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Abstract

Machining time is a major performance criterion when it comes to high speed machining. CAM soft-

ware can help in estimating that time for a given strategy. But in practice, CAM programmed feed rates

are rarely achieved, especially where complex surface finishing is concerned. This means that machining

time forecasts are often more than one step removed from reality. The reason behind this is that CAM

routines do not take either the dynamic performances of the machines or their specific machining toler-

ances into account. The present article seeks to improve simulation of high speed NC machine dynamic

behaviour and machining time prediction, offering two models. The first contributes through enhanced

simulation of 3-axis paths in linear and circular interpolation, taking high speed machine accelerations

and jerks into account. The second model allows transition passages between blocks to be integrated in

the simulation by adding in a polynomial transition path that caters for the true machining environment

tolerances. Models are based on respect for path monitoring. Experimental validation shows the con-

tribution of polynomial modelling of the transition passage due to the absence of a leap in acceleration.

Simulation error on the machining time prediction remains below 1%.
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Nomenclature

Kinematic and dynamic parameters
−→
J jerk vector
−→
A acceleration vector
−→
V feed rate vector
−→
X position vector

Jmax,i maximum jerk limited by machine

dynamics on the axis i

Amax,i maximum acceleration limited by the

machine dynamics on the axis i

A0,i, V0,i,

X0,i

acceleration, feed rate and initial po-

sition on the axis i

VF programmed feed rate

V ′
F feed rate reached if VF is not

achieved

Vc,i feed rate set on the axis i

VIn feed rate of entry into a block

VOut feed rate exiting a block

V ′
Out feed rate exiting a block if VOut is not

reached

Vdisc maximum feed rate for entering a dis-

continuity

Vj feed rate entering a discontinuity lim-

ited by jerk

Va feed rate entering a discontinuity lim-

ited by acceleration

τi duration of phase i (τi = Ti − Ti−1)
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Circular transitions in linear interpolation

A,O,B theoretical programmed path

A,Q,B path described by the machine

TIT , tolx,

toly

method to define point Q in accor-

dance with the programming method

R radius of the arc inserted on transi-

tion

l1, l2 length covered before and after the

transition

β angle formed by segments [AO] and

[OB]

ac, jt normal acceleration and tangential

jerk in steady state

Circular transitions in circular interpolation

R1, R2 radii of circles before and after a cir-

cle - circle transition

Parameters used in circular interpolation

O centre of circle

R radius of circle

P (t) current point

α angle covered by the circle arc

θ(t) current angle

Ji curvilinear jerk limited by the axis i

JC curvilinear jerk

Ai curvilinear acceleration limited by

the axis i

AC curvilinear acceleration
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Polynomial transitions in linear interpolation

R frame
(

O,
−→
X,

−→
Y ,

−→
Z
)

A,O,B programmed theoretical path

(xA, yA, zA) coordinates of
−→
OA in the frame R

(xB, yB, zB) coordinates of
−−→
OB in the frame R

M point of entry into the discontinuity

N point of exit from the discontinuity

Q effective point of passage in the dis-

continuity

T time of passage in the discontinuity

L distance OM

P (t) current point

φi, θi spherical coordinates of the point i

tolx, toly, tolztolerance of position on the axes

VM , VN feed rates for entry on M and exit on

N

1 Introduction

High speed machining centres allow for extremely high feed rates to be programmed. However, when

machining molds or dies, dynamic performances of the machines do not always allow such feed rates to be

reached. Indeed, according to the quality sought, the segments making up the machining path are often

extremely short and in such conditions the feed rate reached by the machine will then be limited by the

NC interpolation time or even the capabilities in jerk or acceleration of the axes [1], [2]. The feed rate

will then not be constant, leading to considerably lower productivity, a variation in tangential cutting

forces and impaired quality [3]. Many publications relating to the search to reduce the number of feed

rate changes base their research on the use of NURBS interpolations. [4] [5] [6] or B-spline [7]. However,

in the industrial world, linear and circular interpolation remain the most frequently used methods on

many workpieces. Precise simulation of this type of movement is therefore essential.

The aim of this work is therefore to propose a comprehensive model intended to simulate the posi-

tion, feed rate, acceleration and jerk in 3-axis linear and circular interpolation taking the machine/NC

combination parameters into account.

At present, NC machine manufacturers [8] propose a displacement law on the axes in trapezoid

acceleration. This type of command has been studied in the literature by a number of authors writing on

uniaxial paths with null initial and final feed rates [9] [10]. This movement involves 7 phases (figure 1):
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• On phase 1,

∀t ∈ [T0, T1]


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
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
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


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




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




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



















Ji(t) = Jmax,i

Ai(t) = A0,i + Jmax,i (t− T0)

Vi(t) = V0,i +A0,i (t− T0)

+ 1
2Jmax,i (t− T0)

2

Xi(t) = X0,i + V0,i (t− T0) +

1
2A0,i (t− T0)

2 +

1
6Jmax,i (t− T0)

3

(1)

• On phase 2,

∀t ∈ [T1, T2]
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


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





Ji(t) = 0

Ai(t) = Amax,i

Vi(t) = Vi (T1) +Amax,i (t− T1)

Xi(t) = Xi (T1) + Vi(T1) (t− T1)

+ 1
2Amax,i (t− T1)

2

(2)

• On phase 3,

∀t ∈ [T2, T3]
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









Ji(t) = −Jmax,i

Ai(t) = Ai (T2)− Jmax,i (t− T2)

Vi(t) = Vi (T2) +Ai(T2) (t− T2)

− 1
2Jmax,i (t− T2)

2

Xi(t) = Xi (T2) + Vi (T2) (t− T2)+

1
2Ai(T2) (t− T2)

2

− 1
6Jmax,i (t− T2)

3

(3)

• On phase 4,

∀t ∈ [T3, T4]
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

Ji(t) = 0

Ai(t) = 0

Vi(t) = Vc,i

Xi(t) = Xi (T3) + Vc,i (t− T3)

(4)

• On phase 5,

∀t ∈ [T4, T5]
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




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

















Ji(t) = −Jmax,i

Ai(t) = Ai (T4)− Jmax,i (t− T4)

Vi(t) = Vi (T4) +Ai (T4) (t− T4)

− 1
2Jmax,i (t− T4)

2

Xi(t) = Xi (T4) + Vi (T4) (t− T4)

+ 1
2Ai (T4) (t− T4)

2

− 1
6Jmax,i (t− T4)

3

(5)
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• On phase 6,

∀t ∈ [T5, T6]


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

Ji(t) = 0

Ai(t) = −Amax,i

Vi(t) = Vi (T5)−Amax,i (t− T5)

Xi(t) = Xi (T5) + Vi(T5) (t− T5)

− 1
2Amax,i (t− T5)

2

(6)

• On phase 7,

∀t ∈ [T6, T7]
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








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




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

Ji(t) = Jmax,i

Ai(t) = Ai (T6) + Jmax,i (t− T6)

Vi(t) = Vi (T6) +Ai (T6) (t− T6)

+ 1
2Jmax,i (t− T6)

2

Xi(t) = Xi (T6) + Vi (T6) (t− T6)

+ 1
2Ai (T6) (t− T6)

2

+ 1
6Jmax,i (t− T6)

3

(7)

Figure 1: Control law for a translation axis
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Acceleration starts by increasing up to its maximum value Amax,i. The slope for this acceleration

is called jerk. This is noted Jmax,i (phase 1). An acceleration level is then reached with value Amax,i

(phase 2). This then diminishes down to zero (phase 3). During the fourth stage, acceleration is null

and the feed rate attained is equal to the programmed feed rate. Phases 5, 6 and 7 are symmetrical with

phases 3, 2 and 1. Time resolution of this system of equations allows the times for each of the phases

to be calculated readily (section 2.1). Parameters Amax,i and Jmax,i are specific to the dynamics of the

machine used.

In practice, the blocks follow on from each other and the feed rates at the start and end of the blocks

are rarely null. Furthermore, according to the length of the segment and the feed rate to be reached,

maximum acceleration or the programmed feed rate are not always reached. Thus, segments are often

crossed in which some of the seven phases do not exist. This general case is rarely addressed [9] [11].

Modelling of the machine’s behaviour taking these aspects into account is proposed in section 2.

In the case of 3-axis machining, the path of a segment is covered simultaneously on 3 axes. Take,

for example, the case of a block with displacement on
−→
X and

−→
Y . To ensure the quality of the machined

workpiece, the path actually followed needs to be monitored in relation to the programmed path. To do
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so, synchronization of the axes is needed. Indeed, both axes must reach the final position at the same

instant. Thus, on 3 axes, a feed rate, an acceleration and a maximum jerk have to be calculated for each

of the axes as a function of the slowest axis [12]. Using the model in 7 phases, the same time for each of

the phases will be obtained on each of the axes, allowing the path to be followed.

Circular interpolation is also widely used. However, as far as can be ascertained, there are no publica-

tions covering changes in feed rate on a circle while also ensuring monitoring of the path to be followed.

Modelling of such a case will be presented in section 2.

Moreover, a machining operation can be broken down into a multitude of linear or circular blocks.

This thus poses the problem of the crossing of transitions between discontinuous blocks tangent to each

other. From a purely kinematic point of view, the exact passage by the programmed points requires

precise arrest of the machine at the end of each block. This behaviour is not permitted in practice as

it implies repeatedly slowing down and thus a loss in productivity. In addition, the jerks are prejudicial

to the quality of the workpieces manufactured as well as the lifetime of the cutting tools used. Thus, in

numerical commands, there is a tolerance on pursuit of the path, figure 2. For a programmed path A –

O – B, the machine will cover the path A – Q – B. This point Q can be defined in a number of ways:

by the distance TIT , tolerances tolx and toly on the axes and the distances d1 or d2.

Figure 2: Model of circular pass for a discontinuity at a tangent

In the literature, a circle arc is used to model this transition [14]. Radius R of this circle arc is

calculated in relation to the tolerance permitted by the NC and lengths l1 and l2 of the blocks before and

after the discontinuity:

R = min



TIT
cos
(

β
2

)

1− cos
(

β
2

) ,
l

sin
(

β
2

) − TIT



 (8)

where l = min (l1, l2).

From a kinematic point of view, the course of a circle at constant feed rate V runs at constant

centripetal acceleration ac =
V 2

F

R . Deriving this acceleration, a constant tangential jerk jt = V 3

R2 is also

obtained. As this acceleration ac and jerk jt are limited on the machine by maximum values Amax,i and

Jmax,i, for a given radius, the feed rate in the discontinuity will thus be limited:

Vdisc = min

(

VF , Va =
√

Amax,iR, Vj =
3

√

Jmax,iR2

)

(9)

7



This modelling allows the maximum speed of passage to be expressed as a discontinuity. However, it

pre-supposes a jump in acceleration: at constant feed rate on segment [AO] acceleration is null (phase 4)

while at constant speed on a circle, the projection of the acceleration vector on the axes can reach V 2
F /R.

This leap in acceleration on crossing the transition is not observed in practice. Thus, a circular model

cannot be used to simulate precisely the position, feed rate, acceleration and jerk along the discontinuity,

even if it gives a good approximation of the drop in feed rate. In part 3, a polynomial form of modelling

for transitions between non-tangent segments will be presented.

In circular interpolation, the transitions between the circles of different radii need to be modelled. In

this case, the same type of limitation arises: two tangent circles with different radii are discontinuous in

curvature. On crossing the discontinuity, there will thus be a jump in acceleration. Pateloup [15] proposes

a model to determine the minimum feed rate needed to cross the discontinuity taking into account the

jerk j, the radii R1 and R2 of the two circular portions, and the interpolation time δt of the machine:

Vdisc =

√

R1R2

|R1 −R2| δtj
(10)

This model is also used to cross a transition between a segment of a straight line and a circle arc when

they are tangent. The model is again taken up in the algorithm proposed by Tapie [1] to calculate the

entry rate into this type of discontinuity. This method for crossing discontinuities will be validated in

section 4.

With the aim of simulating a complete path (path including blocks and transitions), Lavernhe [12]

proposes a method allowing the machine’s dynamic behaviour to be computed using a formalism with

inverse time. Integration of the NC cycle time in this method allows it to predict the control jerk value

to be predicted for each of the periods. From this are deduced the plots for acceleration and feed rate.

Furthermore, his model takes the predictive functions available on NCs into account. The model for

crossing of discontinuities in tangency is that described previously (circle arc).

Another solution is to identify the servo-system model for the machine/NC combination [13]. This

approach appears difficult to implement given the lack of data provided by NC manufacturers. Indeed,

to apply this approach would require precise knowledge of the slaving flow diagrams for the axes and

especially the various correctors used. Where appropriate, tests need to be conducted to identify the

transfer function parameters.

Finally, a third method involves modelling directly the laws described in the previous sections. The

difficulty in implementing these models lies in calculating for each block the time for each acceleration

phase as well as the jerk on each axis. Integration of anticipation is no easy matter.

To sum up, the paths of linear blocks are clearly described in the literature. However, the general case

(path of a segment at non-null initial and final feed rates) is not studied. Furthermore, no information is to

be found on the path of circular blocks. With respect to discontinuities in tangency, the model for passage

in a circle arc allows the feed rate on crossing the discontinuity to be quantified but does not enable laws

for feed rates and accelerations to be modelled. The idea is to propose algorithms that, on 3 axes, show

how to go from a feed rate on block entry VIn to a feed rate on block exit VOut while attempting to reach

the programmed rate VF both in linear interpolation (section 2.1) and circular interpolation (section 2.3).
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A model is then proposed for passage into discontinuities in tangency between two straight lines (section

3). Finally, tests validating the simulator are presented.

2 Modelling NC behaviour in linear and circular interpolation

In this section, the laws for displacements, feed rates, accelerations and jerks to cover a uniaxial

segment from a feed rate VIn to a feed rate VOut passing through a feed rate VF are modelled. Passage

in the case of a 3-axis segment is then studied. The results are then adapted to circular interpolation.

2.1 Modelling uniaxial linear segments in the general case

In the general case of a toolpath for a segment in 3-axis machining, the feed rates at entry, middle

and exit of a segment will not be identical. In addition, according to the jumps in feed rate to be crossed

and the length of the displacement to be made, the feed rate will not necessarily be reached. As a result,

resolution of equations 1 to 7 allows all existing cases to be identified (figure 3 and appendices). Thus, for

L, VF , VIn and VOut given, it can be determined whether Vout and/or VF will be reached going through

Amax,i or not. This means the duration for each of the phases can be known. The contour for jerk,

acceleration, feed rate and position on one axis can thus be retraced.

Figure 3: Set of cases of resolution

2.2 Passage to 3 axes

The algorithm given in the previous section is valid on a uniaxial displacement. In this case, values

Amax,i and Jmax,i will derive from the machine characteristics. On 3 axes, synchronization will be
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needed. This means that the times for each of the 7 phases are identical on all axes. As a result, for a

given displacement at a given programmed feed rate, the NC will recalculate a set feed rate, acceleration

and jerk for each of the axes.

The modelling method followed is thus as follows: for a given segment, the displacement to be made

on each of the axes is calculated. Using the results of the previous section with maximum acceleration

and maximum jerk, it will thus be possible to determine which of the 3 axes will be the slowest. Then,

using the results Lavernhe offers [12], feed rates Vi, accelerations Ai and jerks Ji on the axes limited i

can thus be calculated as a function of the distance Llim to be covered on the limiting axis and distances

Li to be covered on the limited axes:

Vi =
Li

Llim
VF Ai =

Li

Llim
Amax,i Ji =

Li

Llim
Jmax,i (11)

All the elements used to simulate tool paths in 3-axis linear interpolation have thus been presented. In

what follows, the case of circular interpolation will be studied.

2.3 Modelling tool paths defined by circle arcs

As has been seen, few data are given as to simulation of displacements on a circle. The problem

involves understanding how the axes of the NC behave to follow a circular path and especially how

decelerations and accelerations are made when following a circle. To this purpose, the laws governing a

circular movement can be stated.

Let P be a point moving over a circle arc of angle θ, centre O and radius R in the frame (−→er ,−→eα,−→ez)
(figure 4).

Figure 4: Parametrization for a circular path

This gives:
−−→
OP = R−→er (12)

Note θ the angular law such that ∀t ∈ [0, T ], θ(0) = 0 and θ(T ) = α. The feed rate, acceleration and

jerk vectors can thus be expressed as follows:

d
−−→
OP

dt
= R

dθ

dt
−→eθ (13)

d2
−−→
OP

dt2
= R

d2θ

dt2
−→eθ −R

(

dθ

dt

)2
−→er (14)

d3
−−→
OP

dt3
= R

(

d3θ

dt3
−
(

dθ

dt

)3
)

−→eθ − 3R
d2θ

dt2
dθ

dt
−→er (15)
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When the set feed rate is reached, dθ(t)/dt = VF /R. Nevertheless, the angle law θ(t) is unknown on

passage from null feed rate to the programmed feed rate. As a result, using a law in 7 phases is proposed,

like that considered in section 2.1. In these conditions the jerk effect no longer corresponds to a jerk by

axis, but a “curvilinear” jerk taking into account the influence of 2 or 3 axes along the plane in which

the circle is made. This jerk is thus the result of several contributing axes. This means the tool path has

to be expressed as a projection on the machine’s axes of translation. This is done through two moves in

frames.

Let M1 and M2 be the respective matrices for passage of the frame (−→u ,−→v ,−→w ) towards frame

(−→x ,−→y ,−→z ) and the frame (−→eR,−→eθ ,−→ez) towards frame (−→u ,−→v ,−→w ).

M is noted as the matrix for passage of the frame (−→x ,−→y ,−→z ) to frame (−→eR,−→eθ ,−→ez):

M = (M1M2)
−1

(16)

2.4 Calculation of jerk and curvilinear acceleration

Curvilinear jerk and curvilinear acceleration do not form part of the machine parameters, but they

are the result of the contribution made by accelerations and jerks for each axis in movement. According

to the zone in which the circle is completed, one or other of the axes will be limiting.

These parameters are calculated at the start and the end of movement as that is where they are most

significant. Indeed, for the path of a circle arc, one needs to switch from a null normal acceleration to

a normal acceleration equivalent to V 2
F /R at the start and at the end of the path, which would require

an infinite jerk at the start or the end of the path. As this can only be considered on certain types of

machining centres, the maximum jerk that can be reached at the start and end of the path in consideration

of the characteristics of the axes is thus calculated.

Consider a circle arc made in the frame (−→u ,−→v ,−→w ) from an angle θ(0) = 0 to an angle θ(T ) = α, T

being the overall duration of the path. In this general case, the matrix M is a matrix for rotation of

the orthonormed frame (−→eR,−→eθ ,−→ez) to the orthonormed frame (−→x ,−→y ,−→z ). This matrix is thus orthogonal

and can be inverted. Note (ux, uy, uz), (vx, vy, vz), (wx, wy, wz) the coordinates of the vectors −→u , −→v , −→w
in the frame (−→x ,−→y ,−→z ).

Using a model in 7 phases for angular acceleration and assuming initial acceleration to be null, the

following is obtained on the first phase, ∀t ∈ [0, T1]:



























d3θ
dt3 (t) = Jc
d2θ
dt2 (t) = Jct

dθ
dt (t) = θ̇In + 1

2Jct
2

θ(t) = θ̇Int+
1
6Jct

3

(17)

with Jc the curvilinear jerk. Carrying over equation 17 into equation 15 on t = 0 and projecting onto

the machine axes, the following is obtained:
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d3
−−→
OP

dt3
= R

(

Jc − θ̇3In

)−→eθ =











R
(

Jc − θ̇3In

)

vx

R
(

Jc − θ̇3In

)

vx

R
(

Jc − θ̇3In

)

vx











(−→x ,−→y ,−→z )

(18)

Jerk is limited on each of the axes and curvilinear jerk will depend on 2 or even 3 axes. The latter

will thus depend on the axis that will be limiting. The following will therefore obtain:

J1 =
Jmax,x

Rvx
+ θ̇3In J2 =

Jmax,y

Rvy
+ θ̇3In J3 =

Jmax,z

Rvz
+ θ̇3In (19)

Similarly, J4, J5, J6 are calculated at the end of movement to obtain:

Jc = min
i∈[1,6]

(Ji) (20)

Curvilinear acceleration Ac can now be calculated. Noting θ1, the position reached at the end of phase

1 and θ̇1 the feed rate reached at the end of phase 1, the following will obtain in phase 2, ∀t ∈ [T1, T2]:



























d3θ
dt3 (t) = 0

d2θ
dt2 (t) = Ac

dθ
dt (t) = θ̇1 +Act

θ(t) = θ1 + θ̇1t+
1
2Act

2

(21)

Carrying over equation 21 into equation 14, this gives t = T1:

d2
−−→
OP
dt2 = RAc

−→eθ −Rθ̇1
2−→er

=
(

− (ux cos θ1 + vx sin θ1)Rθ̇21

+(uy cos θ1 + vy sin θ1)RAc

)

· −→x

+
(

− (−ux sin θ1 + vx cos θ1)Rθ̇21

+(−uy sin θ1 + vy cos θ1)RAc

)

· −→y

+
(

− wxRθ̇21 + wyRAc

)

· −→z

(22)

Thus:

A1 =
Amax,x+(ux cos θ+vx sin θ)Rθ̇2

1

(uy cos θ+vy sin θ)R

A2 =
Amax,y+(−ux sin θ1+vx cos θ1)Rθ̇2

1

(−uy sin θ1+vy cos θ1)R

A3 =
Amax,z+wxRθ̇2

1

wyR

(23)

The same method is adopted for the deceleration phase, giving:

Ac = min
i∈[1,6]

(Ai) (24)

To conclude, in the modelling proposed in circular interpolation, the angular law follows a movement

in seven phases, with maximum jerk being the calculated value Jc and maximum acceleration being the

calculated value Ac. Knowing all the parameters of a circle arc (point of departure, point of arrival,

radius, etc.), the machine’s dynamic behaviour can be simulated throughout the circular path.
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This part allows the laws of position, feed rate, acceleration and jerk on unique blocks in circular

and linear interpolation to be simulated. What remains is to model the junctions between blocks. It has

already been shown that the model for transition between two tangent paths functions. The following

part of the article will cover how to model the passage between two linear segments.

3 Modelling of the transition between two rectilinear blocks

In the literature, transitions between two segments are always modelled by circle arcs, though this

does not seem to match the real behaviour of the machine. Knowing that NCs are capable of describing

polynomials of degree 5, it is suggested that they be used to model discontinuities in tangency. This

model should allow a criterion for feed rate for entry into the discontinuity to be defined as also the

contour for position, feed rate, acceleration and jerk in the discontinuity.

3.1 Notations and hypotheses

Consider the paths of two consecutive non-aligned segments AO and OB (figure 5).

Figure 5: Parametrization of passage of discontinuity

The points M and N can be expressed as follows in this frame:

−−→
OM =









L sinϕM cos θM

L sinϕM sin θM

L cosϕM









R

= L−→u

−−→
ON =









L sinϕN cos θN

L sinϕN sin θN

L cosϕN









R

= L−→v

(25)

These notations allow the working assumptions to be determined. Firstly, it shall be considered that:

||−−→OM || = ||−−→ON || = L (26)

13



Then, considering the problem to be symmetrical, this gives:

−−→
OQ = ||−−→OQ|| ·

−→u +−→v
||−→u +−→v || = ||−−→OQ|| · −→w =









Qx

Qy

Qz









R

(27)

The coordinates of point Q can then be expressed in the frame R:

−−→
OQ = ||−−→OQ|| ·









sinϕQ cos θQ

sinϕQ sin θQ

cosϕQ









R





















ϕQ = arccos wz√
w2

x+w2
y+w2

z

Si wx ≥ 0 , θQ = arcsin
wy√

w2
x+w2

y

Si wx < 0 , θQ = π − arcsin
wy√

w2
x+w2

y

(28)

The direction of the vector
−−→
OQ is thus fully determined by the vectors −→u and −→v . Its norm now needs

to be determined. This is done by the tolerance granted the machine on passage of the discontinuity

(section 1 and figure 1). In this instance, tolx, toly and tolz denote the maximum tolerances for passage

used by the NC on each of the axes
−→
X ,

−→
Y and

−→
Z , which means that:















−−→
OQ · −→X ≤ tolx
−−→
OQ · −→Y ≤ toly
−−→
OQ · −→Z ≤ tolz

(29)

The norm of vector
−−→
OQ can thus be calculated as follows:

||−−→OQ|| = min

(

tolx
| sinϕQ cos θQ|

,
toly

| sinϕQ sin θQ|
,

tolz
| cosϕQ|

,

)

(30)

Finally, due to the problem’s symmetry, it can be considered that the entry feed rate in the disconti-

nuity ||−→VM || and the exit feed rate ||−→VN || will be equal:

−→
VM = −VIn

−→u −→
VN = VIn

−→v (31)

As points A, M and O, as well as points B, N and O are aligned, angles ϕM , θM , ϕN and θN can

thus be calculated:























ϕM = arccos zA√
x2

A
+y2

A
+z2

A

Si xA ≥ 0 , θM = arcsin yA√
x2

A
+y2

A

Si xA < 0 , θM = π − arcsin yA√
x2

A
+y2

A






















ϕN = arccos zB√
x2

B+y2

B+z2

B

Si xB ≥ 0 , θN = arcsin yB√
x2

B+y2

B

Si xB < 0 , θN = π − arcsin yB√
x2

B
+y2

B

(32)
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3.2 Formation of the equation

Using a polynomial representation, the equation for the position, feed rate, acceleration and jerk of

the point P in the discontinuity thus takes the following form, ∀t ∈ [0, T ]:

−−→
OP (t) =









∑5
i=0 ait

i

∑5
i=0 bit

i

∑5
i=0 cit

i









(33)

d
−−→
OP (t)

dt
=









∑5
i=1 iait

i−1

∑5
i=1 ibit

i−1

∑5
i=1 icit

i−1









(34)

d2
−−→
OP (t)

dt2
=









∑5
i=2

i!
(i−2)!ait

i−2

∑5
i=2

i!
(i−2)!bit

i−2

∑5
i=2

i!
(i−2)!cit

i−2









(35)

d3
−−→
OP (t)

dt2
=









∑5
i=3

i!
(i−3)!ait

i−3

∑5
i=3

i!
(i−3)!bit

i−3

∑5
i=3

i!
(i−3)!cit

i−3









(36)

3.3 Boundary conditions

In order to resolve this system, eight boundary conditions are used:

−−→
OP (0) =

−−→
OM (37)

−−→
OP (T ) =

−−→
ON (38)

−−→
OP

(

T

2

)

=
−−→
OQ (39)

−→
V (0) =

−→
VM = −VIn

−→u (40)

−→
V (T ) =

−→
VN = VIn

−→v (41)

−→
A (0) =

−→
0 (42)

−→
A (T ) =

−→
0 (43)

−→
J

(

T

2

)

=
−→
0 (44)

Equations 37 and 38 translate entry into the discontinuity. Equation 39 translates the problem’s

symmetry, meaning that the point parametrized by tolerances of passage is reached half way through the

time of the path. Considering that acceleration is null at entry and exit of the discontinuity, equations

42 and 43 are obtained. To conclude, equation 44 translates symmetry of the acceleration contour.
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3.4 Resolution

This thus involves resolving a system of 24 scalar equations (projection of equations 37 onto 44) whose

unknowns are:

• 18 coefficients ai, bi, ci of polynomials,

• the norm L of vectors
−−→
OM and

−−→
ON ,

• time T for passage of the transition.

Resolving the system gives:















a0 = 16Qx sinϕM cos θM
3(sinϕN cos θN+sinϕM cos θM )

b0 =
16Qy sinϕM sin θM

3(sinϕN sin θN+sinϕM sin θM)

c0 = 16Qz cosϕM

3(cosϕN+cosϕM )

(45)















a1 = −VIn sinϕM cos θM

b1 = −VIn sinϕM sin θM

c1 = −VIn cosϕM

(46)















a2 = 0

b2 = 0

c2 = 0

(47)















a3 =
9(sinϕN cos θN+sinϕM cos θM)3V 3

In

1024Q2
x

b3 =
9(sinϕN sin θN+sinϕM sin θM )3V 3

In

1024Q2
y

c3 =
9(cosϕN+cosϕM )3V 3

In

1024Q2
z

(48)















a4 = − 27(sinϕN cos θN+sinϕM cos θM)4V 4

In

65536Q3
x

b4 = − 27(sinϕN sin θN+sinϕM sin θM )4V 4

In

65536Q3
y

c4 = − 27(cosϕN+cosϕM )4V 4

In

65536Q3
z

(49)















a5 = 0

b5 = 0

c5 = 0

(50)

−−→
OP (T ) =

−−→
ON ⇐⇒









T

T

T









=









32Qx

3VIn(sinϕN cos θN+sinϕM cos θM)
32Qy

3VIn(sinϕN sin θN+sinϕM sin θM)

32Qz

3VIn(cosϕN+cosϕM )









(51)

−−→
OP

(

T
2

)

=
−−→
OQ ⇐⇒









L

L

L









=









16Qx

3(sinϕN cos θN+sinϕM cos θM )
16Qy

3(sinϕN sin θN+sinϕM sin θM )

16Qz

3(cosϕN+cosϕM)









(52)
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Due to the relation between Qx, Qy and Qz, the 3 expressions allowing L or T to be computed give

the same results. With respect to the feed rate on entry of the discontinuity VIn, it is ex ante equal to

the feed rate at the end of the upstream block. Nevertheless, it can perhaps be limited by maximum jerk,

maximum acceleration and the length of the blocks upstream and downstream from the transition. This

feed rate can now be calculated.

3.5 Feed rate on entry in the discontinuity

Expressing the problem as an equation allows the entry feed rate to be calculated when it is limited

by acceleration or maximum jerk: the assumption is made that maximum jerk is at point M and that

acceleration will be at its maximum at Q. Care must therefore be taken to ensure that the machine’s

capabilities are not exceeded at these points.

If the maximum jerk is reached on each of the axes, the equation gives:

−→
J (0) =

−−−−→
Jmax,i ⇐⇒ 6









a3

b3

c3









=









Jmax,x

Jmax,y

Jmax,z









(53)

According to the case, resolution of this system allows the entry rate limited by an axial jerk to be

determined using the results given by equation 48:

Vlim,j = 8
3|sinϕN cos θN+sinϕM cos θM | ·min

(

3

√

Q2
xJmax,x, 3

√

Q2
yJmax,y, 3

√

Q2
zJmax,z

) (54)

Similarly, it is known that on the discontinuity, acceleration is at its maximum on T/2. The entry

feed rates that will be limited by acceleration can then be determined by resolving the following equation:

−→
A

(

T

2

)

=
−−−−→
Amax,i (55)

By inserting this condition into equation 35 and using the results given by equations 48 and 49, the

following is obtained:

Vlim,a = 8
3|sinϕN cos θN+sinϕM cos θM | min

(

√

QxAmax,x,
√

QyAmax,y,
√

QzAmax,z

) (56)

Thus, maximum acceleration on each of the axes also leads to limitations on the feed rate on entering

the block:

VIn = min (VF , Vlim,j , Vlim,a) (57)

Finally, a last case remains: the transition length calculated L can be greater than the length of

the segment upstream or downstream. An additional condition is thus imposed: if L > ||−→OA||/2 or

L > ||−−→OB||/2, the coordinates of point Q are recalculated taking L = min
(

||−→OA||/2, ||−−→OB||/2
)

from

equation 52. Equations 54 and 56 then allow the limit feed rate on entry in the discontinuity to be

recalculated.

The proposed model is now complete. Experimental validation is proposed in the following section.
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4 Experimental validation

Measurements of position profiles, feed rates and acceleration were made on a machine with the aim

of validating modelling. Tests were conducted on a DMU 50 eVo 5-axis machining centre equipped with

a Siemens 840D Numerical Control. The characteristics of the NC and machine combination are given in

table 1. This NC allows measurements of position, feed rate and acceleration to be made for a maximum

period of 10 seconds.

Table 1: Characteristics DMU 50 eVo - Siemens 840 D

Dynamic characteristics of axes

Maximum feed rate Vmax,i = 50 m/min

Maximum acceleration Amax,i = 9, 8 m/s2

Maximum jerk in translation Jmax,i = 40 m/s3

Maximum jerk on passage of Jcmax = 60 m/s3

a discontinuity in curvature

Characteristics of the NC

Tolerances on the axes Tol = 0, 01 mm

Interpolation time of NC 2ms

A test campaign enabled the proposed models to be validated. In particular, feed rates ranging from

500 to 10000mm/min and machining tolerances from 0.1 to 0.01mm on various paths were tested. More-

over, as the NC allowed certain dynamic parameters to be modified, jerk was also subjected to variation.

In the present publication, only two tests are presented (figure 61): one test in linear interpolation and a

second one in circular interpolation. The first test sought to validate the simulation method adopted as

well as the method for passage of discontinuities using polynomials. The second confirmed the modelling

of behavioural laws on circular portions. The programmed feed rate was 5000 mm/min on the cases

studied.

The cutter - workpiece feed rate profiles measured and simulated were plotted on figure 7. What is

immediately striking is the model’s faithfulness to the experimental curves.

In linear interpolation, the path time calculated is 4237 ms and the time measured on the machine is

4232 ms i.e. an error of less than 0.2%. Error between simulation and measurement reaches a maximum

level on drops in feed rate at passages between discontinuities (table 2). Although errors between the

rate measured and the rate simulated in the discontinuity can appear to be significant, such error on the

drop can be seen to represent less than 1%, the profiles are seen to be closed and error on the time of

pass through a discontinuity is low.

Figure 8 shows the plots of positions, feed rates and accelerations in projection on the
−→
X axis. An

excellent match can be seen between the model and the measurement. Figure 9 represents a zoom onto

the zone on crossing the discontinuity between the 600th and 900th milliseconds to pass points 2 – 3 – 4.

Note that on the measurements, the feed rate diminishes on the segment to reach a rate of 281 mm/min.

1In the case of the circular interpolation, X and Y are the coordinates of the final point
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Figure 6: Simulated paths
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Figure 7: Measured and simulated contours for cutter - workpiece feed rates

Linear interpolation

Circular interpolation

The calculated feed rate is 263 mm/min, representing an error of 6.8%. The discontinuity is then entered.

The feed rate measured at the end of the discontinuity is 91 mm/min. The rate calculated is 85 mm/min

i.e. 7% of error. Finally, observation of measurement of the acceleration curve shows that there is no leap

in acceleration on entering the discontinuity as would tend to suggest passage of a transition by a circle

arc. This corroborates the validity of using the model in which acceleration remains continuous.

In circular interpolation, the radius values chosen only highlight a drop in feed rate on passage of the

first discontinuity. Error between the calculated value and the simulated value is here only 2%. Error on

the difference between the total simulated time and the total calculated time is here also less than 1%.
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Table 2: Errors calculated on the cutter - workpiece feed rate on passages of discontinuities (Feed rate in

mm/min)

Feed rate in the transition Drop in feed rate

Measurement Simulation Error Measurement Simulation Error

1 71 72 1,4 % 4929 4928 0,02 %

2 256 222 13,28 % 4744 4778 0,7 %

3 150 135 10,67 % 4850 4865 0,31 %

4 193 148 23,31 % 4807 4852 0,94 %

5 161 150 6,83 % 4839 4850 0,23 %

6 196 158 19,39 % 4804 4842 0,79 %

7 126 91 27,78 % 4874 4909 0,72 %

Figure 10 shows positions, feed rates and accelerations measured and simulated on the spiral pro-

grammed in circular interpolation, in projection on the
−→
X axis. The acceleration profile perfectly illus-

trates the leaps on passage of discontinuities in curvature. The Pateloup model used for simulation is

thus fully confirmed.

Figure 11 represents a zoom on a passage through discontinuity. The model can be seen to faithfully

reflect the measurement.

5 Conclusion

The present publication proposes a model allowing jumps of discontinuity in tangency to be overcome

together with a model to simulate the axial behaviour of a machine in circular interpolation. This

means that the position, feed rate, acceleration and jerk on each of the axes catering for the dynamic

parameters of the machine/NC combinations can be simulated on 3 axes and cutter - workpiece contours

be determined. This gives faithful simulation of the machine’s dynamic behaviour in 3-axis machining in

the commonest programming modes.

Moreover, the present study stresses the problem of using linear interpolation when finishing complex

workpieces. In this context, programmed tolerances are often extremely low and segments thus extremely

short, leading to repeated reductions in feed rate. This problem is only very partially resolved by NCs

using predictive functions.

This means that beyond a certain segment size, the type of programming needs to be changed. Future

works will therefore study the machine dynamics in polynomial interpolation and integration of this type

of programming into the simulator. The possibility of integrating the behaviour of series 5-axis machines

into the model can then be considered. Finally, in the longer term, the simulator should allow for

machining paths to be optimized so as to boost the productivity of ultra-high speed machines.
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Figure 8: Comparison of contours measured and simulated on a rectilinear path
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Figure 9: Passage of a discontinuity at a tangent
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Figure 10: Comparison of contours measured and simulated on the circular path
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Figure 11: Passage of a discontinuity in a curvature

Position

Feed rate

Acceleration

24



References

[1] Tapie, L., Mawussi, K. & Anselmetti, B., Circular tests for HSM machine tools: Bore machining

application, International Journal of Machine Tools and Manufacture , 47(5), 805-819 (2007).

[2] Flores, V., Ortega, C., Alberti, M., Rodriguez, C A, de Ciurana, J. & Elias, A., Evaluation and

modeling of productivity and dynamic capability in high-speed machining centers, The International

Journal of Advanced Manufacturing Technology, 33(3), 403-411 (2007).

[3] Korkut, I. & Donertas, M., The influence of feed rate and cutting speed on the cutting forces, surface

roughness and tool-chip contact length during face milling, Materials & Design , 28(1), 308-312 (2007).

[4] Tsai, M.-., Cheng, C.-. & Cheng, M.-., A real-time NURBS surface interpolator for precision three-axis

CNC machining, International Journal of Machine Tools and Manufacture , 43(12), 1217-1227 (2003).

[5] Liu, X. et al., Adaptive interpolation scheme for NURBS curves with the integration of machining

dynamics, International Journal of Machine Tools and Manufacture , 45(4-5), 433-444 (2005).

[6] Xu, R. Z., Xie,L. , Li, C. X., & Du, D. S., Adaptive parametric interpolation scheme with limited

acceleration and jerk values for NC machining, The International Journal of Advanced Manufacturing

Technology , 36(3), 343-354 (2008).

[7] Sencer, B. & Altintas, Y., Feed optimization for five-axis CNC machine tools with drive constraints,

International Journal of Machine Tools and Manufacture , 48(7-8), 733-745 (2008).

[8] Siemens, http://www.automation.siemens.com/doconweb.

[9] Erkorkmaz, K. & Altintas, Y., High speed CNC system design. Part I: jerk limited trajectory genera-

tion and quintic spline interpolation, International Journal of Machine Tools and Manufacture, 41(9),

1323-1345 (2001).

[10] Aguilar, I. H., Commande des bras manipulateurs et retour visuel pour des applications à la robotique
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[11] Nam, S. & Yang, M., A study on a generalized parametric interpolator with real-time jerk-limited

acceleration, Computer-Aided Design , 36(1), 27-36 (2004).

[12] Lavernhe, S., Tournier, C. & Lartigue, C., Kinematical performance prediction in multi-axis machin-

ing for process planning optimization. The International Journal of Advanced Manufacturing Technol-

ogy , 37(5), 534-544 (2008).

[13] Tounsi, N., Bailey, T. & Elbestawi, M.A., Identification of acceleration deceleration profile of feed

drive systems in CNC machines, International Journal of Machine Tools and Manufacture , 43(5),

441-451 (2003).

[14] Manuel & A, C., Influence of tool path strategy on the cycle time of high-speed milling, Computer-

Aided Design , 35(4), 395-401 (2003).

25



[15] Pateloup, V., Duc, E. & Ray, P., Corner optimization for pocket machining, International Journal

of Machine Tools and Manufacture, 44(12-13), 1343-1353 (2004).

Appendices: General case for the path of a uniaxial segment

The non-linear system described in section 1 therefore needs to be resolved. This resolution involves

resolving the 10 cases shown in figure 3.

The assumption is made that acceleration is null on entry and exit of the block. This is verified when

the segments are long enough to reach the feed rate programmed at the end of the segment (section 3.5).

Resolution of this system means the times for each of the phases can be determined so as to plot the

cutter - workpiece feed rate profile. In some cases, the programmed feed rate will not be reached and the

rate actually reached will be sought.

According to the distance to be covered and the jumps in feed rate to be crossed, 10 cases were listed.

From resolution of equations 1 to 7, the following obtains:

• Case 1: VOut cannot be reached. V ′
Out is reached by reaching Amax,i (figure 12):



















|VOut − VIn| ≥
A2

max,i

Jmax,i

2VIn
Amax,i

Jmax,i
+

A3

max,i

J2

max,i

≤ L ≤
Jmax,i(V

2

Out−V 2

In)+A2

max,i(VIn+VOut)

2Amax,iJmax,i

(58)

V ′
Out = 1

2Jmax,i

·
(

Amax,iJ
2
max,iL+ 4J2

max,iV
2
In

−4A2
max,iJmax,iVIn +A4

max,i

)1/2

−A2
max,i

(59)















τ1 = τ3 =
Amax,i

Jmax,i

τ2 =
V ′

Out−VIn

Amax,i
− Amax,i

Jmax,i

τ4 = τ5 = τ6 = τ7 = 0

(60)

• Case 2: VOut cannot be reached. V ′
Out is reached without reaching Amax,i (figure 12):







|VOut − VIn| ≥
A2

max,i

Jmax,i

L ≤ 2VIn
Amax,i

Jmax,i
+

A3

max,i

J2

max,i

(61)







|VOut − VIn| ≤
A2

max,i

Jmax,i

L ≤ (VOut + VIn)
√

VOut−VIn

Jmax

(62)

V ′
Out = VIn + Jmax,iτ

2
1 (63)















τ1 is solution of Jmax,iτ
3
1 + 2VInτ1 − L = 0

τ1 = τ3

τ2 = τ4 = τ5 = τ6 = τ7 = 0

(64)
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Figure 12: Cases 1 and 2
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• Case 3: VOut is reached by reaching Amax,i. VF is not reached. V ′
F is reached by reaching Amax,i.

τ1 = τ3 = τ5 = τ7 = Amax,i/Jmax,i V
′
F , τ1 and τ6 are solutions of:































































V ′
F =

A2

max,i

Jmax,i
+ VIn +Amax,iτ2

VOut = − A2

max

Jmax,i
+ V ′

F −Amax,iτ6

L = 1
2Jmax,i

·
(

(

2τ2VIn + 2τ6V
′
F −Amax,iτ

2
6

+Amax,iτ
2
2

)

· Jmax,i

+4Amax,iVIn + 4Amax,iV
′
F

−3A2
max,iτ6 + 3A2

max,iτ2

)

(65)

• Case 4: VOut is reached without reaching Amax,i. VF is not reached. V ′
F is reached by reaching

Amax,i. τ1 = τ3 = Amax,i/Jmax,i and V ′
F , τ2, τ5 are solutions of:







































V ′
F =

A2

max,i

Jmax,i
+ VIn +Amax,iτ2

VOut = V ′
F − τ25 Jmax,i

L = −τ35 Jmax,i +
2AmaxVIn

Jmax,i

+
3A2

max,iτ2
2Jmax,i

+
A3

max,i

J2

max,i

+τ2VIn + 2τ5V
′
F +

Amax,iτ
2

2

2

(66)

• Case 5: VOut is reached by reaching Amax,i. VF is not reached. V ′
F is reached without reaching

Amax,i. τ5 = τ7 = Amax,i/Jmax,i, τ2 = 0, τ1 = τ3, τ1, τ6 and V ′
F are solutions of:































































V ′
F = VIn + Jmax,iτ

2
1

VOut = −A2

max,i

Jmax,i
+ V ′

F −Amax,iτ6

L = 1
2J2

max,i

·
(

2τ31J
3
max,i

+(4τ1VIn + 2τ6V
′
F −Amax,iτ

2
6 )J

2
max,i

+(4Amax,iV c− 3A2
max,iτ6)Jmax,i

−2A3
max,i

)

(67)
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• Case 6: VOut is reached without reaching Amax,i. VF is not reached. V ′
F is reached without reaching

Amax,i. τ1 = τ3, τ5 = τ7, τ1, τ5 and V ′
F are solutions of (figure 13) :















V ′
F = τ31 Jmax,i + 2τ1VIn

VOut = V ′
F − τ27 Jmax,i

L = −τ37 Jmax,i + τ31 Jmax,i + 2τ1VIn + 2τ7V
′
F

(68)

Figure 13: Case 6
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• Case 7: VOut is reached by reaching Amax,i. VF is reached. VF is reached by reaching Amax,i.































































|VF − VIn| ≥
A2

max,i

Jmax,i

|VOut − VF | ≥
A2

max,i

Jmax,i

L ≥ 1
2Amax,iJmax,i

·
(

(

2Jmax,iVF + 2A2
max,i

)

VIn

+Jmax,iV
2
F +A2

max,iVF

+
(

2Jmax,iVOut + 2A2
max,i

)

VF

+Jmax,iV
2
Out +A2

max,iVOut

)

(69)















τ1 = τ3 = τ5 = τ7 = Amax

Jmax

τ2 = VF

Amax
− Amax

Jmax

τ6 = VOut

Amax
− Amax

Jmax

(70)

• Case 8: VOut is reached without reaching Amax,i. VF is reached. VF is reached by reaching Amax,i.



























|VF − VIn| ≥
A2

max,i

Jmax,i

|VOut − VF | ≤
A2

max,i

Jmax,i

L ≥ (2Jmax,iVF+2A2

max,i)VIn+Jmax,iV
2

F+A2

max,iVF

2Amax,iJmax,i

+
√
JmaxVOut(4VF+VOut)+AmaxVF

2Jmax

(71)



























τ1 = τ3 =
Amax,i

Jmax,i

τ2 = VF−VIn

Amax,i
− Amax,i

Jmax,i

τ5 = τ7 =
√

VF−VOut

Jmax,i

τ6 = 0

(72)
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• Case 9: VOut is reached by reaching Amax,i. VF is reached. VF is reached without reaching Amax,i.



























|VF − VIn| ≤
A2

max,i

Jmax,i

|VOut − VF | ≥
A2

max,i

Jmax,i

L ≥
√
JmaxVF (4VIn+VF )+AmaxVIn

2Jmax

+
(2Jmax,iVOut+2A2

max,i)VF+Jmax,iV
2

Out+A2

max,iVOut

2Amax,iJmax,i

(73)



























τ1 = τ3 =
√

VIn−VF

Jmax,i

τ2 = 0

τ5 = τ7 =
Amax,i

Jmax,i

τ6 = VOut−VF

Amax,i
− Amax,i

Jmax,i

(74)

• Case 10: VOut is reached without reaching Amax,i. VF is reached. VF is reached without reaching

Amax,i (figure 14) :


























|VF − VIn| ≤
A2

max,i

Jmax,i

|VOut − VF | ≤
A2

max,i

Jmax,i

L ≥
√
JmaxVF (4VIn+VF )+AmaxVIn

2Jmax

+
√
JmaxVOut(4VF+VOut)+AmaxVF

2Jmax

(75)



























τ1 = τ3 =
√

VIn−VF

Jmax,i

τ2 = 0

τ5 = τ7 =
√

VF−VOut

Jmax,i

τ6 = 0

(76)

Figure 14: Case 10
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In the simulations, equation 2 is resolved by the Cardan method. The systems of equation 65, 66, 67

and 68 are non-linear. They are resolved numerically using the Newton-Raphson method.

To use this algorithm, take a segment of 0.01m to be covered. Take VIn = 0.2m/s, VOut = 0.1m/s,

VF = 0.5m/s. The machine parameters are those in table 1.

|VOut − VIn| ≤
A2

max,i

Jmax,i
; thus there will be no phase 2. L ≥ (VOut + VIn)

√

VOut−VIn

Jmax
; the length of the

segment thus allows VOut to be reached.
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|VF −VIn| ≤
A2

max,i

Jmax,i
and |VOut−VF | ≤

A2

max,i

Jmax,i
and L ≤

√
JmaxVOut(4VF+VOut)+AmaxVF

2Jmax
. The length does

therefore not allow VF to be reached and the differences in feed rates will not allow maximum acceleration

to be reached. This means case 6 applies. This givesV ′
F = 0.4418m/s,

τ1 = τ3 = 0.07776s. τ5 = τ7 = 0.09245s.
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