
HAL Id: hal-00466762
https://hal.science/hal-00466762v2

Preprint submitted on 7 Apr 2010 (v2), last revised 8 Jul 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New examples for the KLS conjecture
Nolwen Huet

To cite this version:

Nolwen Huet. New examples for the KLS conjecture. 2010. �hal-00466762v2�

https://hal.science/hal-00466762v2
https://hal.archives-ouvertes.fr


New examples for the KLS conjecture

Nolwen Huet1

April 7, 2010

Abstract

We show that the conjecture of Kannan, Lovász and Simonovits is true for log-
concave measures of the form ρ(|x|B)dx on R

n and ρ(t, |x|B)dx on R
1+n, where |x|B

is the norm associated to any convex body B already satisfying the conjecture. In
particular, the conjecture holds for convex bodies of revolution.

1 Introduction

Let K ⊂ R
n be a convex body. We denote the uniform probability measure on K by µK .

We say that K is isotropic if

• its barycenter
∫

x dµK(x) is 0,

•
∫

〈x, θ〉2dµK(x) is constant over θ ∈ S
n−1.

This means that the covariance of µK is a multiple of the identity. In this case,

∀θ ∈ S
n−1,

∫

〈x, θ〉2dµK(x) =
EµK

|X|2

n
= EµK

(X1
2).

Here 〈 . , . 〉 stands for the euclidean scalar product of Rn and | . | the associated euclidean
norm; Sn−1 is the euclidean sphere of radius 1, Eµ is the expectation under the measure
µ, and X1 the first coordinate of X . Let us note that others authors require more, namely
Vol(K) = 1 in [16] or

∫

〈x, θ〉2dµK = 1 in [10], but we do not. The conjecture of Kannan,
Lovász and Simonovits (KLS conjecture for short) from [10] can be stated as follows:

KLS conjecture for convex bodies. There exists a universal constant C such that for
every n ≥ 1 and every isotropic convex body K ⊂ R

n, the Poincaré constant CP(µK) of
µK is bounded from above by C EµK

(X1
2) = C EµK

|X|2/n.

1Institut de Mathématiques de Toulouse, UMR CNRS 5219, Université de Toulouse, 31062 Toulouse,
France. Email: nolwen.huet@math.univ-toulouse.fr.
2000 Mathematics Subject Classification: 26D10, 60E15, 28A75.
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Let us recall that the Poincaré constant CP(µ) of a measure µ is the best constant C
such that, for every smooth function f ,

Varµf ≤ C

∫

|∇f |2 dµ,

where ∇f is the gradient of f and Varµf =
∫ (

f −
∫

fdµ
)2
dµ is its variance under µ. So

the conjecture tells us that the Poincaré inequality for convex bodies is tight for linear
functions, up to a universal constant.

Up to now, this conjecture is known to be true for ℓp-balls with p ≥ 1 (see [8] for the
euclidean case p = 2, [20] for p ∈ [1, 2] and [13] for p ≥ 2), for the hypercube (see [9] or
[6]), and for the regular simplex (see [1]). Moreover, as the Poincaré inequality is stable
under tensorization ([5]), every product of convex sets satisfying the KLS conjecture,
satisfies also it. Quite obviously, it is stable under dilation too.

One can also extend the definition of isotropy and the conjecture to any log-concave
measure µ on R

n, by just replacing µK by µ in the statements. Recall that a measure µ on
R

n is log-concave if it satisfies the following Brunn-Minkowski inequality for all compact
sets A, B and real λ ∈ [0, 1]:

µ(λA + (1 − λ)B) ≥ µ(A)λµ(B)1−λ.

Equivalently µ is absolutely continuous with respect to the Lebesgue measure on an
affine space of dimension m ≤ n and its density is log-concave (see [7]). Then the KLS
conjecture becomes

KLS conjecture for log-concave measures. Let µ be a log-concave probability measure
on R

n. If µ is isotropic then CP(µ) ≤ C Eµ(X1
2) = C Eµ|X|2/n.

This conjecture seems rather difficult to tackle. It has been only checked in cases
where some additional structure is involved. For instance, the conjecture holds for any
log-concave product measure or more generally for any product of log-concave measures
satisfying the KLS conjecture [5], which generalizes the case of the hypercube. Bobkov
proved also the conjecture for spherically symmetric log-concave measures in [3] which
generalizes the case of the euclidean ball. Let us note also that the conjecture is also true
for small dimensions, since

CP(µ) ≤ C Eµ|X|2 ≤ CnEµ(X1
2) (1)

whenever µ is an isotropic log-concave measure on R
n. This follows from a theorem

proved by Kannan, Lovász and Simonovits thanks to their localization lemma, and also
deduced by Bobkov from its isoperimetric inequality for log-concave measures.

Theorem 1 (Kannan–Lovász–Simonovits [10, 2]). Let X = (X1, . . . , Xn) be a log-concave
random vector in R

n of law µ. Then, there exists a universal constant C such that

CP(µ) ≤ C Eµ

∣

∣X − E(X)
∣

∣

2
= C

n
∑

i=1

Varµ(Xi).
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This was improved by Bobkov [4] who proved that

CP(µ) ≤ C
(

Var|X|2
)1/2

.

This enables Klartag [11] to show the following improvement of the bound (1), when
proving power-law estimates for the central limit theorem for convex sets: there exists
ε > 0 such that

CP(µ) ≤ Cn1−ε E(X1
2).

If moreover µ is uniform on an unconditional convex set, i.e. invariant under coordinate
reflexions, he shows [12] that

CP(µ) ≤ C(logn)2 E(X1
2). (2)

In Section 2, we deal with the case of log-concave measures symmetric with respect to
the norm associated to a convex body B satisfying the KLS conjecture. It encompasses
the result of Bobkov on spherically symmetric log-concave measures. Its proof relied on
the tensorization of the radial measure with the uniform measure on the sphere. He used
the following property of the law of the radius:

Theorem 2 (Bobkov [3]). Let ν be a probability measure on R+ defined by

ν(dr) = rn−1ρ(r)1R+
(r)dr

with ρ log-concave. Then

Varν(r) ≤
Eν(r2)

n
.

Here, a natural idea would be to use the polar representation X = Rθ, where R = |X|B
is the norm of X , and the distribution of θ is the cone measure on ∂B. However, in the
non-euclidean case, the differentiation on ∂B is more difficult to handle. So we choose
to decompose X into SU where S ∈ R+ and U is uniform on B. We study as well
the convex bodies of revolution in Section 3 by the same method, and more general log-
concave measures with a finite number of symmetries. To simplify the statements, we
use the following definition.

Definition. An isotropic convex body B (respectively an isotropic log-concave probabil-
ity µ) is said to satisfy KLS with constant C if CP(µB) ≤ CEµB

(|X|2)/n (respectively
CP(µ) ≤ CEµ(|X|2)/n).

If X ,Y are random variables and µ is a probability measure, we will note X ∼ Y
when the two random variables have the same distribution, and X ∼ µ when µ is the law
of X . We close this introduction by stating a very useful theorem due to E. Milman (see
[15, Theorem 2.4] where a stronger result is stated).

Theorem 3 (E. Milman [15]). Let µ be a log-concave probability measure. If there exists
C > 0 such that for every smooth function f ,

Varµ(f) ≤ C
∥

∥|∇f |
∥

∥

2

∞
,

then CP(µ) ≤ c C, where c > 0 is a universal constant.
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2 B-symmetric log-concave measures

Let B be a convex body on R
n, whose interior contains 0. We associate to B the (non-

necessary symmetric) norm | . |B defined by

|x|B = inf
{

λ > 0,
x

λ
∈ B

}

.

Then B and its boundary ∂B correspond respectively to the unit ball and the unit sphere
for this norm. Let us note respectively µB and σB the uniform measure on B and the cone
measure on ∂B normalized so as to be probability measures. Recall that the cone measure
is characterized by the following decomposition formula for all measurable f : Rn → R:

∫

f dµB =

∫

f(rθ)nrn−1
1[0,1](r) dr dσB(θ).

Let µ be a probability measure on R
n with density ρ(|x|B) with respect to the Lebesgue

measure. If ρ is log-concave and non-increasing then µ is log-concave. In that case, we
say that µ is a B-symmetric log-concave probability measure. Note that the isotropy of
µ amounts to the isotropy of B.

Proposition 4. Let B be an isotropic convex body of Rn satisfying KLS with constant C.
Then any probability measure µ(dx) = ρ(|x|B)dx with ρ log-concave and non-increasing
on R

+, satisfies KLS with a constant depending only on C.

To prove the latter, we use the following decomposition of µ.

Lemma 5. Let X be a random variable on R
n of law µ(dx) = ρ(|x|B)dx with ρ log-concave

and non-increasing on R
+. Then X ∼ SU where U and S are independent random

variables respectively on B and R
+, of law U ∼ µB and S ∼ −Vol(B)snρ′(s)1R+(s)ds.

Note that, as ρ is log-concave, ρ is locally Lipschitz, and thereby is differentiable
almost everywhere and satisfies the fundamental theorem of calculus (see for instance
[19]).

Proof. Let us recall the classical polar decomposition: if θ and R are independent random
variables respectively on ∂B and R

+, of law θ ∼ σB and R ∼ nVol(B)rn−1ρ(r)1R+(r)dr,
then Rθ ∼ µ. Let T ∼ ntn−1

1[0,1](t)dt be independent of θ ∼ σB. By the same polar
decomposition, U = Tθ is uniform on B. So, if S ∼ −Vol(B)snρ′(s)1R+(s)ds is indepen-
dent of T and θ, and X = SU = (ST )θ, it remains only to show that ST ∼ R to prove
that X ∼ µ. Let f : Rn → R be a measurable function, then

E
(

f(ST )
)

=

∫

f(st) nVol(B) tn−1sn
(

− ρ′(s)
)

1[0,1](t)1R+(s) dtds

=

∫

f(r) nVol(B) rn−1
1R+(r)

(
∫ +∞

r

−ρ′(s)ds

)

dr

=

∫

f(r) nVol(B)rn−1ρ(r)1R+(r)dr.

In the last equality, we use that −ρ′(x) ≥ 0 and ρ(x) → 0 when x → +∞. Actually, as ρ
is log-concave, non-increasing, and non-constant as a density, there exists c¿0 such that
ρ(x) ≤ e−cx for x large enough.
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We need then a kind of Poincaré inequality for S in the above representation.

Lemma 6. Let S be a random variable on R
+ of law η(ds) = −snρ′(s)ds where ρ : R+ →

R
+ is a log-concave non-increasing function. Then, for every smooth function f on R

+

Varη(f) ≤ c
E(S2)

n
‖f ′‖2∞,

where c > 0 is a universal constant.

Proof. By integration by parts, we see that −
∫ +∞

0
rnρ′(r)dr =

∫ +∞

0
nrn−1ρ(r)dr = 1. So

ν(dr) = nrn−1ρ(r)dr is a probability measure, and by Theorems 1 and 2, if R ∼ ν, then
there exists a universal constant c > 0 such that

CP(ν) ≤ cVar(R) ≤ c
E(R2)

n
.

Let f be a smooth function on R
+ such that E

(

f(R)
)

= 0 and ‖f ′‖∞ < ∞. We perform
again an integration by parts:

E
(

f 2(S)
)

= −

∫ +∞

0

f 2(r)rnρ′(r)dr

=

∫ +∞

0

(

f 2(r)nrn−1 + 2f(r)f ′(r)rn
)

ρ(r)dr

= E
(

f 2(R)
)

+
2

n
E
(

Rf(R)f ′(R)
)

.

In the second equality, we use that f 2(r)rnρ(r) → 0 when r → +∞. This comes from the
fact that f is Lipschitz, so there exist a and b such that |f(r)| ≤ ar + b. The Poincaré
inequality for R leads to

E
(

f 2(R)
)

≤ c
E(R2)

n
‖f ′‖2∞.

Moreover,

E
(

Rf(R)f ′(R)
)

≤ ‖f ′‖∞
√

E(R2)
√

E
(

f 2(R)
)

≤ ‖f ′‖∞
√

E(R2)

√

c
E(R2)

n
‖f ′‖2∞

=

√

c

n
E(R2)‖f ′‖2∞.

Thus,

E
(

f 2(S)
)

≤
(

c + 2
√

c/n
) E(R2)

n
‖f ′‖2∞.

Now, for any smooth function g on R
+, we set f = g−E

(

g(R)
)

. As Varη(g) ≤ E
(

g(S)−a
)2

for every a ∈ R, it holds

Varη(g) ≤
(

c + 2
√

c/n
) E(R2)

n
‖g′‖2∞.

5



To conclude, let us remark that

E(R2) =

∫ +∞

0

nrn+1ρ(r)dr = −
n

n + 2

∫ +∞

0

rn+2ρ′(r)dr =
n

n + 2
E(S2).

We can now prove Proposition 4 by tensorization.

Proof of Proposition 4. Let µ(dx) = ρ(|x|B)dx be a probability measure with ρ log-
concave non-increasing. Let S and U be independent random variables respectively on
R

+ and uniform on B, such that X = SU ∼ µ as in Lemma 5. Let f be a smooth
function on R

n. By Lemma 6, there exists a universal constant c > 0 such that

ES

(

f 2(SU)
)

≤
[

ES

(

f(SU)
)]2

+ c
E(S2)

n
max
s≥0

(

〈∇f(sU), U〉2
)

≤
[

ES

(

f(SU)
)]2

+ c
E(S2)

n
|U |2

∥

∥|∇f |
∥

∥

2

∞
. (3)

As B satisfies KLS with constant C, we can also apply the Poincaré inequality to u 7→
ES

(

f(Su)
)

:

EU

[

ES

(

f(SU)
)]2

≤
[

EUES

(

f(SU)
)]2

+ C
E(|U |2)

n
EU

∣

∣ES

(

S∇f(SU)
)
∣

∣

2

≤
[

EUES

(

f(SU)
)]2

+ C
E(|U |2)

n
E(S2)

∥

∥|∇f |
∥

∥

2

∞
.

So, if we take the expectation with respect to U in (3), we obtain:

Varµf ≤ (c + C)
E(S2)E(|U |2)

n

∥

∥|∇f |
∥

∥

2

∞

= (c + C)
E(|X|2)

n

∥

∥|∇f |
∥

∥

2

∞
,

since S and U are independent, and X = SU . We conclude with Theorem 3.

3 Convex bodies of revolution

The same method works with convex bodies of revolution or more generally for convex
bodies K ⊂ R

n+1 defined by

K = {(t, x) ∈ I × R
n; |x|B ≤ R(t)},

where I is a bounded interval of R and R : I → R
+ is a concave function. Actually

we show the KLS conjecture for the corresponding measures ρ(t, |x|B)dtdx and more
generally for log-concave measures with a finite number of symmetries and whose first
variable takes value in a finite-dimensional space.
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Proposition 7. Let n0, . . . , nk be positive integers and N =
∑

ni. Let B1, . . . , Bk

be isotropic convex bodies respectively of Rn1, . . . ,Rnk satisfying KLS with constant C.
Then every isotropic probability measure µ(dx) = ρ(x0, |x1|B1

, . . . , |xk|Bk
)dx on R

N with
ρ log-concave and non-increasing with respect to its k last variables, satisfies KLS with a
constant depending only on C, n0, and k.

When n0 = k = 1 and B1 is an euclidean ball, we deduce the following.

Corollary 8. The convex bodies of revolution satisfy the KLS conjecture.

Proof of Proposition 7. The same method as for B-symmetric measures applies. In the
same way as in Lemma 5, let (X0, S) = (X0, S1, . . . , Sk) and U1, . . . , Uk be independent

variables respectively on R× (R+)
k

and B1, . . . , Bk, with

(X0, S) ∼ (−1)kVol(B1) · · ·Vol(Bk) sn1

1 · · · snk

k ∂k
1,...,kρ(x0, s) 1(R+)k(s)dx0ds,

∀i, Ui ∼ µBi
.

Be careful that ∂iρ denotes here the partial derivative of si 7→ ρ(x0, s1, . . . , sk). Then
X = (X0, S1U1, . . . , SkUk) is of law µ. Moreover, we can suppose without loss of generality
that that for all i,

E|Ui|
2 = 1.

Else, we choose λ−2
i = E(|Ui|

2) such that Vi ∼ µλiB satisfies E(|Vi|
2) = 1, and replace ρ by

ρλ : (x0, s1, . . . , sk) 7→ ρ(x0, λ1s1, . . . , λk, sk) which is still log-concave and non-increasing
with respect to its k last variables. In this case, µ(dx) = ρλ(x0, |x1|λ1B1

, . . . , |xk|λkBk
)dx.

Recall now that µ is isotropic, i.e. that

E(X) = 0

and

∀y ∈ R
N , E

(

〈X, y〉2
)

=
E(|X|2)

N
|y|2.

This implies that each Bi had to be itself an isotropic convex body, X0 is an isotropic
log-concave variable, and

∀i,
E(S2

i )

ni

=
E(|X0|

2)

n0

=
E(|X|2)

N
, (4)

since E(|Ui|
2) = 1. In the same spirit as Lemma 6, one can show

Lemma 9. For any smooth function f on R
n0 × (R+)k,

Var(X0,S)(f) ≤ c(n0 + k2)
E|X|2

N

∥

∥|∇f |
∥

∥

2

∞
,

where c > 0 is a universal constant.

Let us postpone the proof of this lemma and show how to deduce the claim of the
proposition. Let f be a smooth function on R

N . Let us note ∇if the derivative of

xi ∈ R
ni 7→ f(x0, x1, . . . , xk),
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and su = (s1u1, . . . , skuk) whenever s = (s1, . . . , sk) ∈ R
k and u = (u1, . . . , uk) with

ui ∈ R
ni . As in the proof of Proposition 4, we apply Poincaré inequality for (X0, S) and

then for each Ui. First we consider (x0, s) 7→ f(x0, sU):

E(X0,S)

(

f 2(X0, SU)
)

≤
[

E(X0,S)

(

f(X0, SU)
)]2

+c(n0 + k2)
E(|X|2)

N
max

(x0,s)∈R×(R+)k

(

|∇0f(x0, sU)|2 +
∑

i

〈∇if(x0, sU), Ui〉
2

)

≤
[

E(T,S)

(

f(X0, SU)
)]2

+ c(n0 + k2)
E(|X|2)

N
(1 +

∑

i |Ui|
2)
∥

∥|∇f |
∥

∥

2

∞
.

Then, as each Bi satisfies KLS with constant C,

EU

[

E(X0,S)

(

f(X0, SU)
)]2

≤
[

E
(

f(X)
)]2

+
∑

i

C
E(|Ui|

2)

ni

EUi

∣

∣E(X0,S)

(

Si∇if(X0, SU)
)
∣

∣

2

≤
[

E
(

f(X)
)]2

+
∑

i

C
E(|Ui|

2)

ni
E(S2

i )E(|∇if(X)|2)

≤
[

E
(

f(X)
)]2

+ C
E(|X|2)

N
E(|∇f(X)|2).

The second inequality comes from Cauchy–Schwarz inequality and the independence of
S and U . It follows

Varµ(f) ≤
[

c(n0 + k2)
(

1 +
∑

i E(|Ui|
2)
)

+ C
] E(|X|2)

N

∥

∥|∇f |
∥

∥

2

∞

=
[

2c(n0 + k2)(1 + k) + C
] E(|X|2)

N

∥

∥|∇f |
∥

∥

2

∞
.

We are done, thanks to Theorem 3.

Proof of Lemma 9. Let R = (R1, . . . , Rk) be a random variable on (R+)k such that

(X0, R) ∼ ν(dx0dr) =

(

k
∏

i=1

Vol(Bi)ni1R+(ri)r
ni−1
i

)

ρ(x0, r) dtdr.

Then one can see thanks to the classical polar decomposition of µ that

∀i, Ri ∼ Si|Ui|Bi
.

In particular,

∀i,
E(R2

i )

ni

=
ni

ni + 2

E(S2
i )

ni

=
ni

ni + 2

E(|X|2)

N
≤

E(|X|2)

N
.

Moreover ν is a log-concave (non-isotropic) measure and by Theorem 1, there exists a
universal constant c > 0 such that

CP (ν) ≤ c

(

E(|X0|
2) +

∑

i

Var(Ri)

)

.
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Now the density of Ri is proportional to

rni−1
i

∫

ρ(x0, r)dx0dr1 · · · dri−1dri+1 · · · drk

and ri 7→
∫

ρ(x0, r)dx0dr1 · · · dri−1dri+1 · · · drk is a non-increasing function which is also
log-concave by Prékopa–Leindler’s theorem [17, 14, 18]. According to Theorem 2,

Var(Ri) ≤
E(R2

i )

ni
≤

E(|X|2)

N
.

Eventually,

CP (ν) ≤ c(n0 + k)
E(|X|2)

N
.

As for Lemma 6, to prove the claim, it is enough to consider smooth functions f on
R×(R+)k such that E

(

f(R)
)

= 0 and
∥

∥|∇f |
∥

∥

∞
< ∞. We apply k successive integrations

by parts and bound the derivatives of f by
∥

∥|∇f |
∥

∥

∞
each times it appears:

E
(

f 2(X0, S)
)

= Z

∫

f 2(x0, r) (−1)krn1

1 · · · rnk

k ∂k
1,...,kρ(x0, r) 1(R+)k(r)dx0dr

=

∫
[

f 2 + 2
r1
n1

f∂1f

]

(−1)k−1n1r
n1−1
1 rn2

2 · · · rnk

k ∂k
2,...,kρ(x0, r) 1(R+)k(r)dx0dr

≤

∫
[

f 2 + 2
r1
n1

f
∥

∥|∇f |
∥

∥

∞

]

(−1)k−1n1r
n1−1
1 rn2

2 · · · rnk

k ∂k
2,...,kρ(x0, r) 1(R+)k(r)dx0dr

=

∫
[

f 2 + 2
r1
n1

f
∥

∥|∇f |
∥

∥

∞
+ 2

r2
n2

f∂2f + 2
r1r2
n1n2

∂2f
∥

∥|∇f |
∥

∥

∞

]

(−1)k−2n1n2r
n1−1
1 rn2−1

2 rn3

3 · · · rnk

k ∂k
2,...,kρ(x0, r) 1(R+)k(r)dx0dr

≤

∫
[

f 2 + 2

(

r1
n1

+
r2
n2

)

f
∥

∥|∇f |
∥

∥

∞
+ 2

r1r2
n1n2

∥

∥|∇f |
∥

∥

2

∞

]

(−1)k−2n1n2r
n1−1
1 rn2−1

2 rn3

3 · · · rnk

k ∂k
2,...,kρ(x0, r) 1(R+)k(r)dx0dr

...

≤ E
(

f 2(R)
)

+ 2
∥

∥|∇f |
∥

∥

∞
E

(

f(R)
∑

i

Ri

ni

)

+ 2
∥

∥|∇f |
∥

∥

2

∞
E

(

∑

i<j

RiRj

ninj

)

. (5)

By Cauchy–Schwarz inequality,

E

(

f(R)
∑

i

Ri

ni

)

≤
√

E
(

f 2(R)
)

√

√

√

√E

(

∑

i

Ri

ni

)2

, (6)

and

E

(

∑

i

Ri

ni

)2

≤

(

∑

i

1

ni

)

E

(

∑

i

R2
i

ni

)

≤ k2E|X|2

N
. (7)

9



The Poincaré inequality leads to

E
(

f 2(R)
)

≤ c(n0 + k)
E(|X|2)

N

∥

∥|∇f |
∥

∥

2

∞
. (8)

Noting that
∑

i<j
RiRj

ninj
≤
(

∑

i
Ri

ni

)2

and plugging the estimates (6), (7), and (8) in the

inequality (5), it follows

E
(

f 2(S)
)

≤
(

c(n0 + k) + 2
√

c(n0 + k)k + 2k2
) E|X|2

N

∥

∥|∇f |
∥

∥

2

∞

≤
(

2c(n0 + k) + 3k2
) E|X|2

N

∥

∥|∇f |
∥

∥

2

∞
.

Remark. In the special case of the euclidean ball, one can improve the above estimate
using the classical polar decomposition X = (R1θ1, . . . , Rkθk) with θi ∼ σSni−1 :

Proposition 10. Let µ(dx) = ρ(x0, |x1|, . . . , |xk|)dx be an isotropic log-concave prob-
ability measure on R

N , with xi ∈ R
ni. Then there exists a universal constant c such

that

CP(µ) ≤ c(n0 + k)
Eµ|X|2

N
.
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[5] Sergey G. Bobkov and C. Houdré. Isoperimetric constants for product probability
measures. Ann. Probab., 25(1):184–205, 1997.
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