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Abstract. We investigate the nonhomogeneous initial boundary value problem for the Camassa-Holm equation on

an interval. We provide a local in time existence theorem and a weak strong uniqueness result. Next we establish a

result on the global asymptotic stabilization problem by means of a boundary feedback law.
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1 Introduction

1.1 Origins of the equation and presentation of the problems

This article presents results concerning the initial boundary value problem and the possibility of asymptotic
stabilization of the Camassa-Holm equation on a compact interval by means of a stationary feedback law
acting on the boundary. The Camassa-Holm equation reads as follows:

∂tv − ∂3
txxv + 2κ.∂xv + 3v.∂xv = 2∂xv.∂

2
xxv + v.∂3

xxxv for (t, x) ∈ [0, T ]× [0, 1]. (1)

The Camassa-Holm equation describes one-dimensional surface waves at a free surface of shallow water under
the influence of gravity. Here v(t, x) represents the fluid velocity at time t and position x. It is interesting to
note that according to [2], it can equally represents the water elevation.
Equation (1) was first introduced by Fokas and Fuchssteiner [17] as a bi-Hamiltonian model, and was derived
later as a water wave model by Camassa and Holm [2]. It turns out that this equation was also obtained as
a model for propagating waves in cylindrical elastic rods, see Dai [12].

Equation (1) shares many features with the KdV equation, see [21]. It is bi-Hamiltonian, completely
integrable, and admits soliton solutions see [2, 7, 9, 17, 23]. However, it can also model breaking waves, in
fact in Hs(T) (s > 3

2 ) the solution generally develops singularity in finite time, see [4, 5, 6].
The Cauchy problem of (1) has been investigated in great details both on the torus and on the real line, see
[1, 3, 8, 13, 14, 20, 24, 26]. On the other hand, the study of the initial boundary value problem is much less
complete, the homogeneous case was treated in [15] and in a more general setting in [16]. Finally a special
case of the inhomogeneous case is considered in [28] (the boundary condition is that there is a constant C
such that ∀t ≥ 0 we have u(t, x) →

|x|→+∞
C).

The first part of this article will be devoted to the proofs of a local in time existence theorem and of a
weak-strong uniqueness result for the initial boundary value problem of (1).
To explain our boundary formulation of (1), let us first remark that (1) is equivalent to the system:

{

∂ty + v.∂xy = −2y.∂xv,

y − κ = (1 − ∂2
xx)v.

(2)
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This formulation of (1) and the vorticity formulation of the two dimensional Euler equation for incompressible
perfect fluids (U is the speed and ω its vorticity) share similarities:











∂tω + (U.∇)ω = 0,

div U = 0,

curl U = ω.

(3)

In both (2) and (3) there is a coupling between a transport equation and a stationary elliptic one. The initial
boundary value problem for the two dimensional incompressible Euler equation was treated by Yudovitch in
[27], where he showed that the problem is well-posed in a classical sense with strong solutions if one prescribes
the initial velocity or vorticity, the normal velocity on the boundary and also the vorticity of the fluid on the
parts of the boundary where fluid enters.
Similarly we will study the initial boundary value problem of (2) with v prescribed on the boundary, and y
prescribed at time 0 and on the parts of the boundary where fluid enters.

Remark 1. Note that (2) is even more similar to the vorticity formulation of the three dimensional incom-
pressible Euler equation which reads:











∂tω + (U.∇)ω = (ω.∇)U

div U = 0

curl U = ω

(4)

because here we have a stretching term (ω.∇)U similar to the term −2y ∂xv in (2). Kazhikov has studied the
local in time initial boundary value problem in three dimensions see [22]. However the Euler equation is much
less understood in three dimensions. For example it is still unknown whether a singularity may appear in
finite time, see [25]. Furthermore the asymptotic stabilization problem is still open for the three dimensional
incompressible Euler equation which is not the case in two dimensions thanks to the papers of Coron [11] and
Glass [19].

In the second part of the article we will investigate equation (1) from the perspective of control theory.
For a general control system

{

ẋ = f(x, u),

x(t0) = x0,
(5)

(x being the state of the system and u the so called control), we can consider two classical problems among
others in control theory.

1. First the exact controllability problem which asks, given two states x0 and x1 and a time T to find a
certain function u(t) such that the solution to (5) satisfies x(T ) = x1.

2. If f(0, 0) = 0, the problem of asymptotic stabilization by a stationary feedback law asks to find a
function u(x), such that for any state x0 a solution x(t) to ẋ(t) = f(x(t), u(x(t))), x(t0) = x0 is global,
satisfies x(t) →

t→+∞
0 and also

∀R > 0, ∃r > 0 such that ||x0|| ≤ r ⇒ ∀t ∈ R, ||x(t)|| ≤ R. (6)

It may seem that if we have controllability, the asymptotic stabilization property is weaker. Indeed for any
initial state x0, we can find T and u(t) such that the solution to (5) satisfies x(T ) = 0 in this way we
stabilize 0 in finite time. However this control suffers from a lack of robustness with respect to perturbation.
Indeed with any error on the model, or on the initial state, the state at time T will only be approximately
0. This can be disastrous if x = 0 is unstable for the equation ẋ = f(x, 0). This motivates the problem of
asymptotic stabilization by a stationary feedback law which is clearly more robust. In fact in finite dimension,
it automatically provides a Lyapunov function.

Concerning the Camassa-Holm equation, O.Glass provided in [18] the first results for the controllability
and stabilization. More precisely he considered:

∂tv − ∂3
txxv + 2κ.∂xv + 3v.∂xv = 2∂xv.∂

2
xxv + v.∂3

xxxv + g(t, x)1ω(x) for (t, x) ∈ [0, T ]× T. (7)
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where the control is the function g, and ω is a nonempty open subset of the torus T. He proved that for
any time T > 0 we have exact controllability in Hs(T) (s > 3

2 ), and also proposed a stationary feedback law
g : H2(T) → H−1(ω) that stabilizes the state v = −κ in H2(T). We will consider those problems, but in our
case the control will be the boundary values of u and y. Since [0, 1] can be seen as T \ ω the result of Glass
on exact controllability by a distributed term on the torus implies a controllability result by boundary terms
as soon as the initial boundary value problem makes sense, which will be the case by the end of the first part
of this article (we also need enough regularity on the solution).
Therefore we will only investigate the asymptotic stabilization by a stationary feedback law acting on the
boundary of (1). This time again we will consider the analogy with the asymptotic stabilization of the two
dimensional Euler equation of incompressible fluids result by Coron [11] for a simply connected domain and
Glass [19] for a general domain. It should be remarked that in three dimension the problem of asymptotic
stabilization is still open. In both cases one of the main difficulty is that the linearized system around the
equilibrium (which are (y, v) = (0,−κ) for (2) and (ω,U) = (0, 0) for (3)) is not stabilizable, so we will use
the so called return method introduced by Coron in [10]. Since the evolution equation of (2) is on y, it will
be much easier to work if we consider y and not v to be the state of the system.

1.2 Results

We begin with a general remark that will be used many times later.

Remark 2. By changing v(t, x) in −v(t, 1 − x) and y(t, x) in −y(t, 1 − x) we change κ into −κ, therefore
from now on we will suppose that κ ≤ 0 (this choice is more convenient for the stabilization part).

Let T be a positive number. In the following we take ΩT = [0, T ]× [0, 1]. Let vl and vr be in C0([0, T ],R)
and y0 ∈ L∞(0, 1). We set

Γl = {t ∈ [0, T ] | vl(t) > 0} and Γr = {t ∈ [0, T ] | vr(t) < 0}.

In the following, we will always suppose that the sets

Pl = {t ∈ [0, T ] | vl(t) = 0} and Pr = {t ∈ [0, T ] | vr(t) = 0} (8)

have a finite number of connected components. Finally let yl ∈ L∞(Γl) and yr ∈ L∞(Γr). The functions vl,
vr, yl and yr will be the boundary values for the equation and y0 is the initial data.
Now with the auxiliary function A which lifts the boundary values vl and vr defined by:

{

(1 − ∂2
xx)A(t, x) = 0, ∀(t, x) ∈ ΩT ,

A(t, 0) = vl(t), A(t, 1) = vr(t), ∀t ∈ [0, T ].
(9)

Setting v = u+ A,

we can further rewrite the system (2) as:

{

y(t, x) − κ = (1 − ∂2
xx)u(t, x), dx ,

u(t, 0) = u(t, 1) = 0, dt a.e.,
(10)

{

∂ty + (u+ A).∂xy = −2y.∂x(u+ A),

y(0, .) = y0, y(., 0)|Γl
= yl and y(., 1)|Γr

= yr.
(11)

The meaning of being a solution to (10)-(11) will be specified later but we will have u ∈ L∞ ((0, T ); Lip([0, 1]))
and y ∈ L∞(ΩT ). In the first part of this article, we will be interested in the initial boundary value problem
on the interval for the system (10)-(11). We will first prove a local in time existence theorem:

Theorem 1. For T̃ > 0, we consider vl, vr ∈ C0([0, T̃ ]) such that the sets Pl and Pr have only a finite
number of connected components. Let y0 ∈ L∞(0, 1), yl ∈ L∞(Γl) and yr ∈ L∞(Γr). There exist T > 0, and
(u, y) a weak solution of the system (10)-(11) with u ∈ L∞

(

(0, T ); C1,1([0, 1])
)

∩Lip
(

[0, T ];H1
0 (0, 1)

)

and y ∈
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L∞(ΩT ). Moreover any such solution u is in fact in C0([0, T ];W 2,p(0, 1)) ∩ C1([0, 1];W 1,p
0 (0, 1)), ∀p < +∞.

Furthermore the existence time of a maximal solution is larger than min(T̃ , T ∗), with

T ∗ = max
β>0

(

ln(1 + β/C0)

2(C1 + (2 + sinh(1))(C0 + |κ| + β))

)

(12)

C0 = max
(

||y0||L∞(0,1), ||yl||L∞(Γl), ||yr||L∞(Γl)

)

, (13)

C1 =
1

tanh(1)
.(||vr||L∞(0,T ) + ||vl||L∞(0,T )). (14)

In a second step, we will show a weak-strong uniqueness property:

Theorem 2. Let (u, y) ∈
(

L∞
(

(0, T ); C1,1([0, 1])
)

∩ Lip
(

[0, T ];H1
0 (0, 1)

))

× L∞([0, T ]; Lip([0, 1])) be a weak

solution of (10) and (11) then it is unique in L∞
(

(0, T ); C1,1([0, 1])
)

× L∞(ΩT ).

In the second part of the paper, we will be interested in the asymptotic stabilization of the system (1) by
a boundary feedback law. Let Al > 2. sinh(1), Ar > Al. cosh(1) + sinh(2), M > 0 and T > 0. Our feedback
law for (2) reads:

y ∈ C0([0, 1]) 7→











vl(y) = Al.||y||C0([0,1]) − κ

vr(y) = Ar.||y||C0([0,1]) − κ

ẏl(t) +M.yl(t) = 0

. (15)

This allows us to get the following theorem:

Theorem 3. For any y0 ∈ C0([0, 1]) there exists (y, v) ∈ C0(ΩT )×C0([0, T ], C2([0, 1])) a weak solution of (2)
and (15) satisfying

∀x ∈ [0, 1], y(0, x) = y0(x) (16)

. Furthermore any maximal solution of (2), (15) and (16) is global, and if we let

c = min(Al − 2. sinh(1),
Ar −Al. cosh(1) − sinh(2)

sinh(1)
) and τ =

1

M
. ln(

2.c.||y0||C0([0,1])

M
)

then we have:

∀t ≥ τ ||y(t, .)||C0([0,1]) ≤
M

2c
.

1

1 +M(t− τ)
.

2 Initial boundary value problem

We first define what we mean by a weak solution to (11). Our test functions will be in the space:

Adm(ΩT ) = {ψ ∈ C1(ΩT ) | φ(t, x) = 0 on [0, T ] \ Γl × {0} ∪ [0, T ] \ Γr × {0} ∪ {T } × [0, 1]}. (17)

Definition 1. When u ∈ L∞((0, T ); Lip([0, 1]), a function y ∈ L∞(ΩT ) is a weak solution to (11) if ∀ψ ∈
Adm(ΩT ):

∫∫

ΩT

y(∂tψ + (u + A)∂xψ − ∂x(u + A)ψ)dtdx = −

∫ 1

0

y0(x)ψ(0, x)dx+

∫ T

0

ψ(t, 1)vr(t)yr(t) − ψ(t, 0)vl(t)yl(t)dt

Remark 3. It is obvious that C1
0(ΩT ) ⊂ Adm(ΩT ) therefore a weak solution to (11) is also a solution to

(11) in the distribution sense. And it is then clear that a regular weak solution is a classical solution.

2.1 Strategy

In this part we will prove Theorems 1 and 2. Let us first explain the general strategy.
We want to solve (10) and (11). Equation (10) is a linear elliptic equation, and with u fixed (11) is a linear
transport equation in y, with boundary data. Even when the flow is regular enough (and it will be in our
case) to use the method of characteristics to solve the equation, singularity will generally appear, no matter
how smooth the initial and boundary datas are, because of the boundary.

4



1
0

0

t

data comes from boundary after t

data comes from initial value

It is therefore useful to deal with weak solution of (11) belonging to L∞(ΩT ). This is done in the appendix.
Once we know how to deal with each equation separately and have appropriate linear estimates, we use a
fixed point strategy. It is interesting to remark that Yudovitch dealt with the two dimensional incompressible
Euler equation with nonhomogeneous boundary conditions in a similar way. However with y only essentially
bounded, we cannot easily estimate the difference of two couples (u1, y1) and (u2, y2), therefore we will rather
use a compactness argument and a Schauder fixed point instead of a Banach fixed point. The auxiliary
function A may be less regular in time than u and this is why we will be able to transfer the time regularity
of y on u. We will only prove a weak-strong uniqueness property, for the same reason that prevented us from
using a Banach fixed point theorem.
Therefore in Subsection 2.2 we will define precisely the fixed point operator F and study some of its properties.
In Subsection 2.3 we will precise the domain on which we will apply the Schauder fixed point theorem, we
will prove the continuity of F in Subsection 2.4 and also study the additional properties of a fixed point.
Finally in Subsection 2.5 we will prove the weak-strong uniqueness property.

2.2 The operator F

The operator F is obtained as follows. Given u in L∞
(

(0, T ); C1,1([0, 1])
)

∩Lip
(

[0, T ];H1
0(0, 1)

)

we will define
y to be the solution of (11), and once we have y in L∞(ΩT ), we introduce ũ solution of

(1 − ∂2
xx)ũ = y − κ (18)

Then F is defined as the operator associating ũ to u.
Now let us describe the auxiliary function A once and for all.

Proposition 2.1. The function A defined by (9) satisfies:

∀(t, x) ∈ ΩT A(t, x) =
1

sinh(1)
.(sinh(x).vr(t) + sinh(1 − x).vl(t))

A ∈ C0([0, T ]; C∞([0, 1])),

and hence ||A||L∞((0,T );C1,1([0,1])) ≤
cosh(1)

sinh(1)
.(||vr ||L∞(0,T ) + ||vl||L∞(0,T )).

As in Subsection A.1, for a function u ∈ L∞
(

(0, T ); C1,1([0, 1])
)

∩ Lip
(

[0, T ];H1
0 (0, 1)

)

we consider φ the
flow of u+A. For (t, x) ∈ ΩT , φ(., t, x) is defined on a set [e(t, x), h(t, x)], here e(t, x) is basically the entrance
time in ΩT of the characteristic curve going through (t, x).

Lemma 1. The flow φ satisfies the following properties:

1. φ is C1 with the following partial derivatives

∂1φ(s, t, x) = (u+ A)(s, φ(s, t, x)),

∂2φ(s, t, x) = −(u+ A)(t, x). exp(

∫ s

t

∂x(u + A)(r, φ(r, t, x))),

∂3φ(s, t, x) = exp(

∫ s

t

∂x(u + A)(r, φ(r, t, x))),

2. ∀j ∈ {1, 2, 3}, ||∂jφ||C0 ≤ (1 + ||u+ A||C0(ΩT ))e
T.||∂x(u+A)||

C0(ΩT ) ,
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3. if e(t, x) > 0 then φ(e(t, x), t, x) ∈ {0, 1},

4. if h(t, x) < T then φ(h(t, x), t, x) ∈ {0, 1}.

We introduce a partition of ΩT , which allows us to distinguish the different influence zones in ΩT .

Definition 2. Let

• P =
{

(t, x) ∈ ΩT | ∃s ∈ [e(t, x), h(t, x)] for which (φ(s, t, x) = 0 and vl(s) = 0)

or (φ(s, t, x) = 1 and vr(s) = 0)
}

∪ {φ(s, 0, 0) | s ≤ h(0, 0)} ∪ {φ(s, 0, 1) | s ≤ h(0, 1)},

• I = {(t, x) ∈ ΩT \ P | e(t, x) = 0},

• L = {(t, x) ∈ ΩT \ P | e(t, x) > 0 and φ(e(t, x)t, x) = 0},

• R = {(t, x) ∈ ΩT \ P | e(t, x) > 0 and φ(e(t, x)t, x) = 1}.

Remark 4. The set P is constituted of the problematic points. Indeed those points belong to the character-
istics tangent to the boundary, which are precisely the singular points of e and h.

Proposition 2.2. We have the following properties.

1. The sets P , I, L and R constitute a partition of ΩT .

2. The set P is negligible and each spatial section of P is negligible for the 1d lebesgue measure.

3. The function e is C1 on L ∪R ∪ I.

4. If (t, x) ∈ L then e(t, x) ∈ Γl and if (t, x) ∈ R then e(t, x) ∈ Γr.

5. All those sets are invariant by the flow φ;

6. If (t, x) ∈ L then ∀x̃ ∈ [0, x], (t, x̃) ∈ P ∪L, if (t, x) ∈ R then ∀x̃ ∈ [x, 1], (t, x̃) ∈ P ∪R and if (t, x) ∈ I
and (t, x+ x′) ∈ I then ∀x̃ ∈ [x, x+ x′], (t, x̃) ∈ P ∪ I.

Proof. The points 1, 4, 5, 6 are easy. The second point is true because for any t ∈ [0, T ] the set {(t, x) | x ∈
[0, 1]} ∩ P} is injected in the set of connected components of Pl and Pr, so it is countable and therefore 1d
negligible. It implies that P itself is 2d negligible.
And the third point is shown in Proposition A.3

t

e(t,x)
r

s

0
x0 1

φ(s, r, 0)

For u ∈ L∞
(

(0, T ); C1,1([0, 1])
)

∩ Lip
(

[0, T ];H1
0 (0, 1)

)

, we define y ∈ L∞(ΩT ) by:

• if (t, x) ∈ I y(t, x) = y0(φ(0, t, x)). exp
(

−2
∫ t

0
∂x(u + A)(s, φ(s, t, x))ds

)

,

• if (t, x) ∈ L y(t, x) = yl(e(t, x)). exp
(

−2
∫ t

e(t,x) ∂x(u+ A)(s, φ(s, t, x))ds
)

,

• if (t, x) ∈ R y(t, x) = yr(e(t, x)). exp
(

−2
∫ t

e(t,x)
∂x(u+ A)(s, φ(s, t, x))ds

)

.
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And we have that:

1. the function y is the unique weak solution of (11) in the sense of definition 1, thanks to Theorem 6
and Proposition A.7(which we can apply because u ∈ C0(ΩT ) and ∂xu ∈ C0(ΩT )),

2. since y ∈ L∞(ΩT ) and satisfies (11), we immediately get y ∈W 1,∞(0, T,H−1(0, 1)),

3. the function y satisfies the estimates:

||y||L∞(ΩT ) ≤ max(||y0||L∞ , ||yl||L∞ , ||yr||L∞) exp
(

2T
(

||∂xu||L∞(ΩT ) + ||∂xA||L∞(ΩT )

))

, (19)

||∂ty||L∞((0,T ),H−1) ≤ 3.max
(

||y0||L∞(0,1), ||yl||L∞(Γl), ||yr||L∞(Γl)

)

× exp
(

2T
(

||∂xu||L∞(ΩT ) + ||∂xA||L∞(ΩT )

))

×
(

||u||L∞((0,T );Lip([0,1])) + ||A||L∞((0,T );Lip([0,1]))

)

, (20)

4. if (t, x) ∈ I ∪ L ∪R and if (s, s′) ∈ [e(t, x), h(t, x)]2, one has the following property:

y(s, φ(s, t, x)) = y(s′, φ(s′, t, x)). exp

(

−2

∫ s

s′

∂x(u+ A)(r, φ(r, t, x))dr

)

.

We can now focus on the elliptic equation (10).

Lemma 2. There exists a unique ũ ∈ L∞
(

(0, T ), H1
0 (0, 1)

)

such that

∀t ∈ (0, T ), y(t, .) − κ = (1 − ∂2
xx)ũ(t, .) in D′(0, 1).

Furthermore ũ ∈ L∞
(

(0, T ); C1,1([0, 1])
)

∩ Lip
(

(0, T ), H1
0 (0, 1)

)

since y ∈ L∞(ΩT ) ∩ Lip([0, T ];H−1(0, 1)).
And we have the bounds

||ũ||L∞((0,T );C1,1([0,1])) ≤ (1 + 2 sinh(1)).(|κ| + ||y||L∞(ΩT )), (21)

||∂tũ||L∞((0,T );H1
0(0,1)) ≤ ||∂ty||L∞((0,T ),H−1(0,1)). (22)

Proof. In the first point, the constant comes from:

ũ(t, x) =

∫ x

0

sinh(x − x̃).(κ− y(t, x̃))dx̃ −
sinh(x)

sinh(1)
.

∫ 1

0

sinh(x̃).(κ− y(t, x̃))dx̃. (23)

The second point is classical

Finally we can define F by:

∀u ∈ L∞
(

(0, T ); C1,1([0, 1])
)

∩ Lip
(

[0, T ];H1
0 (0, 1)

)

,

F(u) = ũ ∈ L∞
(

(0, T ); C1,1([0, 1])
)

∩ Lip
(

[0, T ];H1
0 (0, 1)

)

. (24)

We now introduce a domain for the operator F .

2.3 The domain

Let B0 and B1 be positive numbers,then we set:

CB0,B1,T = {u ∈ L∞
(

(0, T ); C1,1([0, 1])
)

∩ Lip
(

[0, T ];H1
0 (0, 1)

)

| such that both

||u||L∞((0,T );C1,1([0,1])) ≤ B0 and ||u||Lip([0,T ];H1
0 (0,1)) ≤ B1} (25)

Obviously CB0,B1,T is convex. We will endow CB0,B1,T with the norm ||.||L∞((0,T );Lip([0,1])).

Lemma 3. There exist positive numbers B0, B1, T , such that F maps CB0,B1,T into itself.x
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Proof. Let us first introduce the two following constants depending only on the initial and boundary condi-
tions.

C0 = max
(

||y0||L∞(0,1), ||yl||L∞(Γl), ||yr||L∞(Γr)

)

,

C1 =
cosh(1)

sinh(1)
.(||vr ||L∞(0,T ) + ||vl||L∞(0,T )).

Estimates (19), (20), (21) and (22) on y and ũ now read:

||y||L∞(ΩT ) ≤ C0. exp
(

2T
(

||∂xu||L∞(ΩT ) + C1

))

,

||ũ||L∞((0,T );C1,1([0,1])) ≤ (2 + sinh(1)).(|κ| + ||y||L∞(ΩT )),

||∂ty||L∞((0,T );H−1(0,1)) ≤ 3.C0. exp
(

2T
(

||∂xu||L∞(ΩT ) + C1

))

.
(

||u||L∞((0,T );Lip([0,1])) + C1

)

,

||∂tũ||L∞((0,T );H1
0 (0,1)) ≤ ||∂ty||L∞((0,T );H−1(0,1)).

Combining those estimates we get:

||ũ||L∞((0,T );C1,1([0,1])) ≤ (2 + sinh(1)).
(

|κ| + C0. exp
(

2T
(

||∂xu||L∞(ΩT ) + C1

)))

,

||∂tũ||L∞((0,T );H1
0 (0,1)) ≤ 3.C0. exp

(

2T
(

||∂xu||L∞(ΩT ) + C1

))

.
(

||u||L∞((0,T );Lip([0,1])) + C1

)

.

Now if u ∈ CB0,B1,T we have

||ũ||L∞((0,T );C1,1([0,1])) ≤ (2 + sinh(1)). (|κ| + C0. exp (2T (B0 + C1))) ,

||∂tũ||L∞((0,T );H1
0 (0,1)) ≤ 3.C0. exp (2T (B0 + C1)) . (B0 + C1) .

Finally, to obtain ũ ∈ CB0,B1,T it is sufficient that

(2 + sinh(1)). (|κ| + C0. exp (2T (B0 + C1))) ≤ B0

and B0 + 3.C0. exp (2T (B0 + C1)) . (B0 + C1) ≤ B1.

Once we have chosen T and B0, it is easy to choose B1 to satisfy the second inequality. For the first one we
just choose B0 sufficiently large and then T close to 0 . More precisely:

B0 > (2 + sinh(1)).(|κ| + C0),

T ≤
ln( B0

2+sinh(1) − |κ|) − ln(C0)

2(B0 + C1)
.

It only to remains to maximize the bound of T to get the minimum existence, and with B0

2+sinh(1) = |κ|+C0+β

we get the result announced.

Let us now prove the compactness of the domain.

Proposition 2.3. CB0,B1,T is compact with respect to the norm ||.||L∞((0,T );Lip([0,1])).

Proof. The fact that CB0,B1,T is closed in L∞ ((0, T ); Lip([0, 1])) follows from the weak* compactness of the
domain in L∞

(

(0, T ); C1,1([0, 1])
)

and in Lip
(

[0, T ];H1
0 (0, 1)

)

, and a classical use of a limit uniqueness.
We now show the relative compactness of CB0,B1,T in L∞ ((0, T ); Lip([0, 1])). Let (un) be a sequence of

CB0,B1,T . Since H1
0 (0, 1) →֒ C

1
2 ([0, 1]) we can extract by Ascoli’s theorem a subsequence (un′) converging in

L∞(ΩT ). But since we have

∀u ∈ L∞((0, T );W 2,∞(0, 1)), ||∂xu||L∞(ΩT ) ≤ 2.
√

||u||L∞(ΩT ).||∂2
xxu||L∞(ΩT ),

we can conclude that (un′) actually converges in L∞ ((0, T ); Lip([0, 1])).

Before applying the Schauder fixed point theorem, it only remains to prove the continuity of the operator
F .

8



2.4 Continuity of F and properties of the fixed points

We begin with a result about the continuity of F .

Proposition 2.4. The operator F : CB0,B1,T → CB0,B1,T is continuous with respect to ||.||L∞((0,T );Lip([0,1])).

Proof. Let us take a sequence (un) which tends to u with respect to ||.||L∞((0,T );Lip([0,1])). We call ũn = F(un)
and ũ = F(u). Denote by φn the flow of un + A and φ the flow of u + A. Thanks to Proposition A.4, we
have that φn −−−−−→

n→+∞
φ locally in C1. Let us show first that ||yn(t, .) − y(t, .)||L1(0,1) −−−→

n→0
0 dt a.e.

Let t ∈ [0, T ], having supposed that Pl and Pr have only a finite number of connected components (see (8)),
we can suppose, reducing t if necessary that vl and vr do not change sign on [0, t]. We will focus on the case
where vl ≥ 0 and vr ≤ 0, the situation:

0
0

1

t

φ(t, 0, 0) φ(t, 0, 1)

φn(t, 0, 0) φn(t, 0, 1)

The charasteristics of φn and φ may or may not cross before time t, but we are only interested in their relative
positions a time t, which here correspond to φ(t, 0, 0) ≤ φn(t, 0, 0) ≤ φ(t, 0, 1) ≤ φn(t, 0, 1). The other cases
are proved in the same way. We first point out that since un ∈ CB0,B1,T we have a bound for (yn) in L∞(ΩT ).
Now

∫ 1

0

|y(t, x) − yn(t, x)|dx =

∫ φ(t,0,0)

0

|y(t, x) − yn(t, x)|dx +

∫ φn(t,0,0)

φ(t,0,0)

|y(t, x) − yn(t, x)|dx

+

∫ φ(t,0,1)

φn(t,0,0)

|y(t, x) − yn(t, x)|dx +

∫ φn(t,0,1)

φ(t,0,1)

|y(t, x) − yn(t, x)|dx

+

∫ 1

φn(t,0,1)

|y(t, x) − yn(t, x)|dx

= I1 + I2 + I3 + I4 + I5.

Since φn(t, 0, 0) −−−−−→
n→+∞

φ(t, 0, 0) and φn(t, 0, 1) −−−−−→
n→+∞

φ(t, 0, 1) and thanks to the uniform bound on

||yn||L∞(ΩT ) we see that both I2 and I4 tend to 0 when n goes to infinity.
For I1 we have:

I1 =

∫ φ(t,0,0)

0

∣

∣

∣

∣

∣

yl(en(t, x)). exp

(

−2

∫ t

en(t,x)

∂x(un + A)(r, φn(r, t, x))dr

)

− yl(e(t, x)). exp

(

−2

∫ t

e(t,x)

∂x(u + A)(r, φ(r, t, x))dr

)
∣

∣

∣

∣

∣

dx.

But thanks to Proposition A.2, if (t, x) /∈ P (defined by) φ we have en(t, x) −−−−−→
n→+∞

e(t, x). This implies that

if yl were continuous, since we have a uniform bound on ||un||L∞((0,T );Lip([0,1])) the dominated convergence
theorem would provide:

I1 =

∫ φ(t,0,0)

0

|y(t, x) − yn(t, x)|dx −−−−−→
n→+∞

0.

The same idea can be applied to I3 and I5.
Hence for yl, yr and y0 continuous we have ||yn(t, .) − y(t, .)||L1(0,1) −−−−−→

n→+∞
0.
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But now thanks to inequality (56), we have:

||y(t, .)||L1(0,1) ≤
(

||y0||L1(0,1) + ||yl||L1((0,t)∩Γl) + ||yr||L1((0,t)∩Γr)

)

× ||u+ A||L∞(ΩT ).e
3s.||∂x(u+A)||L∞(ΩT ) , (26)

||yn(t, .)||L1(0,1) ≤
(

||y0||L1(0,1) + ||yl||L1((0,t)∩Γl) + ||yr||L1((0,t)∩Γ−r)

)

× ||un + A||L∞(ΩT ).e
3s.||∂x(un+A)||L∞(ΩT ) . (27)

So by density of C0 in L1, and with the uniform bound on ||un||L∞((0,T );Lip([0,1])), the general case follows,

||yn(t, .) − y(t, .)||L1(0,1) −−−−−→
n→+∞

0.

Now only the restriction on t remains, we recall that until now we supposed that vl and vl did not change
sign on [0, t].
But if vl and vr do not change sign on [0, t1] and then on [t1, t], we have ||yn(t1, .)− y(t1, .)||L1(0,1) −−−−−→

n→+∞
0.

Let us call ỹn the solution of ∂tỹn + (un + A)∂xỹn = −2.ỹn.∂x(un + A) on [t1, t] × [0, 1] with initial value
y(t1, .) and boundary values yl, yr. Due to what precedes we have ||ỹn(t, .) − y(t, .)||L1(0,1) −−−−−→

n→+∞
0. Now

we can conclude that:

||yn(t, .) − y(t, .)||L1(0,1) ≤||yn(t, .) − ỹn(t, .)||L1(0,1) + ||ỹn(t, .) − y(t, .)||L1(0,1)

≤||yn(t1, .) − ỹn(t1, .)||L1(0,1).||un + A||L∞(ΩT ).e
3(t−t1)||∂x(un+A)||L∞(ΩT )

+ ||ỹn(t, .) − y(t, .)||L1(0,1)

≤||yn(t1, .) − y(t1, .)||L1(0,1).||un + A||L∞(ΩT ).e
3(t−t1)||∂x(un+A)||L∞(ΩT )

+ ||ỹn(t, .) − y(t, .)||L1(0,1)

−−−−−→
n→+∞

0.

Therefore the convergence in L1(0, 1) propagates on each interval where vl and vr do not change sign, thanks
to the hypothesis on Pr and Pl we have:

∀t ∈ [0, T ] ||yn(t, .) − y(t, .)||L1(0,1) −−−−−→
n→+∞

0. (28)

Combining this first convergence result with the uniform bound of yn−y in L∞(ΩT ) and using the dominated
convergence theorem in the time variable we obtain:

yn → y in L1(ΩT ).

In term of ũ and ũn it implies that

ũn → ũ in L1(0, T,W 2,1(0, 1)).

But we also have ∀n ∈ N F(un) ∈ CB0,B1,T , and we know (see 2.3) that CB0,B1,T is compact therefore
ũn → ũ in CB0,B1,T (as the unique accumulation point of the sequence).

Now we can apply the Schauder fixed point theorem to F and we get a solution

u ∈ L∞
(

(0, T ); C1,1([0, 1])
)

∩ Lip
(

[0, T ];H1
0(0, 1)

)

.

The additional regularity properties of any solution u, meaning

∀p > +∞ u ∈ C0([0, T ],W 2,p(0, 1)) ∩C1([0, 1],W 1,p
0 (0, 1)),

follow directly from the construction of F and from Proposition A.8.
To obtain the minimum existence time announced we just have to realize that the only possible reduction of
T occured in subsection 2.3. This concludes the proof of theorem 1.
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2.5 Uniqueness

To conclude the part about the initial boundary value problem, we prove a weak-strong uniqueness property.

Theorem 4. Let (y, u) and (ỹ, ũ) be two solutions of (10) and (11) for the same initial and boundary data,
and such that ỹ ∈ L∞((0, T ); Lip([0, 1])). Then y = ỹ and u = ũ.

Proof. Define Y = ỹ − y and U = ũ− u. Then we have:

U ∈ Lip
(

[0, T ];H1
0(0, 1)

)

, (1 − ∂2
xx)U(t, .) = Y (t, .) dt a.e.,

and Y ∈ L∞(ΩT ) is the unique weak solution of:

∂tY + (u+ A)∂xY = −2.Y.∂x(u+ A) − ∂xỹ.U − 2ỹ.∂xU,

with Y0 = 0, Yl = 0, Yr = 0. Using Theorem 6 and formula (50) we get with b = −2.∂x(u + A) and
f = −U.∂xỹ − 2ỹ.∂xU :

For (t, x) ∈ P, Y (t, x) = 0,

For (t, x) ∈ I, Y (t, x) =

∫ t

0

f(r, φ(r, t, x)). exp

(
∫ t

r

b(r′, φ(r′, t, x))dr′
)

dr,

For (t, x) ∈ L, Y (t, x) =

∫ t

e(t,x)

f(r, φ(r, t, x)). exp

(
∫ t

r

b(r′, φ(r′, t, x))dr′
)

dr,

For (t, x) ∈ R, Y (t, x) =

∫ t

e(t,x)

f(r, φ(r, t, x)). exp

(
∫ t

r

b(r′, φ(r′, t, x))dr′
)

dr.

Now since ||U(t, .)||L∞(0,1) ≤ 5.||Y (t, .)||L∞(0,1) and ỹ, ∂xỹ bounded, we see that for a certain C > 0:

||f(t, .)||L∞(0,1) ≤ C.||Y (t, .)||L∞(0,1) dt a.e.,

and since b is bounded, we get that for a certain C′ > 0:

||Y (t, .)|| ≤ C′.

∫ t

0

||Y (s, .)||L∞(0,1)ds dt a.e.,

and we conclude using Gronwall’s lemma.

3 Stabilization

In this part we prove Theorem 3. Here again we suppose that κ ≤ 0. We begin by reformulating (2) and we
also give the corresponding statement to Theorem 3 for this new formulation.
Rather than (2) we will work on:







∂ty + (ǔ+ Ǎ − κ).∂xy = −2y.∂x(ǔ+ Ǎ)
(1 − ∂2

xx)ǔ = y, ǔ(t, 0) = ǔ(t, 1) = 0
(1 − ∂2

xx)Ǎ = 0, Ǎ(t, 0) = vl(t) + κ, Ǎ(t, 1) = vr(t) + κ
. (29)

This system is equivalent to (2) with the change of unknown

v = Ǎ + ǔ− κ.

And our stationary feedback law still reads (15). One can check that Theorem 3 can be reformulated in
terms of those new unknowns as:

Theorem 5. Let Al > 2. sinh(1), Ar > Al. cosh(1) + sinh(2), M > 0, T > 0. For any y0 ∈ C0([0, 1]) there
exists y ∈ C0(ΩT ) such that if we define ǔ and Ǎ by:

∀(t, x) ∈ ΩT (1 − ∂2
xx)ǔ(t, x) = y(t, x), ǔ(t, 0) = ǔ(t, 1) = 0,
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∀(t, x) ∈ ΩT (1 − ∂2
xx)Ǎ(t, x) = 0, Ǎ(t, 0) = Al.||y(t, .)||C0([0,1]) and Ǎ(t, 1) = Ar.||y(t, .)||C0([0,1]).

then y is the weak solution of

∂ty + (ǔ+ Ǎ − κ).∂xy = −2.y.∂x(ǔ+ Ǎ). (30)

This function y also satisfies:

∀t ∈ [0, T ] ∂ty(t, 0) +M.y(t, 0) = 0,

∀x ∈ [0, 1] y(0, x) = y0(x).

Besides, if y is a maximal solution of the closed loop system (15),(29) then y is defined on [0,+∞)× [0, 1].

And finally if we let c = min(Al − 2. sinh(1), Ar−Al. cosh(1)−sinh(2)
sinh(1) ) and τ = 1

M
. ln(

2.c.||y0||C0([0,1])

M
), we have:

∀t ≥ τ ||y(t, .)||C0([0,1]) ≤
M

2c
.

1

1 +M(t− τ)
. (31)

We now prove Theorem 5.

3.1 Strategy

Let us first describe the main steps of the proof of Theorem 5. In terms of the new unknowns, the equilibrium
state that we want to stabilize is y = 0, ǔ = Ǎ = 0. A first natural idea would be to look at the linearized
system around the equilibrium state. Its stabilization would provide a local stabilization result on the
nonlinear system. But the linearized system reads:







∂ty − κ.∂xy = 0
(1 − ∂2

xx)ǔ = y, ǔ(t, 0) = ǔ(t, 1) = 0
(1 − ∂2

xx)Ǎ = 0, Ǎ(t, 0) = vl(t) + κ, Ǎ(t, 1) = vr(t) + κ
. (32)

And in the case κ = 0, the state y is constant therefore the system is not stabilizable.
In this situation we will apply a rough version of the return method that J.-M. Coron introduced in [10]. We
will try to use the control in order to put the system in a simpler dynamic where it is easier to stabilize.
When we look at the transport equation we see that the sign of ǔ + Ǎ − κ controls the geometry of the
characteristics, and the sign of ∂x(ǔ+ Ǎ) controls the growth of y along the characteristics.
Therefore we would like our feedback law to provide ǔ + Ǎ ≥ 0 (since −κ ≥ 0) and ∂x(ǔ + Ǎ) ≥ 0.
Considering the estimates ((33),(34)) on ǔ we can get from the elliptic equation of (29) we see that with
vl(t) = Al.||y(t, .)||C0([0,1])−κ, vr(t) = Ar.||y(t, .)||C0([0,1])−κ, Ǎ will dominate ǔ and we will have the desired
signs.
For the existence of a solution we cannot adapt our proof of existence for the initial boundary value problem
completely. Our feedback law makes us lose some regularity in time because Ǎ is now an unknown and it has
exactly the time regularity of ||y(t, .)||C0([0,1]). To compensate for this, we will work in the space of continuous
functions for y. This is now possible because the flow will always point toward x = 1. Therefore we have
to prescribe yl, and we just need to make a continuous transition at (t, x) = (0, 0) and have yl decreasing
in time. This is garanteed by ∂tyl(t) + M.yl(t) = 0. In the next part we will prove the existence part of
Theorem 5. The asymptotic properties will be proven in the last part.

3.2 Existence of a solution to the closed loop system

Once again, we use a fixed point strategy on an operator S we describe now. We begin by defining the
domain of the operator.

Definition 3. Let X be the space of (g,N) ∈ C0([0, T ]× [0, 1])× C0([0, T ]) satisfying:

1. ∀(t, x) ∈ [0, T ] × [0, 1] g(0, x) = y0(x) g(t, 0) = y0(0).e−M.t,

2. ∀t ∈ [0, T ] ||g(t, .)||C0([0,1]) ≤ N(t),
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3. N is nonincreasing and N(0) ≤ ||y0||C0([0,1]).

Proposition 3.1. The domain X is non empty, convex, bounded and closed with respect to the uniform
topology.

The proof is elementary and one notices that (y0(x).e
−Mt, ||y0||C0([0,1]).e

−Mt) ∈ X .

Now for (y,N) ∈ X we define ǔ and Ǎ as the solutions of:

∀(t, x) ∈ ΩT (1 − ∂2
xx)ǔ(t, x) = y(t, x) and ǔ(t, 0) = ǔ(t, 1) = 0,

∀(t, x) ∈ ΩT (1 − ∂2
xx)Ǎ(t, x) = 0, Ǎ(t, 0) = AlN(t) and Ǎ(t, 1) = Ar N(t).

One has the following exact formulas:

∀(t, x) ∈ ΩT ǔ(t, x) = −

∫ x

0

sinh(x− x̃).y(t, x̃)dx̃,

∀(t, x) ∈ ΩT Ǎ(t, x) =
N(t)

sinh(1)
.(Ar . sinh(x) +Al. sinh(1 − x)).

Therefore we have the following inequalities:

∀(t, x) ∈ [0, T ]× [0, 1] |ǔ(t, x)| ≤ 2 sinh(1)||y(t, .)||C0([0,1]), (33)

|∂xǔ(t, x)| ≤ 2 cosh(1)||y(t, .)||C0([0,1]), |∂2
xxǔ(t, x)| ≤ (1 + 2 sinh(1))||y(t, .)||C0([0,1]), (34)

|∂xǍ(t, x)| ≥
Ar − 2 cosh(1)Al

sinh(1)
.N(t), |Ǎ(t, x)| ≥ Al.N(t). (35)

And in turn those provide:

∀(t, x) ∈ [0, T ]× [0, 1] (ǔ+ Ǎ)(t, x) ≥ (Al − 2. sinh(1)).||y(t, .)||C0([0,1]), (36)

∀(t, x) ∈ [0, T ]× [0, 1] ∂x(ǔ + Ǎ)(t, x) ≥
Ar − 2. cosh(1).Al − sinh(2)

sinh(1)
.||y(t, .)||C0([0,1]). (37)

Now if φ is the flow of ǔ + Ǎ − κ, φ is C1 and since ǔ + Ǎ − κ ≥ 0 (thanks to the inequalities above),
φ(., t, x) is nondecreasing. This allows us to define the entrance time and then the operator S as follows. Let
e(t, x) = min{s ∈ [0, T ] | φ(s, t, x) = 0} with the convention that min ∅ = 0.
Now for (t, x) ∈ [0, T ]× [0, 1], S(y,N) = (ỹ, Ñ) with:

1. if x ≥ φ(t, 0, 0) ỹ(t, x) = y0(φ(0, t, x)). exp(−2
∫ t

0
∂x(ǔ+ Ǎ)(s, φ(s, t, x))ds),

2. if x ≤ φ(t, 0, 0) ỹ(t, x) = y0(0).e−M.e(t,x). exp(−2.
∫ t

e(t,x) ∂x(ǔ+ Ǎ)(s, φ(s, t, x))ds),

3. Ñ(t) = ||ỹ(t, .)||C0([0,1]).

From theorem 6 we know that ỹ is the weak solution of:

∂tỹ + (ũ+ Ã − κ)∂xỹ = −2ỹ∂x(ũ+ Ã ỹ(0, .) = y0 ỹ(t, 0) = y0(0) e−M t (38)

Before applying the Schauder fixed point theorem to S we show the following properties.

Proposition 3.2. 1. The operator S maps X to X.

2. The family S(X) is uniformly bounded and equicontinuous.

3. S is continuous w.r.t. the uniform topology.

13



Proof. 1. It will be useful to distinguish the cases where y0(0) = 0 (case 1) and y0(0) 6= 0 (case 2). First re-
mark that ỹ being continuous, Ñ is continuous. Now in case 1, we have that ∀(t, x) ∈ ΩT , x ≤ φ(t, 0, 0) ⇒
ỹ(t, x) = 0 and both the continuity on {(t, x) ∈ ΩT | x > φ(t, 0, 0)} and the continuity at the interface
{(t, x) ∈ ΩT | x = φ(t, 0, 0)} are obvious.
In case 2, one must first remark that ∀t ∈ [0, T ], y(t, 0) 6= 0, so ∀t ∈ [0, T ], 0 < ||y(t, .)||C0([0,1]) ≤ N(t).
This implies that every characteristic curve points to the right and so e corresponds to Definition A.1.
Therefore e is C1 on {(t, x) ∈ ΩT | x < φ(t, 0, 0)} and continuous at the interface {(t, x) ∈ ΩT | x =
φ(t, 0, 0)}, once again we see that ỹ is continuous in ΩT , and so is Ñ .
Now it is straightforward from its definition that

∀(t, x) ∈ [0, T ]× [0, 1], ỹ(0, x) = y0(x), ỹ(t, 0) = y0(0).e−M.t.

It only remains to see that Ñ = ||ỹ(t, .)||C0([0,1]) is nonincreasing. Since ∂x(ǔ + Ǎ) ≥ 0 (see (37)), we
see from the definition ỹ that |ỹ| does not increase along the characteristics, and since |ỹ(t, 0)| is also
nonincreasing we can conclude.

2. Since X is already bounded and thanks to the first part of the proof, S(X) is bounded.
The equicontinuity of the family {Ñ} being implied by the one of the family {ỹ}, we will show that we
have a common continuity modulus for all {ỹ}. For now let us focus only on {(t, x) ∈ ΩT | x ≤ φ(t, 0, 0)}.
On this set ỹ(t, x) = 0 in case 1. In the second case, we need the following inequalities valid on ΩT and
which follow from the definition of ǔ and Ǎ:

||ǔ||C0(ΩT ) ≤ 2. sinh(1).||y0||C0([0,1]), (39)

||∂xǔ||C0(ΩT ) ≤ 2. cosh(1).||y0||C0([0,1]) (40)

||∂2
xxǔ||C0(ΩT ) ≤ (1 + 2. sinh(1)).||y0||C0([0,1]), (41)

||Ǎ||C0(ΩT ) = ||∂2
xxǍ||C0(ΩT ) ≤ (Ar +Al)||y0||C0([0,1]), (42)

||∂xǍ||C0(ΩT ) ≤
Ar +Al

tanh(1)
.||y0||C0([0,1]). (43)

And since φ is the flow of ǔ+ Ǎ − κ we also have:

||∂1φ||C0([0,1]) ≤ −κ+ (2 sinh(1) +Al +Ar)||y0||C0([0,1]),

||∂2φ||C0([0,1]) ≤ (−κ+ (2 sinh(1) +Al +Ar)||y0||C0([0,1])). exp

(

2.T. cosh(1).

(

2 +
Ar +Al

sinh(1)

)

||y0||C0([0,1])

)

,

||∂3φ||C0([0,1]) ≤ exp

(

2.T. cosh(1).

(

2 +
Ar +Al

sinh(1)

)

||y0||C0([0,1])

)

.

Now since we have

ỹ(t, x) = y0(0).e−M.e(t,x). exp(−2.

∫ t

e(t,x)

∂x(ǔ+ Ǎ)(r, φ(r, t, x))dr),

we see that we only need a uniform bound on ||e||C1 to conclude about the equicontinuity on {(t, x) ∈
ΩT | x ≤ φ(t, 0, 0)}.
We have 0 ≤ e(t, x) ≤ T , and thanks to the definition of e, to (39), (42) and ||y(t, .)||C0([0,1]) ≥ |y(t, 0)| =
|y0(0)|.e−M.t ≥ |y0(0).e−M.T | we get:

|∂te(t, x)| ≤
(κ+ (2 sinh(1) +Al +Ar)||y0||C0([0,1])). exp(2.T. cosh(1).(2 + Ar+Al

sinh(1) )||y0||C0([0,1]))

(Al − 2 sinh(1)).e−M.T .|y0(0)|
.

In the same way:

|∂xe(t, x)| ≤
exp(2.T. cosh(1).(2 + Ar+Al

sinh(1) )||y0||C0([0,1]))

(Al − 2 sinh(1)).e−M.T .|y0(0)|
.
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In the end, we see that both in case 1 and case 2, the family {ỹ} is uniformly Lipschitz on
{(t, x) ∈ ΩT | x ≤ φ(t, 0, 0)}. Now on {(t, x) ∈ ΩT | x ≥ φ(t, 0, 0)}, we know

ỹ(t, x) = y0(φ(0, t, x)). exp(−2.

∫ t

0

∂x(ǔ+ Ǎ)(r, φ(r, t, x))dr).

Clearly y0 is continuous on [0, 1] therefore it is both bounded and uniformly continuous, the family

of functions φ is uniformly Lipzschitz and the family {exp(−2.
∫ t

0
∂x(ǔ+ Ǎ)(r, φ(r, t, x))dr)} is uni-

formly bounded and equicontinuous. We can conclude that the family {ỹ} is also equicontinuous on
{(t, x) ∈ ΩT | x ≥ φ(t, 0, 0)}. Since we have continuity on {(t, x) ∈ ΩT | x = φ(t, 0, 0)}, we can conclude
that the family S(X) is uniformly bounded and equicontinuous on ΩT , S(X) is therefore relatively
compact in X .

3. It remains to prove that S is continuous w.r.t. to the uniform convergence.
Let (yn) be a sequence in X converging uniformly to y ∈ X . We only have to show that ỹn converges
uniformly to ỹ, since it immediatly implies that Ñn converges uniformly to Ñ . First the uniform
convergence of yn and Nn implies the uniform convergence of ǔn and Ǎn. Then by Gronwall’s lemma,
we also have φn → φ uniformly in C1(ΩT ). Using Proposition A.2, we then obtain en → e uniformly in
C0(ΩT ). Now we decompose ΩT in three parts depending of n.

Ln = {(t, x) ∈ ΩT | x ≤ min(φn(t, 0, 0), φ(t, 0, 0))},

Rn = {(t, x) ∈ ΩT | x ≥ max(φn(t, 0, 0), φ(t, 0, 0))},

In = ΩT \ (Ln ∪Rn).

Let us point out first that when n→ +∞:

lim inf Ln = {(t, x) ∈ ΩT | x ≤ φ(t, 0, 0)}, lim inf Rn = {(t, x) ∈ ΩT | x ≥ φ(t, 0, 0)},

and lim sup In = {(t, x) ∈ ΩT | x = φ(t, 0, 0)}.

• For (t, x) ∈ Ln if y0(0) = 0 then yn and ỹ are equal to zero otherwise we have the formulas:

ỹ(t, x) = y0(0).e−M.e(t,x). exp(−2

∫ t

e(t,x)

∂x(ǔ+ Ǎ)(r, φ(r, t, x))dr),

ỹn(t, x) = y0(0).e−M.en(t,x). exp(−2

∫ t

en(t,x)

∂x(ǔn + Ǎn)(r, φn(r, t, x))dr).

and the uniform convergence of ỹn follows from the uniform boundedness and convergence of ∂xǔn,
∂xǍn, en and φn.

• For (t, x) ∈ Rn the proof is similar.

• It remains only to prove the convergence in In. But the width of In tends to zero, and the family
{ỹn} is equicontinuous. Therefore the uniform convergence of ỹn in In follows from those in Ln

and Rn.

Now we can apply Schauder fixed point theorem to S and get (y,N) fixed point of S. It remains to show
that it satisfies all of the properties of Theorem 5 except (31) which will be proven in the next subsection.
First we have y(t, 0) = ỹ(t, 0) = y0(0).e−M.t and it implies ∂ty(t, 0) = −M.y(t, 0).
But also N(t) = Ñ(t) = ||ỹ(t, .)||C0([0,1]) = ||y(t, .)||C0([0,1]), therefore ||y(t, .)||C0([0,1]) is nonincreasing and,
thanks to Theorem 6, y = ỹ is a weak solution of







(1 − ∂2
xx)ǔ = y, ǔ(t, 0) = ǔ(t, 1) = 0

(1 − ∂2
xx)Ǎ = 0, Ǎ(t, 0) = Al.||y(t, .)||C0([0,1]), Ǎ(t, 1) = Ar.||y(t, .)||C0([0,1])

∂ty + (ǔ+ Ǎ − κ).∂xy = −2y.∂x(ǔ+ Ǎ)
. (44)
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Remark 5. • Since (ǔ + Ǎ − κ)(t, 1) = Ar.||y(t, .)||C0([0,1]) − κ ≥ 0 we had all along Γr = ∅.

• Since (ǔ + Ǎ − κ)(t, 0) = Al.||y(t, .)||C0([0,1]) − κ, we see that a priori, Γl depends on y. But in fact if
y0(0) 6= 0 and then ∀t, y(t, 0) 6= 0 and Γl = R+. And if y0(0) = 0 then ∀t, yl(t) = y(t, 0) = 0 and it
makes no difference in the weak formulation(53) if we enlarge Γl to R+. Therefore the space of test
functions is always:

Adm(ΩT ) = {φ ∈ C1(ΩT ) | ∀x ∈ [0, 1] φ(T, x) = 0, ∀t ∈ [0, T ] φ(t, 1) = 0}.

• It must be noted that while we required T <∞, we did not need T to be small.

3.3 Stabilization and global existence

To finish the proof of Theorem 5 we have to prove the global existence of a maximal solution and estimate
(31).

Proof. First we rewrite (36),(37) as:

∀(t, x) ∈ ΩT (ǔ+ Ǎ)(t, x) ≥ c||y(t, .)||C0([0,1])

∂x(ǔ+ Ǎ)(t, x)) ≥ c||y(t, .)||C0([0,1])

But y is the solution of the transport equation (30) and it satisfies:

y(t, x) = y(s, φ(s, t, x)). exp(−2

∫ t

s

∂x(ǔ+ Ǎ)(r, φ(r, t, x))dr).

Combining those facts, we get for t ≥ s:

|y(t, x)| ≤ |y(s, φ(s, t, x))|. exp(−2

∫ t

s

c.||y(r, .)||C0([0,1])dr).

This implies that |y| decreases along the characteristics (strictly for the times where y(t, .) 6≡ 0). But we have
also imposed y(t, 0) = y(s, 0).e−M(t−s), therefore |y| also decreases along x = 0. This already shows, thanks
to the existence theorem that a maximal solution of the closed loop system is global. To get a more precise
statement, we consider all the characteristics between time t and s and we obtain:

for 0 ≤ s ≤ t ||y(t, .)||C0([0,1]) ≤ ||y(s, .)||C0([0,1]).max
r∈[s,t]

(

e−M(r−s). exp(−2c

∫ t

r

||y(α, .)||C0([0,1])dα)

)

Now we define g(r) = e−M(r−s). exp(−2c
∫ t

r
||y(α, .)||C0([0,1])dα), then g′(r) = (2c||y(r, .)||C0([0,1]) −M)g(r)

and we know that as long as the quantity ||y(r, .)||C0([0,1]) is not equal to zero, it strictly decreases. So if

||y0||C0([0,1]) >
M
2c

, for t small enough ||y(t, .)||C0([0,1]) ≥
M
2c

and we have:

||y(t, .)||C0([0,1]) ≤ ||y0||C0([0,1]).e
−M.t

which implies ||y(τ, .)||C0([0,1]) ≤ M
2c

. This provides for τ ≤ s ≤ t, the inequality (which was clear when

||y0||C0([0,1]) ≤
M
2c

)

||y(t, .)||C0([0,1]) ≤ ||y(s, .)||C0([0,1]). exp(−2c

∫ t

s

||y(r, .)||C0([0,1])dr).

And conclude with a classical comparison principle for ODES.

Remark 6. • For κ 6= 0 the result is easily improved.

Indeed if t ≥ τ − 2 sinh(1)+Al+Ar

κ.c
we have −κ+ ǔ+ Ǎ ≥ −κ

2 .

And therefore t ≥ τ − 2 sinh(1)+Al+Ar

κ.c
− 2

κ
⇒ ||y(t, .)||C0([0,1]) ≤ |y0(0)|.e−M(t+ 2

κ
)

• In particular if y0(0) = 0 we see that we stabilize the null state in finite time.

• Of course similar results hold for κ ≥ 0 thanks to Remark 2.
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A Initial boundary value problem for a linear transport equation

In this section we wil consider the initial boundary value problem for the following linear transport equation:

∂ty + a(t, x).∂xy = b(t, x).y + f(t, x) (45)

We will look at strong and weak solutions of (45) on ΩT = [0, T ]× [0, 1]. It should be noted that the backward
problem is transformed in a standard one by the change of variables: t→ T − t.

A.1 Properties of the flow

Let a ∈ C0(ΩT ) be uniformly Lipschitz in the second variable with constant L = ||a||L∞((0,T ),Lip([0,1])). Since
we want to use the method of characteristics to solve (45) we need to study the flow of a.

Definition 4. For (t, x) ∈ ΩT , let φ(., t, x) be the C1 maximal solution to :

{

∂sφ(s, t, x) = a(s, φ(s, t, x))

φ(t, t, x) = x
, (46)

which is defined on a certain set [e(t, x), h(t, x)] (which is closed because [0, 1] is compact) and with possibly
e(t, x) and/or h(t, x) = t.

Remark 7. Obviously e(t, x) > 0 ⇒ φ(e(t, x), t, x) ∈ {0, 1}.

Now we take into account the influence of the boundaries by introducing the sets:

P = {(t, x) ∈ ΩT | ∃s ∈ [e(t, x), h(t, x)] such that φ(s, t, x) ∈ {0, 1} and a(s, φ(s, t, x)) = 0}

∪ {(s, φ(s, 0, 0)) | ∀s ∈ [0, T ]} ∪ {(s, φ(s, 0, 1)) | ∀s ∈ [0, T ]},

I = {(t, x) ∈ ΩT \ P | e(t, x) = 0},

L = {(t, x) ∈ ΩT \ P | φ(e(t, x), t, x) = 0},

R = {(t, x) ∈ ΩT \ P | φ(e(t, x), t, x) = 0},

Γl = {t ∈ [0, T ] | a(t, 0) > 0},

Γr = {t ∈ [0, T ] | a(t, 1) < 0}.

Proposition A.1. The function φ is uniformly Lipschitz on its domain.

Proof. This is easily deduced from the standard case by the use of a Lipschitzian extension of a.

We can now study the regularity of e.

Proposition A.2. Let (t, x) ∈ ΩT \ P , (an) ∈ C0(ΩT ) ∩ L∞((0, T ); Lip([0, 1])) a sequence such that
||an − a||C0(ΩT ) → 0, ||an||L∞(0,1;Lip([0,1])) is bounded and (tn;xn) ∈ ΩT such that (tn, xn) → (t, x) then
en(tn, xn) → e(t, x).

Proof. Once again we will use a Lipschitzian extension operator Π and we set ãn = Π(an) and ã = Π(a).
Now let φ̃n and φ̃ be their respective flows. Using Gronwall’s lemma we have:

|(φ̃n − φ̃)(s, t, x)| ≤ T.||ãn − ã||C0(ΩT ).e
T.||ã||L∞((0,T );Lip([0,1])) . (47)

But we can see that:

en(tn, xn) = min{s ∈ [0, tn] | ∀r ∈ [s, tn] φ̃n(r, t, x) ∈ [0, 1]}.

• If (t, x) ∈ I \ P since we have excluded the characteristics coming from (0, 0) and (0, 1) we have that
inf

s∈[0,T ]
(d(φ(s, t, x), [0, t] × {0} ∪ [0, t] × {1})) > 0 so we can conclude from (47) that for n large enough

φn(., t, x) is defined back to 0 that is en(t, x) = 0. From now on (t, x) ∈ L ∪R.
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• Now we can take s strictly lower and close enough to e(t, x), φ̃(s, t, x) /∈ [0, 1], since (t, x) /∈ P ⇒
e(t, x) ∈ Γl ∪ Γr. But φ̃n(s, tn, xn) → φ̃(s, t, x), therefore for n large enough φ̃n(s, tn, xn) /∈ [0, 1] and
s < tn and we can conclude that lim inf en(tn, xn) ≥ s. But s is arbitrarly close to e(t, x) and we get

lim inf en(tn, xn) ≥ e(t, x).

• If e(t, x) = t then lim sup en(tn, xn) ≤ lim sup tn = t and en(tn, xn) → e(t, x). Otherwise since (t, x) /∈ P
then ∀s ∈]e(t, x), t[ φ(s, t, x) ∈]0, 1[. And now ∀ǫ > 0 ∃α > 0 such that ∀s ∈ [e(t, x) + ǫ, t− ǫ]
min(φ(s, t, x), 1 − φ(s, t, x)) ≥ α. But for n large enough we have:

||φn − φ||C0(ΩT ) ≤
α

4
,

|φn(s, tn, xn) − φn(s, t, x)| ≤
α

4
,

(the second estimate comes from the uniform bound on ||an||L∞((0,1);Lip([0,1]))). But now, combining
those two inequalities we see that for n large and for all s between e(t, x) + ǫ and t − ǫ we have
min(φn(s, tn, xn), 1 − φn(s, tn, xn)) ≥ α

2 , this provides lim sup en(tn, xn) ≤ e(t, x) + ǫ, and since ǫ is
arbitrarly small we obtain:

lim sup en(tn, xn) ≤ e(t, x).

Remark 8. • For an = a it shows that e is continuous outside of P .

• If P = ∅, since ΩT is compact the proposition implies that en converges uniformly toward e.

Proposition A.3. If we assume that ∂xa ∈ C0(ΩT ) then φ is C1 and e is C1 on ΩT \ P with:

∂te(t, x) =
a(t, x). exp(

∫ s

e(t,x)
∂xa(r, φ(r, t, x))dr)

a(e(t, x), φ(e(t, x), t, x))
∂xe(t, x) = −

exp(
∫ s

e(t,x)
∂xa(r, φ(r, t, x))dr)

a(e(t, x), φ(e(t, x), t, x))
. (48)

Proof. The regularity of φ is a classical result. As for e if (t, x) ∈ I, e(t, x) = 0 and it is obvious. For
(t, x) ∈ L we have φ(e(t, x), t, x) = 0 and e(t, x) ∈ Γl therefore ∂1φ(e(t, x), t, x) > 0 and the implicit function
theorem let us conclude, we can proceed in the same way for R. The inclusion of the characteristics of (0, 0)
and (0, 1) in P is needed here.

Proposition A.4. Let (an) be a sequence of C0([0, T ]; C1([0, 1])) and a ∈ C0([0, T ]; C1([0, 1])) such that
||an − a||L∞((0,T );Lip([0,1])) −−−−−→

n→+∞
0. If we call φn the flow of an and φ the flow of a then φn −−−−−→

n→+∞
φ

locally in C1.

Proof. Once again using a C1 extension operator on an and a we deduce the result from the classical standard
case, which follows from applications of Gronwall’s lemma.
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A.2 Strong solutions

Here we consider the case of data a ∈ C0([0, T ]; C1([0, 1])), yl ∈ C1
c (Γl), yr ∈ C1

c (Γr), y0 ∈ C1
c (0, 1), b ∈ C1(ΩT )

and f ∈ C1
c (ΩT \ P ). We define the function y in the following way:

For (t, x) ∈ P y(t, x) = 0 (49)

For (t, x) ∈ I y(t, x) = y0(φ(0, t, x)). exp

(
∫ t

0

b(r, φ(r, t, x))dr

)

+

∫ t

0

f(r, φ(r, t, x)). exp

(
∫ t

r

b(r′, φ(r′, t, x))dr′
)

dr

,

For (t, x) ∈ L y(t, x) = yl(e(t, x)). exp

(

∫ t

e(t,x)

b(r, φ(r, t, x))dr

)

+

∫ t

e(t,x)

f(r, φ(r, t, x)). exp

(
∫ t

r

b(r′, φ(r′, t, x))dr′
)

dr

, (50)

For (t, x) ∈ R y(t, x) = yr(e(t, x)). exp

(

∫ t

e(t,x)

b(r, φ(r, t, x))dr

)

+

∫ t

e(t,x)

f(r, φ(r, t, x)). exp

(
∫ t

r

b(r′, φ(r′, t, x))dr′
)

dr

.

Proposition A.5. We have y ∈ C1(ΩT ), supp(y) ⊂ ΩT \ P and y is a strong solution of (45) with the
additional conditions that for all x in [0, 1] y(0, x) = y0(x), for all t in Γl y(t, 0) = yl(t) and for all t in Γr

y(t, 1) = yr(t). Besides we have the estimate:

||y||C0(ΩT ) ≤
(

max
(

||y0||C0(0,1), ||yl||C0(Γl), ||yr||C0(Γr)

)

+ T.||f ||C0(ΩT )

)

.e
T.||b||

C0(ΩT ) . (51)

Proof. First, y is equal to 0 in a neighbourhood of P because we chose y0, yl, yr, f to be null close to P and
because of(50). Outside of this neighbourhood, the regularity of y comes from the integral formulas (50) and
from the regularity of y0, yl, yr, f , b, φ and e (proved in proposition A.3). The fact that y satisfies (45) is a
straightforward calculation.

Remark 9. We have that:

∀(t, x) ∈ ΩT and ∀s ∈ [e(t, x), h(t, x)] y(t, x) = y(s, φ(s, t, x)). exp

(
∫ t

s

b(r, φ(r, t, x))dr

)

+

∫ t

s

f(r, φ(r, t, x)). exp

(
∫ t

r

b(r′, φ(r′, t, x))dr′
)

dr. (52)

A.3 Weak solutions

In this section we will consider the case of data a ∈ C0([0, T ]; C1([0, 1])), b, f ∈ L∞(ΩT ), y0 ∈ L∞(0, 1),
yl ∈ L∞(Γl) and yr ∈ L∞(Γr). We introduce the space of test functions:

Adm(ΩT ) = {φ ∈ C1(ΩT ) | ∀x ∈ [0, 1] φ(T, x) = 0 ∀t ∈ [0, T ] \ Γl φ(t, 0) = 0 ∀t ∈ [0, T ] \ Γr φ(t, 1) = 0}

Proposition A.6. For y ∈ C1(ΩT ), y is a strong solution of (45), if and only if it satisfies ∀φ ∈ Adm(ΩT )

∫

ΩT

y.(∂tφ+ a.∂xφ+ (b+ ∂xa)φ)dxdt = −

∫

ΩT

f(t, x).φ(t, x)dtdx

−

∫ 1

0

φ(0, x).y(0, x)dx +

∫ T

0

(a(t, 1).φ(t, 1).y(t, 1) − a(t, 0).φ(t, 0).y(t, 0))dt. (53)

This legitimates the following definition of a weak solution.
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Definition 5. For a ∈ L∞(0, T,Lip(0, 1)), b, f ∈ L1(ΩT ) , y0 ∈ L1(0, 1), yl ∈ L1(Γl) and yr ∈ L1(Γr), we
say that that y ∈ L∞(ΩT ) is a weak solution of (45) if it satisfies (53).

Theorem 6. Let a ∈ C0([0, T ]; C1([0, 1])), b, f ∈ L∞(ΩT ), y0 ∈ L∞(0, 1), yl ∈ L∞(Γl) and yr ∈ L∞(Γr).
We will also suppose that the sets

Pl = {t ∈ [0, T ] | a(t, 0) = 0} and Pr = {t ∈ [0, T ] | a(t, 1) = 0}

have at most a countable number of connected components. Then the function y defined by the formula (50),
is a weak solution of (45) and satisfies:

||y||L∞(ΩT ) ≤
(

max
(

||y0||L∞(0,1), ||yl||L∞(Γl), ||yr||L∞(Γr)

)

+ T.||f ||L∞(ΩT )

)

.eT.||b||L∞(ΩT ) . (54)

Proof. If we let Pt̃ = P ∩ {(t, x) ∈ ΩT | t = t̃}, we can see that each points of a Pt̃ corresponds to at least
one connected component of Pl ∪ Pr (since only one characteristic curve goes through the whole connected
component) therefore, Pt̃ is at most countable and thus 1d negligible, this implies that P is 2d negligible.
Now we have:

• C1
c (ΩT \ P ) is dense in L1(ΩT ),

• C1
c (0, 1) is dense in L1(0, 1),

• C1
c (Γl) is dense in L1(Γl),

• C1
c (Γr) is dense in L1(Γr).

And we can take, thanks to the hypothesis on b, f , y0, yl and yr:

• (bn) ∈ C1(ΩT ) such that ||bn − b||L1(ΩT ) → 0 and ||bn||L∞(ΩT ) is bounded,

• (fn) ∈ C1
c (ΩT \ P ) such that ||fn − f ||L1(ΩT ) → 0 and ||fn||L∞(ΩT ) is bounded,

• (y0,n) ∈ C1
c (0, 1) such that ||y0,n − y0||L1(0,1) → 0 and ||y0,n||L∞(0,1) is bounded,

• (yl,n) ∈ C1
c (Γl) such that ||yl,n − yl||L1(Γl) → 0 and ||yl,n||L∞(Γl) is bounded,

• (yr,n) ∈ C1
c (Γr) such that ||yr,n − yl||L1(Γr) → 0 and ||yr,n||L∞(Γr) is bounded.

We call (yn) the sequence of strong solutions to (45). Thanks to (51) we can extract so that:

∃y ∈ L∞(ΩT ) such that yn converges to y for the weak-* topology of L∞(ΩT )

Now we take the limit in (53) and conclude that y is a weak solution to (45).
We can also suppose (we just need to extract again) that we have pointwise convergence almost everywhere
of:

bn → b, fn → f, y0,n → y0, yl,n → yl, yr,n → yr.

Thanks to the dominated convergence theorem and to the limit uniqueness, we see that y satisfies (50) and
(52) almost everywhere, and this provides (54).

A.4 Uniqueness of the weak solution

We have proven the existence of a weak solution to (45) and we have the bound (54), therefore the initial
boundary value problem will be well posed once we have shown the uniqueness of the weak solution.

Proposition A.7. Under the hypothesis of the theorem 6, there is only weak solution to (45).

Proof. By linearity we only need to prove the uniqueness for f = 0, y0 = 0, yl = 0, yr = 0. Which is
∀y ∈ L∞(ΩT ):

(

∀φ ∈ Adm(ΩT )

∫

ΩT

y.(∂tφ+ a.∂xφ+ (b + ∂xa).φ)dxdt = 0

)

⇒ y = 0 a.e.

Let y be such as above, we take:

20



• yn ∈ C1
c (ΩT \ P ) such that ||yn − y||L2(ΩT ) → 0 and ||yn||L∞(ΩT ) is bounded,

• dn ∈ C1(ΩT ) such that ||dn − (b + ∂xa)||L2(ΩT ) → 0 and ||dn||L∞(ΩT ) is bounded.

We want φn ∈ Adm(ΩT ) to be a strong solution to of ∂tφn + a.∂xφn + dn.φn = yn, but the boundary
conditions for functions in Adm(ΩT ) makes it a backward problem. Indeed for φn to be a test function we
must have ∀x ∈ [0, 1], φn(T, x) = 0, ∀t ∈ [0, T ] \ Γl, φn(t, 0) = 0 and ∀t ∈ [0, T ] \ Γr, φn(t, 1) = 0. As we
said previously the change of variables t → T − t transforms a backward problem in a regular forward one,
which we can solve thanks to section A.2. We just need to realize that the change of variables t → T − t
sends the old P on the new P , the old [0, T ] \Γl on the new Γl ∪Pl and the old [0, T ] \Γr on the new Γl ∪Pr.

And therefore: ∀n ∈ N,

∫

ΩT

y.(yn + φn(b + ∂xa− dn))dxdt = 0.

Now thanks to the hypothesis on yn and dn, and to (51), when n→ +∞ we get
∫

ΩT
|y(t, x)|2dxdt = 0.

A.5 Additional properties of y

Until now weak solutions had only the L∞ regularity but in fact we have more.

Lemma 4. If a and ∂xa are continuous and if the sets Pl = {t ∈ [0, T ] | a(t, 0) = 0} and Pr = {t ∈
[0, T ] | a(t, 1) = 0} have a finite number of connected components, and if b and f are in L∞(ΩT ) then
∀p < +∞ we have ||y||Lp(0,1) ∈ C0([0, T ]).

Proof. Let t ∈ [0, T ] and ǫ ≥ 0. Reducing ǫ if necessary we can suppose that a(s, 0) and a(s, 1) have a
constant sign on [t, t+ ǫ], we will prove the result in the case a(t, 0) ≥ 0 and a(t, 1) ≥ 0 (the other cases being
similar), it implies h(t, 0) ≥ t+ ǫ and e(t+ ǫ, 1) ≤ t:

0
0 1

t

t + ǫ

φ(t, t + ǫ, 1)
φ(t + ǫ, t, 0)

Now we have:

||y(t+ ǫ, .)||p
Lp(0,1) =

∫ φ(t+ǫ,t,0)

0

|y(t+ ǫ, x)|pdx+

∫ 1

φ(t+ǫ,t,0)

|y(t+ ǫ, x)|pdx

since φ(t+ ǫ, t, 0) −−−→
ǫ→0

0 and y ∈ L∞(ΩT ) the first integral tends to 0. Then, if x ∈ [φ(t+ ǫ, t, 0), 1] we recall

that thanks to (52) and after performing the change of variables x̃ = φ(t, t+ ǫ, x) one has:

∫ 1

φ(t+ǫ,0)

|y(t+ ǫ, x)|pdx =

∫ φ(t,t+ǫ,1)

0

∣

∣

∣

∣

y(t, x̃). exp

(
∫ t+ǫ

t

b(s, φ(s, t, x̃))ds

)

+

∫ t+ǫ

t

f(t, φ(r, t, x̃)). exp

(
∫ t+ǫ

r

b(r′, φ(r′, t, x̃))dr′
)

dr

∣

∣

∣

∣

p

× exp

(
∫ t+ǫ

t

∂xa(s, φ(s, t, x̃))ds

)

dx̃ (55)

And finally since φ(t, t+ ǫ, 1) →
ǫ→0+

1, f, b, y ∈ L∞(ΩT ) and ∂xa ∈ C0(ΩT ) we get

∫ 1

φ(t+ǫ,t,0)

|y(t+ ǫ, x)|pdx −−−−→
ǫ→0+

∫ 1

0

|y(t, x)|pdx.

The other geometries of the characteristics are treated in the same way. And the argument is clearly reversible
in time so we also have the case ǫ ≤ 0.
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Now we can get some additional regularity for y.

Proposition A.8. If a and ∂xa are continuous, if the sets Pl = {t ∈ [0, T ] | a(t, 0) = 0} and Pr = {t ∈
[0, T ] | a(t, 1) = 0} have a finite number of connected components, if y0, yl yr are essentially bounded and if
b and f are in L∞(ΩT ) then ∀p < +∞ we have y ∈ C0([0, T ], Lp(0, 1)).

Proof. We take t = 0 and ǫ > 0, reducing ǫ if necessary, we can suppose that a(s, 0) and a(s, 1) have a
constant sign on [t, t + ǫ], we will prove the result in the case a(t, 0) ≥ 0 and a(t, 1) ≤ 0 (the others can be
treated in the same way), it implies h(0, 1), h(0, 0) ≥ ǫ.
Let γ > 0, since y0 ∈ L∞(0, 1) we have a function ỹ0 ∈ C0([0, 1]) such that ||y0 − ỹ0||Lp(0,1) ≤ γ. We now
consider ỹ the weak solution of (45) with boundary value yl and yr and initial value ỹ0. Now by linearity
it is clear that y − ỹ is solution to (45) with boundary value 0 and initial value y0 − ỹ0. Therefore the

previous lemma asserts that ||y(t, .) − ˜y(t, .)||Lp(0,1) is continuous and we see that for t sufficiently small
||y(t, .) − ỹ(t, .)||Lp(0,1) ≤ 2.γ.
Now since ỹ satisfies (52), since b, f, ỹ ∈ L∞(ΩT ) and more importantly since ỹ0 continuous, we obtain

ỹ(ǫ, x) −−−−→
ǫ→0+

ỹ0(x) for any x in (0, 1), therefore we can conclude that
∫ φ(ǫ,0,1)

φ(ǫ,0,0)
|ỹ(ǫ, x) − ỹ0(x)|pdx −−−−→

ǫ→0+
0.

And finally we conclude that for ǫ sufficiently small ||ỹ(ǫ, .)− ỹ0(.)||Lp(0,1) ≤ γ, which implies that for ǫ small
enough:

||y(ǫ, .) − y0(.)||Lp(0,1) ≤ 4γ.

We can both translate and reverse the argument in time.

To finish this part we will prove an inequality about the continuity property of the linear operator providing
y in term of f , y0, yl and yr.

Proposition A.9. If a and ∂xa are continuous and if the sets Pl = {t ∈ [0, T ] | a(t, 0) = 0} and Pr = {t ∈
[0, T ] | a(t, 1) = 0} have a finite number of connected components then we have the inequality:

∀t ∈ [0, T ] ||y(t, .)||L1(0,1) ≤ (||f ||L1((0,t)×(0,1)) + ||y0||L1(0,1) + ||yl||L1((0,t)∩Γl) + ||yr||L1((0,t)∩Γr))

× ||a||L∞(ΩT )).e
t(||∂xa||L∞(ΩT )+||b||L∞(ΩT )) (56)

Proof. n Let us first suppose that a(s, 0), a(s, 1) ≥ 0 on [0, T ], this implies h(0, 0) ≥ t and e(t, 1) = 0, therefore
we can write:

||y(t, .)||L1(0,1) ≤

∫ φ(t,0,0)

0

∣

∣

∣

∣

∣

yl(e(t, x)). exp

(

∫ t

e(t,x)

b(r, φ(r, t, x))dr

)∣

∣

∣

∣

∣

dx (57)

+

∫ φ(t,0,0)

0

∣

∣

∣

∣

∣

∫ t

e(t,x)

f(t, φ(r, t, x)). exp

(
∫ t

s

b(s, φ(s, t, x))ds

)

dr

∣

∣

∣

∣

∣

dx (58)

+

∫ 1

φ(t,0,0)

∣

∣

∣

∣

y0(φ(0, t, x)). exp

(
∫ t

0

b(r, φ(r, t, x))dr

)∣

∣

∣

∣

dx (59)

+

∫ 1

φ(t,0,0)

∣

∣

∣

∣

∫ t

0

f(t, φ(r, t, x)). exp

(
∫ t

s

b(s, φ(s, t, x))ds

)

dr

∣

∣

∣

∣

dx (60)

=I1 + I2 + I3 + I4 (61)

Now we will treat each Ik separately. In I1 we perform the change of variables: s = e(t, x) (or equivalently
x = φ(t, s, 0)) and we get:

I1 =

∫ t

0

|yl(s)|.a(s, 0). exp

(
∫ t

s

b(r, φ(r, s, 0)) + ∂xa(r, φ(r, s, 0))dr

)

ds

Therefore we have I1 ≤ ||yl||L1(0,t).||a||L∞(ΩT ).e
t.(||∂xa||L∞(ΩT )+||b||L∞(ΩT )).
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For the second integral we have:

I2 =

∫ φ(t,0,0)

0

∣

∣

∣

∣

∣

∫ t

e(t,x)

f(t, φ(r, t, x)). exp

(
∫ t

s

b(s, φ(s, t, x))ds

)

dr

∣

∣

∣

∣

∣

dx (62)

≤

∫ t

0

∫ φ(t,0,0)

φ(s,0,0)

|f(t, φ(r, t, x))| . exp

(
∫ t

s

b(s, φ(s, t, x))ds

)

dxdr. (63)

This time we perform the change of variables: x̃ = φ(r, t, x). And we get:

I2 ≤ et(||∂xa||L∞(ΩT )+||b||L∞(ΩT )) ×

∫ t

0

∫ φ(r,0,0)

0

|f(t, x̃)|dx̃dr. (64)

In the same way we obtain:

I3 ≤ et(||b||L∞(ΩT )+||∂xa||L∞(ΩT )) ×

∫ φ(0,t,1)

0

|y0(x̃)|dx̃.

And finally for I4 we use x̃ = φ(r, t, x) to obtain:

I4 ≤ et(||b||L∞(ΩT )+||∂xa||L∞(ΩT ))

∫ t

0

∫ φ(r,t,1)

φ(r,0,0)

|f(t, x̃)|dx̃dr.

And combining the four inequalities we get (56), but we supposed that a(s, 0) and a(s, 1) did not change
signs between on [0, T ], still we have the desired estimates on two successive intervals [t0, t1] and [t1, t2] where
a(s, 0) and a(s, 1) do not change sign. But the initial data on [t1, t2] is the final value on [t0, t1] so we can
substitute the first estimate in the initial data of the second and get the estimate on the whole interval
[t0, t1].

Remark 10. The previous estimate and the well posedness in L∞(ΩT ) of the initial boundary value problem
(11) for data y0, yl, yr and f in L∞ show that the same problem is well posed in C([0, T ];L1(0, 1)) with
data in L1. And then since the equation is linear and because we have both the well-posedness in L∞(ΩT )
with essentially bounded data, and also the well-posedness in C0([0, T ];L1(0, 1)) with summable data we can
interpolate the two results and get well posedness in C0([0, T ];Lp(0, 1)) with data in Lp.
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