a controller K(s) > 0 ≡ ΩK that satisfy
(17) and (18) with X = XD = X∞

(19)

The controller matrix is denoted by:

ΩK =

(
AK BK
CK DK

)
(20)

The difficulty in output feedback is that relations (17) and
(18) involve nonlinear terms of the form BΩKCX . This means
that problem formulation is not convex and then, can not be
handled by LMIs. Chilali and Gahinet [16] solved this problem
by taking the following change of variables of the controller:

BK := NBK + SB2DK

CK := CKM
T +DKC2R

AK := NAKM
T +NBKC2R+ SB2CKM

T

+ S(A+B2DKC2)R

(21)

6we assume that the D22 = 0, this assumption considerably simplifies the
formulas. (Note that it is always possible to remove the D22 term by a mere
change of variables)

where R, S, N and M correspond to the following partition
of X and it inverse as

X =

(
R M
MT U

)
, X−1 =

(
S N
NT V

)
R ∈ Rn×n, S ∈ Rn×n

(22)

The proposed procedure is summarized in the following
theorem [16]:
Theorem:
Let D be an arbitrary LMI region contained in the open
left-half plane and let (13) be its characteristic function.
Then, the modified problem (19) is solvable if and only if the
following system of LMIs is feasible.
Find R = RT ∈ Rn×n, S = ST ∈ Rn×n, and matrices AK ,
BK ,CK and DK such that(

R I
I S

)
> 0 (23)

[
αkl

(
R I
I S

)
+ βklΦ + βlkφ

T

]
k,l

< 0 (24)

[
Ψ11 ΨT

21

Ψ21 Ψ22

]
< 0 (25)

with the shorthand notation

Φ :=

(
AR+B2CK A+B2DKC2

AK SA+ BKC2

)
(26)

Ψ11, Ψ12 and Ψ22 terms are detailed in appendix B. Given
any solution to this LMI system:

• Compute via Singular Values Decomposition (SVD) a
full-rank factorization MNT = I − RS of the matrix
I −RS (M and N are then square invertible)

• Solve the system of linear equations (21) for BK , CK
and AK (in this order).

• Set K(s) := DK + CK(sI −AK)−1BK .

Then K(s) is an nth order controller that places the closed-
loop poles in D and such that ‖Twe‖∞ < γ.

C. GPC outer position Controller

The GPC algorithm is based on a CARIMA model which
is given by:

A(z−1)y(t) = z−dB(z−1)u(t− 1) + C(z−1)e(t) (27)

where u(t) and y(t) are respectively the control and output
sequences of the plant and e(t) is a zero-mean white noise.
A, B and C are polynomials of the backward shift operator
z−1. They are given by; A(z−1) = 1 +a1z

−1 +a2z
−2 + ...+

anaz
−na , B(z−1) = b0 + b1z

−1 + b2z
−2 + ... + bnbz

−nb

and C(z−1) = 1 + c1z
−1 + c2z

−2 + ... + cncz
−nc and

4 = 1 − z−1. For simplicity, it is admitted that C−1 equals
1. It is important to mention that most SISO plants can
be described by a CARIMA model after linearization. The
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GPC algorithm consists in applying a control sequence that
minimizes a multistage cost function of the form:

J(N1, N2, Nu) =

N2∑
j=N1

δ(j)[ŷ(t+ j|t)− w(t+ j)]2

+

N2∑
j=1

λ(j)[4u(t+ j − 1)]2

(28)

where ŷ(t + j|t) is an optimum j step ahead prediction of
the system output on data up to time t, N1 and N2 are
the minimum and maximum cost horizons, Nu is the control
horizon, δ(j) and λ(j) are weighting sequences and w(t+ j)
is the future reference trajectory.
The minimization of cost function leads to a future control
sequence u(t), u(t+ 1), ... where the output y(t+ j) is close
to w(t+ j). Therefore, in order to optimize cost function, the
best optimal prediction of y(t+ j) (for N1 ≤ j ≤ N2) has to
be determined. This needs the introduction of the following
Diophantine equation:

1 = Aj(z
−1)Ã(z−1) + z−jFj(z

−1) (29)

with Ã = 4A(z−1) and polynomials Ej and Fj are uniquely
defined with degrees j − 1 and na respectively. 4 is defined
as 4 = 1− z−1
By multiplying (27) by 4Ej(z−1)zj and considering (29), we
obtain:

y(t+ j) =Fj(z
−1)y(t) + Ej(z

−1)B(z−1)4u(t+ j − d− 1)

+ Ej(z
−1)e(t+ j)

(30)

Since the noise terms in (30) are all in the future (this is
because degree of polynomial Ej(z−1) = j − 1), the best
prediction of y(t+ j) is:

ŷ(t+ j|t) = Gj(z
−1)4u(t+ j − d− 1) +Fj(z

−1)y(t) (31)

where Gj(z−1) = Ej(z
−1)B(z−1)

Polynomials Ej and Fj can merely be obtained recursively
(demonstration can be found for instance in [27]).
In the future, it will be referred only to N = N2 = Nu as the
prediction horizon. N1 is chosen equal to 0.
Let’s consider the following set of j ahead optimal predictions:

ŷ(t+ d+ 1|t) = Gd+14u(t) + Fd+1y(t)

...
ŷ(t+ d+N |t) = Gd+N4u(t+N − 1) + Fd+Ny(t)

(32)

It can be written in the following compact form:

y = G u + F(z−1)y(t) + G′(z−1)4u(t− 1) (33)

where terms y, u, G′ and F can be defined in [28].
Equation (33) can be rewritten in this form:

y = Gu + f (34)

Where f refers to the last two terms in Eq. (33) which only
depend on the past. Now, we are able to rewrite (28) as:

J = (Gu + f− w)T (Gu + f− w) + λuTu (35)

where w = [w(t + d + 1), w(t + d + 1) . . . w(t + d + N)]T

equation (35) can be written as:

J =
1

2
uTHu + bTu + f0 (36)

with H = 2(GTG + λI), bT = 2(f − w)TG and f0 =
(f −w)T(f −w)
Therefore, the minimum of J can simply be found by making
the gradient of J equal to zero, which leads to:

u = −H−1b = (GTG + λI)−1GT(w − f) (37)

Since the control signal that is actually sent to the process is
the first element of vector u (receding strategy), it is given by:

4u(t) = K(w − f) (38)

where K represents the first element of matrix (GTG +
λI)−1GT. Contrary to conventional controllers, predictive
ones depend only on future errors and not past ones.

D. Position/pressure control strategy for the pneumatic cylin-
ders

In this part, the cascade control concept is presented for
the cylinders. The complete control scheme for this concept is
summarized in Fig. 5. The inner loop consists in the control
of the pressure difference between the two chambers of each
cylinder. An LMI based H∞ controller is implemented. The
outer loop consists in the position generalized predictive con-
troller which is implemented based on the closed loop transfer
function of pressure difference in cascade with the mechanical
dynamics. As presented before, the linearized system in case
of pressure difference is an integrator. Therefore, equations of
the system can be stated as follows:

ẋ = (0)x+
(

1 0
)( b

v

)
+ (1)u(

y
u

)
=

(
−1
0

)
x+

(
1 0
0 0

)(
b
v

)
+

(
0
1

)
u

y = (1)x+
(

0 1
)( b

v

)
+ (0)u

(39)

where ω = (b v)T and e = (y u)T have been defined before.
Classical assumptions for solving H∞ problem can easily be
verified7. The result of the LMI optimization is a controller
which has the following form:

K(p) =
K1p+K2

p+K3
(40)

Therefore, the equivalent closed loop pressure transfer function
is:

Gclpressure
(p) =

K1p+K2

p2 + (K1 +K3)p+K2
(41)

Based on this transfer function, it is possible to reconstruct the
position by integrating the force two times and dividing by the
moving mass (5). The GPC controller will be then synthesized
using the following transfer function:

Gposition(p) =
K1p+K2

Mp2(p2 + (K1 +K3)p+K2)
=
Gclpressure

Mp2
(42)

7(A,B2) controllable and (C2, A) observable
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I/O linearizing 
GPC

predictive 
controller Section

Desired
future
angle

controller

Difference pressure inner 
GPC

parameters

Predictive position outer loop

CylinderValve
I/O linearizing 

block

Inverse 
kinematics

Difference pressure inner loop

Fig. 5. General block diagram of the cascade Position/pressure strategy for the cylinders. The inner loop consists in the control of the pressure difference
between the two chambers of each cylinder. An LMI based H∞ controller is implemented. The outer loop consists in the position generalized predictive
controller which is implemented based on the closed loop transfer function of pressure difference in cascade with the mechanical inverse dynamics.

IV. EXPERIMENTAL RESULTS

In the following, the proposed cascade GPC/H∞ is imple-
mented on the pneumatic cylinders. Some typical tests are
handled and commented in details.

A. Some typical control tests
During all tests concerning cylinders, the gravity term Fg in
(6) has been neglected. It has been observed that it has not
a big impact on performances. In this context, the design
of the cascade strategy is simplified and at the same time
it guarantees robustness to gravity effects and orientation
variations. A second assumption was made in equation (5)
where friction has been neglected. In spite of this, it will be
shown that one of the advantages of the multiobjective pressure
inner controller is that it can be used to remove friction effects
on control performances.
The first series of tests concerns the case where there is no
load attached at the end of the arm. The control frequency
is 0.2Khz. For the H∞ pressure controller, a disk LMI
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Fig. 6. Pulse response of the rodless cylinder

region (see [16] [29]) has been chosen because it enables to
avoid fast dynamic poles. We have tried to find a tradeoff
between oscillations that appear for fast dynamic poles and
time response that will be longer for slow dynamic ones. After
some empirical simulations, a disk centered at point (-300,0)
with a radius of 15 has been chosen leading to a satisfying
behavior. These parameters are used to define the disk LMI
region defined by (14).
Using constraints (23), (24) and (25) for the system defined
by (39) we obtain after LMI optimization [15] the terms R,
S, AK , BK , CK and DK . We are now able to compute the
constrained H∞ controller which is given by:

K(p) =
−263.8p− 9.15 · 10−4

p+ 339.8
(43)

The outer position controller is designed based on the equiva-
lent obtained transfer function given by (42). In order to apply
GPC, it is necessary to do the discretization of the transfer
function. This is done with a sampling time Ts = 5ms. We
obtain:

B(z−1) = 4.63·10−7+1.3·10−6z−1−2·10−10z−2−4.3·10−3

(44)
A(z−1) = 1− 2.44z

−1

+ 2z−2 − 0.54z−3 + 0.05z−4 (45)

The weighting factor λ has been chosen equal to 5 · 10−6

and δ is fixed to 1. The prediction horizon equals 50. On Fig.
6, a pulse signal reference with an amplitude of − + 15◦ is
given to the system. Experimental results are very good in
terms of static error and time response. The system follows
easily the reference. The rising time equals 0.045s and settling
time equals 0.24s. Steady state error is less then 0.05◦ in the
negative case and 0.2◦ for the positive one. This is due in
part to the fact that gravity effect is not the same for the
positive or negative position. As observed at time t = 3s,
there is a small jump -less than 1◦- in the output during the
steady state period. We think that this jump is due to the
sticking and restarting phenomena which is characteristic to
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electropneumatic systems (see chapter 3 of [12]). In our case,
our aim is to reach a precision better than 1◦ for carrying loads
up to 5kg in pick-and-place applications. This is achieved in
all the tests presented in this document even in presence of
restarting phenomena. However, this problem can be removed
by changing the closed loop pole location of the inner pressure
controller. For instance, rather than a circle LMI region of
radius 25 and centered at point (−350, 0), we constrain the
poles to be at (−450, 0). This is represented on figure 7.
The consequence can be viewed on Fig. 8. The limit cycle
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Fig. 7. Zero pole map: LMI circle regions and closed loop pole location
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Fig. 8. High gain step response

has been completely removed. The steady state error equals
0.02◦.

B. Pressure controller influence and robustness analysis
tests: In Fig. 9, a robustness test is done by adding a 5kg
load at t = 5s. The regulation is still good and the static error
is less than 0.1◦. It is interesting to observe that the system
reacts by a difference pressure jump which corresponds to the
mass variation added at the end of the arm. Therefore, it is
possible to deduce that the role of the inner loop is twice;
first, it simplifies the control synthesis of the outer controller
and secondly it robustifies the control because the difference
pressure inner tracking enables a natural adaptation to mass
variations.
c. Comparing results with state-of-art former studies: It is
not easy to compare those tests with former studies because the
experiments and the objectives are not the same. For instance,
in [12] [20] [13] [30] [19], the authors present only position
control tests without any robustness experiments. In [4], the
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Fig. 9. Robustness test with a 5kg mass: a difference pressure jump is
observed corresponding to the mass variation. Good regulation with a static
error less than < 0.1◦.

authors developed a robust sliding mode controller. Robustness
is tested by increasing the moving mass by 1.8kg. Fig. 10
shows optimal test results with the sliding mode controller
implemented in [30] and compares chirp signal tracking results
with our robust cascade strategy. The experiments have been
done with the same control signal amplitudes. This experiment
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Fig. 10. Experimental chirp signal tracking results: comparison between the
robust cascade strategy and state-of-art sliding modes [30]

clearly shows the improvement that can be brought by such a
control scheme. In Fig. 11, a robustness test is handled, that is,
an unmodeled 4kg load is added without considering it in the
controller. The gains are the same as for former test. Results
show clearly the interest of the cascade robust control strategy
introduced here.

V. CONCLUSION

An experimental versatile testbed is designed in order to
test the proposed robust cascade strategies on electropneumatic
actuators for pick and place parallel robotic applications and
based on a mixed GPC and H∞ approach. As our aim is to
reach at least a precision less than 1◦ for transporting loads up
to 5kg, the robust cascade strategy fulfills these requirements
in spite of the different uncertainties relative to friction, gravity
effects and different nonlinearities of the actuators. The differ-
ent experiments have shown the contribution of the predictive
position controller in performances by reducing time delay
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Fig. 11. Experimental 4kg mass variation robustness test: tracking results
comparison between the robust cascade strategy and state-of-art sliding modes
[30]

in a natural manner. Predictive control is particularly suitable
for industrial robotics applications where future references are
known a priori. On the other hand the different robustness
tests have shown the importance of pressure difference inner
loop which adapts itself in a natural manner to mass variations.
Future work will consist in the improvement of the model by
estimating and canceling the friction effects. For the pressure
multiobjective controller, the inspection of other LMI region
should be interesting in order to remove the chattering effect
of the control signal for high dynamic closed loop poles.
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[11] Michel. Fliess, Jean. Lévine, philippe. Martin, and Pierre. Rouchon.
Flatness and defect of non-linear systems: introductory theory and
examples. International Journal of Control, 61:1327–1361, 1995.

[12] X. Brun. Commandes linéaires et non linéaires en électropneumatique.
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