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ABSTRACT

This paper presents an application of the recent advances inthe field of Spherically Invariant Random Vectors (SIRV) mod-

elling for coherency matrix estimation in heterogeneous clutter. The complete description of the POLSAR data set is achieved

by estimating the span and the normalized coherency independently. The normalized coherency describes the polarimetric di-

versity, while the span indicates the total received power.The main advantages of the proposed Fixed Point estimator are that it

does not require any ”a priori” information about the probability density function of the texture (or span) and it can be directly

applied on adaptive neighborhoods. Interesting results are obtained when coupling this Fixed Point estimator with an adaptive

spatial support based on the scalar span information. Basedon the SIRV model, a new maximum likelihood distance measure

is introduced for unsupervised POLSAR classification. The proposed method is tested with both simulated POLSAR data and

airborne POLSAR images provided by the RAMSES system. Results of entropy/alpha/anisotropy decomposition, followed by

unsupervised classification, allow to discuss the use of thenormalized coherency and the span as two separate descriptors of

POLSAR data sets.
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NOMENCLATURE

BN : Boxcar Neighborhood.

[C] : generic covariance matrix.

FP : Fixed Point estimator.

i.i.d. : independent and identically distributed.

LLMMSE : Locally Linear Minimum Mean-Squared Error.

[M ] : generic normalized polarimetric coherency matrix.

ML : Maximum Likelihood.

MPWF : Multilook Polarimetric Whitening Filter.

P : generic span.

PDF : Probability Density Function.

PWF : Polarimetric Whitening Filter.

SCM : Sample Covariance Matrix.

SDAN : Span Driven Adaptive Neighborhood.

SIRP : Spherically Invariant Random Process.

SIRV : Spherically Invariant Random Vectors.

[T ] : generic polarimetric coherency matrix.
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I. I NTRODUCTION

A Synthetic Aperture Radar (SAR) measures both amplitude and phase of the backscattered signal, producing one complex

image for each recording. The sensors being able to emit or receive two orthogonal polarizations, fully POLarimetric Synthetic

Aperture Radar (POLSAR) systems describe the interactionsbetween the electromagnetic wave and the target area by means of

the Sinclair matrix [1]. Among the difficulties encounteredwhen using POLSAR imagery, one important feature is the presence

of speckle. Occurring in all types of coherent imagery, the speckle is due to the random interference of the waves scattered by

the elementary targets belonging to one resolution cell [2]. In general, POLSAR data are locally modelled by the multivariate,

zero mean, circular Gaussian probability density function, which is completely determined by the covariance matrix [3].

The recently launched POLSAR systems are now capable of producing high quality images of the Earth’s surface with meter

resolution. The decrease of the resolution cell offers the opportunity to observe much thinner spatial features than the decametric

resolution of the up-to-now available SAR images. Recent studies [4] show that the higher scene heterogeneity leads to non-

Gaussian clutter modelling, especially for urban areas. One commonly used fully polarimetric non-Gaussian clutter model is

the product model [5]: the spatial non-homogeneity is incorporated by modelling the clutter as the product between the square

root of a scalar random variable (texture) and an independent, zero mean, complex circular Gaussian random vector (speckle).

If the texture random variable is supposed to be a Gamma spatial distributed intensity, the product model is equivalent to the

well-knownK-distributed clutter model [6], [7].

For Gaussian polarimetric clutter model, the estimation ofthe polarimetric coherency matrix is treated in the contextof

POLSAR speckle filtering. The POLSAR adaptive filtering techniques can be roughly divided in two main classes [8]: based

on the optimization of the spatial support and based on the use of the local statistics to derive adaptive estimators. These

two directions are not exclusive since both of them can be applied simultaneously [9], [10]. For example, the refined Lee

filter couples eight edge-aligned directional neighborhoods with an adaptive estimator based on the Locally Linear Minimum

Mean-Squared Error (LLMMSE) criterion [9].

In the context of non-Gaussian polarimetric clutter models, several studies tackled POLSAR parameter estimation using the

product model. For deterministic texture, Novak et al. derived the Polarimetric Whitening Filter (PWF) by optimally combining

the elements of the polarimetric covariance matrix to produce a single scalar image [11], [12]. Using the complex Wishart

distribution, the PWF for homogeneous surfaces has been generalized to multilook PWF (MPWF) [13], [14]. In general, the

texture random variable is specified by the probability density function. For Gamma-distributed texture, Lopès and S´ery derived

the Maximum Likelihood (ML) estimator of the covariance matrix [13]. Moreover, the vector spatial LLMMSE filter applied

on the scalar ML texture estimator has also been introduced,when the texture variance and spatial correlation functions are ”a

priori” known [13]. In [15], De Grandi et al. performed an extensive study on the dependency of the normalized second-order

moment of intensity on polarization state forK-distributed clutter model. This dependency was condensedin graphical form by

a formalism called the polarimetric texture signature. This study has been applied for target detection and texture segmentation

using the discrete wavelet frame transform generated with the first derivative of aB-spline of order three as mother wavelet

[16].

The POLSAR information allows the discrimination of different scattering mechanisms. In [17], Cloude and Pottier intro-
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duced the target entropy and the entropy-alpha-anisotropy(H−α−A) model by assigning to each eigenvector the correspond-

ing coherent single scattering mechanism. Based on this decomposition, unsupervised classification for land applications was

performed by an iterative algorithm based on complex Wishart density function [18], [19].

The objective of this paper is to present a new coherency estimation technique [20] based on the Spherically Invariant

Random Vectors model [21], and to analyze the consequences that this model has on the conventional POLSAR processing

chain. The paper is organized as follows. Sect. II is dedicated to the presentation of the proposed estimation scheme. The

heterogeneity of polarimetric textured scenes is taken into account by coupling the ML normalized coherency estimatorwith

adaptive neighborhoods driven on the scalar ML span estimators. A new ML distance measure is also introduced for classifying

normalized coherency matrices under the SIRV model. In Sect. III, the results obtained using the proposed approach are

presented and compared to those given by the Gaussian ML estimator. Results ofH − α − A decomposition, followed

by unsupervised POLSAR classification allow to discuss the use of the normalized coherency and the span as two separate

descriptors of POLSAR data sets. Detailed discussion on theadvantages and the limitations of the SIRV model is given in

Sect. IV. Eventually, in Sect. V, some conclusions and perspectives are presented.

II. H ETEROGENEOUS MODEL FOR POLARIMETRIC TEXTURED SCENES

The goal of the estimation process is to derive the scene signature from the observed data set. In the case of spatially changing

surfaces (”heterogeneous” or ”textured” scenes) the first step is to define an appropriate model describing the dependency

between the polarimetric signature and the observable as a function of the speckle. In general, the multiplicative model [5] has

been employed for SAR data processing as a product between the square root of a scalar positive quantity (texture) and the

description of an equivalent homogeneous surface (speckle) by means of:

• the intensity descriptor for single-polarization SAR images [22], [23],

• the complex SAR signal descriptor for single-polarizationSAR data [24],

• the polarimetric target vector descriptor in lexicographic basis for monostatic POLSAR images, [11], [25], [26],

• the normalized polarimetric target vector descriptor in lexicographic basis, [27], [6], [28],

• the polarimetric covariance matrix descriptor for POLSAR data [29], [13].

In this paper, the polarimetric descriptors used are the target vectorsk = [k1, k2, k3]
T in the Pauli basis (monostatic acquisi-

tion). The following section presents an application of therecent advances, in the field of Spherically Invariant Random Vectors

modelling [20], for estimating span and normalized coherency matrices of high resolution POLSAR data.

A. Gaussian model

The elements of the vector are generally modelled by a multivariate zero mean, complex, Gaussian random process. The

probability density function (PDF) is given by the following expression [2]:

pm(k) =
1

πmdet{[T ]}exp
{
−k

†[T ]−1
k
}

, (1)
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where[T ] = E{kk
†} is the polarimetric coherency matrix, det{...} denotes the matrix determinant,† is the conjugate transpose

operator,m the dimension of the target vector (m = 3 for monostatic POLSAR acquisitions) andE{...} denotes the statistical

mean over the polarimetric channels.

According to Eq. 1, a Gaussian stochastic process is completely characterized by the coherency matrix. In this case, the

Maximum Likelihood (ML) estimator of the polarimetric coherency matrix is the Sample Covariance Matrix (SCM) obtain by

replacing the statistical mean by spatial averaging:

[T̂ ]SCM =
1

N

N∑

i=1

kik
†
i , (2)

where N is the number of samples. The SCM is statistically determined by the Wishart PDF [2].

Another POLSAR parameter is the span (or total power)P generally defined for each pixel as [1]:

PSLC = k
†
k. (3)

The corresponding multilook span can be estimated within a local neighborhood according to:

P = E
{
k
†
k
}

= Tr {[T ]} , (4)

where Tr{[T ]} denotes the trace of the matrix[T ]. Hence, the common span estimator for the Gaussian case can be directly

obtained from the SCM as:

P̂SCM = Tr
{
[T̂ ]SCM

}
. (5)

B. SIRV model

Spherically Invariant Random Vectors (SIRV) and their applications to estimation and detection in communication theory

were firstly introduced by Kung Yao [21]. The SIRV is a class ofnon-homogeneous Gaussian processes with random variance.

The complex m-dimensional measurementk is defined as the product between the independent complex circular Gaussian

vectorz (speckle) with zero mean and covariance matrix[M ] = E{zz†} and the square root of the positive random variableτ

(representing the texture):

k =
√

τz, (6)

It is important to notice that in the SIRV definition, the PDF of the texture random variable is not explicitly specified. Asa

consequence, SIRVs describe a whole class of stochastic processes defined by Eq. 6. This class includes the conventionalclutter

models having Gaussian,K-distributed, Chi, Rayleigh, Weibull or Rician PDFs [30].

For POLSAR data, the SIRV product model is the product of two separate random processes operating across two different

statistical axes:

• The polarimetric diversity is modelled by the multidimensional Gaussian kernel characterized by its covariance matrix

[M ].

• The randomness of spatial variations in the radar backscattering from cell to cell is characterized byτ . The corresponding

random process operates along the spatial axis given by the image support. Relatively to the polarimetric axis, the texture

random variableτ can be viewed as a unknown deterministic parameter from cellto cell.
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One major advantage of the SIRV clutter model is the high degree of generality with respect to other texture-aware models

employed in the literature [30], [4]. Nevertheless, this model is founded on the validity of three basic assumptions: the texture

random variable affects the backscattered power only, it ismultiplicative and spatially uncorrelated. When applied to high

resolution POLSAR clutter, the SIRV model postulates that the texture descriptorτ from Eq. 6 is identical for all polarization

channels.

Let nowp(τ) be the texture PDF associated to the SIRV model. The Spherically Invariant Random Process (SIRP) corre-

sponding to Eq. 6 has the following PDF [31]:

F{p(τ), [M ]} = pm(k) =

∫ +∞

0

1

(πτ)mdet{[M ]}exp

(
−k

†[M ]−1
k

τ

)
p(τ)dτ. (7)

1) Model identification: When using the product model, an identification problem can be pointed out: the SIRV model is

uniquely defined with respect to the covariance matrix parameter up to a multiplicative constant. Let[M1] and[M2] be two

covariance matrices such that[M1] = κ · [M2], (∀) κ ∈ R∗
+. Notice that the two sets of parameters defined as{τ1, [M1]} and{

τ2 = τ1√
κ
, [M2]

}
describe the same SIRV. For solving this identification problem, the covariance matrix has to be normalized.

In the following the covariance matrix[M ] is normalized such that Tr{[M ]} = m, with m the dimension of the target vector.

One important consequence of the imposed normalization condition is that the resulting normalized polarimetric coherency

matrix reveals information concerning the polarimetric diversity only: the total power information is transferred into the texture

random variable. The POLSAR data can be fully characterizedby coupling the normalized coherency matrix with the span

descriptor:

PSLC = k
†
k = τ(z†z). (8)

When operating on the polarimetric statistical axis, the span for the SIRV case is given by:

P = E
{
τ(z†z); τ

}
= τ · E

{
z
†
z
}

= τ · Tr {[M ]} = τ · m. (9)

An estimate ofP can be obtained when consideringτ as an unknown deterministic parameter from cell to cell.

2) Stationarity definition: In the following several generic concepts are recalled. Given a SIRP, this process is wide-sense

stationary if and only if both the texture random variable and the speckle random vector are wide-sense stationary. As the

speckle is a zero mean complex Gaussian vector, the latter means that the statistical sampleski used in the estimation process

must have the same theoretical covariance matrix[M ]. This condition is called ”matrix stationarity”.

However, as the results presented in this section can be applied whatever the texture PDF (∀ p(τ)), the previous properties

can be reformulated using the SIRV class of stochastic processes. Given a ”matrix stationary” stochastic process, thisprocess

is ”SIRV homogeneous” if and only if the texture random variable is ”texture homogeneous”. Where ”texture homogeneous”

means that it is possible to define a texture PDF (∃ p(τ)) such that the stochastic process can be described by the product model

from Eq. 6. We illustrate these properties using four local populations which often occur in practical POLSAR applications:

• One zero mean Gaussian process with covariance matrix[M ]: N (0, [M ]). Being a ”Gaussian stationary1” process, it is

also ”SIRP stationary” and ”SIRV homogeneous”. This model is widely used for POLSAR data analysis [32].

1A ”Gaussian stationary” process is a stochastic process whose Gaussian PDF does not change when shifted in time or space.
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• Two adjacent Gaussian processes with different covariancematrix:N =
{
N (1)(0, [M ]1),N (2)(0, [M ]2)

}
. The Gaussian

mixtureN is neither ”SIRP stationary” nor ”SIRV homogeneous” as the ”matrix stationarity” condition is not respected.

Generally, such cases are treated by employing adaptive estimation schemes [9], [8] in order to approximate the local

”Gaussian stationarity” condition.

• One K-distributed process [33] with Gamma distributed texturepG(τ ; τ , ν) and covariance matrix[M ]:

FK {pG(τ ; τ , ν), [M ]}. This process is ”SIRP stationary” as it is ”K stationary2” but obviously it is not ”Gaussian station-

ary”.

• Two adjacentK-distributed processes with two different Gamma texture PDF p
(1)
G (τ ; τ1, ν1), p

(2)
G (τ ; τ 2, ν2) and the same

covariance matrix[M ]: FK =
{
F

(1)
K

{
p
(1)
G (τ ; τ 1, ν1), [M ]

}
, F

(2)
K

{
p
(2)
G (τ ; τ 2, ν2), [M ]

}}
. TheK-distributed processes

F
(1)
K andF

(2)
K are ”SIRP stationary” and ”K stationary”, but the mixtureFK is not ”K stationary”. Despite this, the process

FK is ”SIRV homogeneous” as it is possible to define a texture PDFwhich models the Gamma mixture. As a consequence,

the results presented in this section can still be applied inthis case.

In conclusion, the two properties to be verified in order to apply the SIRV model are the ”matrix stationarity” and the ”texture

homogeneity”. Moreover, the latter considerably relaxes the ”texture stationarity” condition required when using explicit

texture models such as the Gamma or the Fisher PDF.

3) SIRV parameter estimation:In the field of target detection for radar applications, the SIRV model led to many investiga-

tions [34], [35], [36], [37]. In Eqs. 6 and 7, the normalized covariance matrix is an unknown parameter which can be estimated

from ML theory. In [31], Gini et al. derived the exact ML estimate [M̂ ] of the normalized covariance matrix whenτi are

assumed to be unknown deterministic parameters. ForN independent and identically distributed (i.i.d.) data, the likelihood

function to maximize with respect to[M ] andτi, is given by:

Lk(k1, ...,kN ; [M ], τ1, ..., τN ) =
1

πmNdet{[M ]}N
×

N∏

i=1

1

τm
i

exp

(
−k

†
i [M ]−1

ki

τi

)
. (10)

For a given [M], maximizingLk(k1, ...,kN ; [M ], τ1, ..., τN ) with respect toτi yields the texture ML estimator

τ̂i =
k
†
i [M ]−1

ki

m
. (11)

Replacingτi in Eq. 10 by their ML estimates the generalized likelihood isobtained as:

L′
k(k1, ...,kN ; [M ]) =

1

πmNdet{[M ]}N
×

N∏

i=1

mmexp(−m)

(k†
i [M ]−1ki)m

. (12)

The ML estimator of the normalized covariance matrix in the deterministic texture case is obtained by cancelling the gradient

of L′
k

with respect to[M ] as the solution of the following recursive equation:

[M̂ ]FP = f([M̂ ]FP ) =
m

N

N∑

i=1

kik
†
i

k
†
i [M̂ ]−1

FPki

=
m

N

N∑

i=1

ziz
†
i

z
†
i [M̂ ]−1

FPzi

. (13)

This approach has been used in [38] by Conte et al. to derive a recursive algorithm for estimating the matrix[M ]. This algorithm

consists in computing the Fixed Point off using the sequence([M ]i)i≥0 defined by:

[M ]i+1 = f([M ]i). (14)

2A ”K stationary” process is a stochastic process whoseK PDF does not change when shifted in time or space.
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This study has been completed by the work of Pascal et al. [20], [39], which recently established the existence and the

uniqueness, up to a scalar factor, of the Fixed Point estimator of the normalized covariance matrix, as well as the convergence

of the recursive algorithm whatever the initialization. The algorithm can therefore be initialized with the identity matrix [M ]0 =

[Im]. One way to analyze the convergence of the Fixed Point estimator consists in evaluating the following criterion:

C(i) =
‖[M̂ ](i + 1) − [M̂ ](i)‖F

‖[M̂ ](i)‖F

, (15)

where‖...‖F represents the Frobenius norm. When computing the FP estimator, Eq. 14 is iterated untilC becomes smaller

than a predefined lower limit. Note that only few iterations suffice to reach an error less than10−15 [20].

It has also been shown in [31] and [38] that the recursive estimation scheme from Eq. 14 can be applied to derive an exact

ML estimator of the normalized covariance matrix:

[M̂ ]ML =
m

N

N∑

i=1

hm+1(k
†
i [M̂ ]−1

MLki)

hm(k†
i [M̂ ]−1

MLki)
kik

†
i , with hm(q) =

∫ ∞

0

τp exp
( q

τ

)
p(τ)dτ. (16)

In the previous equation, the exact ML estimator depends on the texture PDF through the SIRV density generating function

hm(q). Chitour and Pascal have been recently demonstrated that Eq. 16 admits a unique solution and that its corresponding

iterative algorithm converges to the Fixed Point solution for every admissible initial condition [40]. Pascal et al. have also

demonstrated that normalized covariance ML estimator developed under the deterministic texture case (Eq. 13), yieldsalso an

approximate ML estimator under stochastic texture hypothesis [20], [39].

We propose to apply these results in estimating normalized coherency matrices for high resolution POLSAR data. The main

advantage of this approach is that the local ”scene heterogeneity” can be taken into account without any ”a priori” hypothesis

regarding the texture random variableτ (Eq. 14 does not depend onτ ). The obtained Fixed Point is the approximate ML

estimate under the stochasticτ assumption and the exact ML under deterministicτ assumption. Moreover, the normalized

polarimetric coherency matrix estimated using the Fixed Point method is unbiased and asymptotically Gaussian distributed

[20], [39].

Note also that the texture estimator from Eq. 11 can be directly linked to the total scattered power (span) according to Eq.9.

By estimating the normalized coherency as the Fixed Point solution of Eq. 13, the derived estimate is independent of the total

power and it contains polarimetric information only. Usingthis matrix, it is possible to compute the SIRV span ML estimator

for unknown deterministicτ as:

P̂PWF = k
†[M̂ ]−1

FP k. (17)

One can observe that the span estimator from Eq. 17 has the same form as the Polarimetric Whitening Filter (PWF) introduced

by Novak et al. in [11]. The only difference is the use of the normalized coherency estimate given by the Fixed Point estimator

instead of the conventional Sample Covariance Matrix.

Finally, it is possible to derive an estimate of the conventional polarimetric coherency matrix according to Eq. 6:

[T̂ ]FP =
P̂PWF

m
[M̂ ]FP . (18)

4) Gaussian model in the SIRV context:The multivariate Gaussian distribution presented in Sect.II-A is obviously a

member of the SIRV class. Let us assumeN i.i.d. realizations of the target vectork. The SCM from Eq. 2 is the ML
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estimator of[T ] in Gaussian clutter, but not in clutter described by the product model [41]. In the specific case of completely

correlated texture (τ = τi, ∀ i ∈ {1, ..N}), Richmond proved that SCM is again the exact ML estimator of[M ] provided the

M-normalization is respected [42]. In fact, the completelycorrelatedτ case is equivalent to the Gaussian model for a given

realization of data across all resolution cells [31]. Consequently, it is possible to define the normalized Sample Covariance

Matrix as:

[M̂ ]SCM = m
[T̂ ]SCM

Tr{[T̂ ]SCM}
(19)

In other words, in Gaussian clutter the local powerP is no more random in Eq. 9, butm · τ = P with probability one [31].

Based on this consideration and according to Eq. 17, the Multilook Polarimetric Whitening Filter (MPWF) can be defined as:

P̂MPWF =
1

N

N∑

i=1

ki
†[M̂i]

−1
FPki. (20)

MPWF is the span ML estimator for Gaussian clutter with knownpowerP and it is unbiased [13], [14]. When compared to

the span estimator from Eq. 5, the main advantage of MPWF is that it takes into account the correlation between the different

polarization channels (speckle) in the whitening process.

C. Spatial support

In the estimation process a certain number of samples must begathered for deriving the observation vector. In this purpose,

the boxcar sliding neighborhood (BN) is usually employed. The main drawback of BN non-adaptive neighborhood is that the

available number of samples is directly proportional with the loss of spatial resolution. In order to deal with this undesired effect,

several strategies to obtain locally Adaptive Neighborhoods (AN) were proposed for POLSAR data processing. In [8], three

local neighborhoods are analyzed and their performances are discussed with respect to different end-user applications (visual

interpretation, classification...). Experiments on real data sets have shown that the Intensity-Driven-Adaptive-Neighborhood

(IDAN) represents, on the whole, a good trade-off between preserving signal characteristics and gathering a significant number

of samples for coherency andH − α − A parameter estimation [8], [43].

Recent studies have revealed that the original IDAN algorithm tends to introduce a bias with respect to the radiometry

information [44]. The main reasons are the use of a symmetricconfidence interval around the mean for the Gamma distributed

intensity and the estimation of the initial seed by the median computed within a3 × 3 neighborhood. In order to deal with

these problems the SDAN algorithm (Span-Driven-Adaptive-Neighborhood) has been introduced in [45]. It allows to use

heterogeneous scene models, such as SIRV, in the estimationstep. Note that this approach is not optimal as the resultingAN

is driven on the texture (span) information only. One may useother existing locally adaptive neighborhoods (e.g. directional

neighborhoods [9]) but, up to now, the existing AN algorithms are also tributary to the span information.

SDAN successively truncates the texture PDF using two symmetric confidence intervals around the mean. The truncation

thresholds are expressed with Gamma-distributed texture.However, different PDFs can be truncated according to the same

thresholds (initially set using a Gamma prior). In this paper, the SDAN is employed to eliminate eventual outliers from the

local neighborhood. The main advantage of this approach consist in selecting spatially connected pixels within a certain

confidence interval. Its main inconvenient is the estimation bias which can be induced by truncating the significant partof the

unknown texture PDF.
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Within the SIRV context, the SDAN algorithm operates under deterministic texture hypothesis: ifτ is deterministic, the

span statistics over ”matrix stationary” areas is given by the Gamma PDF resulting from the complex Gaussian kernel. This is

coherent with the general hypothesis adopted for POLSAR speckle filtering stating that the local ”matrix stationarity”property

is revealed by changes in the span image when texture is absent [9].

D. Application to POLSAR parameter estimation

One way to derive the normalized coherency matrix is the normalized Sample Covariance estimator, obtained by locally

replacing the statistical mean by spatial average within the sliding neighborhoodW :

[M̂ ]SCM (i, j) =
m

Tr
{

[T̂ ]SCM

} [T̂ ]SCM with [T̂ ]SCM =
1

card{W(i, j)}
∑

(p,q)∈W(i,j)

k(p, q)k†(p, q), (21)

where(i, j) represent the current range/azimuth position and card{W} denotes the cardinal ofW . The main advantage of the

[M̂ ]SCM estimator consists in deriving the polarimetric covariance matrix independently of the span for the Gaussian case.

The normalized SCM estimator presents also one major disadvantage: it is not ”SIRP stationary” and, as a consequence, this

estimator is not consistent over textured areas. Finally, although the derivation of the normalized SCM estimator fromthe

standard SCM estimator is straightforward, we could not findany specific paper to report its use for POLSAR data.

In this paper, we propose to extend the estimation of the normalized polarimetric coherency matrix by using a heterogeneous

scene model over the sliding neighborhood. The Fixed Point estimator of the normalized covariance matrix for the SIRV

model is applied using the procedure described in Sect. II-B. More precisely, the FP normalized coherency matrix is computed

iteratively as:

[M̂l]FP (i, j) =
m

card{W(i, j)}
∑

(p,q)∈W(i,j)

k(p, q)k†(p, q)

k†(p, q)[M̂l−1]
−1
FP (i, j)k(p, q)

with [M̂0]FP = [Im], (22)

wherel is the iteration index. Eq. 22 gives the covariance matrix estimate of the SIRV complex Gaussian kernel, without

imposing any statistical constraint over the texture random variableτ . The resulting matrix[M̂ ]FP is asymptotically Gaussian

distributed. The proposed procedure (SDAN-FP) starts by computing the adaptive neighborhood using the SDAN algorithm

presented in Sect. II-C at each range/azimuth position. Theresulting adaptive neighborhood is supposed to respect the”matrix

stationarity” condition. Finally, the FP estimator is applied to derive the normalized polarimetric coherency matrixestimate

under compound Gaussian polarimetric clutter model (Eq. 22).

Another physical parameter to be estimated is the total power. For the SIRV model, the PWF span estimator is the ML

estimator, hence it should be applied for textured areas. However, on Gaussian textureless areas, a stronger speckle reduction

can be obtain using the MPWF estimator. In practical applications, the PWF and the MPWF estimators should be applied as

follows: on ”Gaussian stationary” regions the best span estimator is the MPWF, while on ”SIRV homogeneous” areas only, the

PWF should be applied. We propose to deal with this trade-offby applying the LLMMSE criterion for the span estimation [9]:

P̂LLMMSE = P̂MPWF + αLLMMSE(P̂PWF − P̂MPWF ) with αLLMMSE =
σ2

PWF (1 + σ2
n)

σ2
MPWF − µ2

MPWF σ2
n

, (23)

whereµMPWF , σPWF , σMPWF are respectively the signal mean and standard deviations computed inside the local estimation

neighborhood and whereσn is the noise standard deviation (”a priori” known). In Eq. 23, the two span estimators can be

computed according to Eqs. 17 and 20.
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In the last stage, it also possible to unify these two descriptors by multiplying them according to the SIRV model from Eq.6.

An important remark is that by multiplying the two descriptors the separation between the total received power (span) and the

polarimetric information (speckle normalized coherency)is lost. Finally, the resulting coherency matrix[T̂ ] does not obey the

Wishart PDF as it depends on the estimated span PDF.

[Figure 1 about here.]

In summary, this section introduces a novel estimation scheme (see Fig. 1) for deriving normalized polarimetric coherency

matrices and resulting estimated span. The proposed algorithm couples span-driven multi-resolution techniques [45]with

heterogeneous SIRV scene models [20] to deal with the polarimetric texture inside the estimation neighborhood. It is important

to notice that the proposed Fixed Point estimator uses normalized coherency matrix inversion and thus it works only with

Hermitian positive definite normalized coherency matrices. This constraint is still acceptable since, in practice, image coherency

matrices are generally of full rank (3 for monostatic POLSAR data) [46]. However, in the specific case of a non-invertible

matrix, which can correspond to a strongly polarized scattered signal, the SIRV model can be applied by using only the nonzero

signal subspace.

E. Distance measures for POLSAR segmentation

Classification of ground cover with POLSAR data is an important application [17], [18], [19], [47], [48], [49]. Generally, one

has to find a distance between the pixel covariance matrix[C] and the class center[C]ω. Based on this distance, conventional

clustering methods have already been introduced with POLSAR data: ”naive” Bayesian ML classifier or K-means [18], fuzzy

K-means or Expectation-Maximization [47].

When the POLSAR data are modelled by a stochastic process with a known PDF, it is possible to derive optimal ML distance

measures (e.g. the Wishart distance for Gaussian processes). In [27], Yueh et al. derived an optimal ML distance measurefor

terrain cover classification using the normalized target vector in the lexicographical basis. The adopted normalization condition

was the Euclidian norm and the distance measure was computedapplying the Bayesian ML classifier with the PDF of the

normalized polarimetric data. Note that in Yueh’s approach, the covariance matrix is estimated using the sample covariance

matrix (ML estimator only with Gaussian clutter). In consequence, the derived optimal distance is a Generalized Maximum

Likelihood distance for Gaussian clutter only.

We propose the following general binary hypothesis test fora given classω:

{
H0 : [C] = [C]ω
H1 : [C] 6= [C]ω

(24)

According to the Neyman-Pearson Lemma, the LRT (LikelihoodRatio Test) provides the most powerful test [50]:

Λ =
pm(k1, ...,kN/H1)

pm(k1, ...,kN/H0)
. (25)

For Gaussian clutter, maximizing the LRT from Eq. 25 and replacing the pixel coherency matrix[T ] with the ML estimate
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[T̂ ]SCM is equivalent to minimizing the the conventional Wishart distance:

DWishart

(
[T̂ ]SCM , [T ]ω

)
= ln

det{[T ]ω}
det
{

[T̂ ]SCM

} + Tr
{

[T ]−1
ω [T̂ ]SCM

}
. (26)

This distance has been widely used for supervised and unsupervised POLSAR data clustering [18], [19], [47].

In the case of the SIRV model, one can rewrite the hypothesis test as:
{

H0 : [M ] = [M ]ω ⇔ k =
√

τz, with z ∼ N (0, [M ])
H1 : [M ] 6= [M ]ω ⇔ k =

√
τz, with z ∼ N (0, [M ]ω)

(27)

whereτ is the unknown deterministic texture.

For a given class[M ]ω, the LRT with respect to the textureτ and the normalized coherency matrix[M ] is given by:

ΛSIRV =

∏N

n=1
1

πmτm

n
det{[M ]ω}exp

{
−k

†
n[M ]−1

ω kn

τn

}

∏N

n=1
1

πmτm

n
det{[M ]}exp

{
−k

†
n[M ]−1

kn

τn

} . (28)

Notice the likelihood function in Eq. 28 does not use the stochastic texture description as the PDFp(τ) is supposed unknown in

the SIRV model. As previously stated in Sect. II-B.3, the texture parameterτ can be considered either as a random variable with

unknown PDFp(τ) or as an unknown deterministic parameter with PDFp(τ) = δ(τ − τn) which characterizes yet a particular

SIRV process. It can be shown that the ML estimation of the coherency matrix yields a good approximate ML estimate in the

first case and the true ML estimate in the second case [31], [38] . The general PDF being unknown, it is therefore impossible

to derive a texture independant closed-form expression forthe Likelihood Ratio of the test given by Eq. 27. This procedure

is here simplified, considering a particular SIRV process with a texture characterized by an unknown deterministic parameter.

Consequently, each resolution cell is now associated with its ownp(τ) = δ(τ − τn) in Eq. 7, whereτn are the unknown

deterministic texture variables. This way the texture descriptor can be discarded for each pixel independently.

By taking the natural logarithm in Eq. 28, one obtains:

ln(ΛSIRV ) = −N ln
det{[M ]ω}
det{[M ]} −

N∑

n=1

k
†
n

(
[M ]−1

ω − [M ]−1
)
kn

τn

. (29)

Now, since theτn’s and [M ] are unknown, they are replaced by their ML estimates from Eq.11 and Eq. 13. The resulting

Generalized Likelihood Ratio TestΛ′
SIRV is given by:

ln(Λ′
SIRV ) = −N ln

det{[M ]ω}
det
{
[M̂ ]FP

} − m
N∑

n=1

k
†
n[M ]−1

ω kn

k
†
n[M̂ ]−1

FP kn

+ Nm. (30)

Maximizing the generalized LRT over all classes is equivalent to minimizing the following SIRV distance:

DSIRV

(
[M̂ ]FP , [M ]ω

)
= ln

det{[M ]ω}
det
{

[M̂ ]FP

} +
m

N

N∑

n=1

k
†
n[M ]−1

ω kn

k
†
n[M̂ ]−1

FP kn

. (31)

Notice that computing the distance from Eq. 31 needs the original scattering vectorskn.

In this paper, the distance measure from Eq. 31 is used as a dissimilarity measure in the conventional K-means clusteringfor

POLSAR data. The full description of the K-means algorithm can be found in [18].
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In summary, this section introduces a new distance measure between normalized coherency matrices. The resulting ap-

proximate generalized ML distance is optimal, in the generalized LRT sense, for POLSAR data characterized by the SIRV

model.

An interesting remark concerning the SIRV distance can be observed in Eq. 31. On one hand, when the texture (span

information) is high, the second term of the SIRV distanceDSIRV becomes small and the distance measure is dominated

by the determinants ratio. This usually corresponds to strongly polarized targets with a dominant scattering mechanism (eg.

dihedral, trihedral ...). On the other hand, with smaller span values, the distance is dominated by the second term whichtakes

into account theN observed samples. This second case often corresponds to distributed targets.

III. R ESULTS AND DISCUSSION

This section has two main objectives. The first one consists in evaluating the performance of the normalized coherency

estimation techniques presented in Sect. II. The second objective is to show the improvement in the conventional POLSAR

processing chain brought by introducing the normalized coherence matrix related to the SIRV model.

Three different estimation techniques are analyzed: the normalized Sample Covariance Matrix coupled with the7×7 Boxcar

Neighborhood (BN-SCM) and the Fixed Point estimator coupled either with the7×7 Boxcar Neighborhood (BN-FP) or with the

SDAN adaptive neighborhood (SDAN-FP). In all three cases, the corresponding span image is estimated using the LLMMSE

estimator from Eq. 23. The parameters used for the SDAN algorithm areLeq = 3 andNmax = 50. Note thatNmax is limiting

the number of samples for the SDAN region growing only. The testing of SDAN background pixels is not limited to a fixed

number of samples to approximate the final i.i.d. condition (see Appendix A).

A. Simulated POLSAR data

As, for real data, it is impossible to find reference regions with known coherency matrix, the effectiveness of the estimation

schemes is demonstrated using simulated POLSAR data [30].

1) Gaussian case:The first POLSAR data set consists of four adjacent Gaussian regions as presented in Fig. 2. Each of the

four quadrants is associated with a known deterministic texture value [Fig. 2-(a)] and a known theoretical covariance matrix.

Using these parameters each component of the polarimetric target vector is simulated accordingly. Fig. 2-(b) illustrates the

initial span image computed using Eq. 3 and Fig. 2-(c) shows the resulting amplitude color composition of the three target

vector components.

[Figure 2 about here.]

The LLMMSE spanP and the normalized coherency matrix[M ] are estimated using the three different estimation schemes.

Note that in the Gaussian case, the optimal ML estimation technique is the BN-SCM from Fig. 3-(a) and Fig. 3-(d). Inside each

quadrant, the stochastic process characterizing the data is ”Gaussian stationary”, hence it is also ”SIRV homogeneous”. The

BN-FP estimation yields quite similar results, from the visual point of view, as illustrated in Fig. 3-(b) and Fig. 3-(e). However,

the use of the BN is associated with the well-known edge-blurring effect as the ”matrix stationarity” condition is not respected
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over the transitions between the quadrants. The SDAN-FP estimation reduces this undesired effect as presented in Fig. 3-(c)

and Fig. 3-(f). As a general remark, the blurring is more present within the normalized coherency diagonal elements thanwithin

the span images due to the use of the adaptive LLMMSE span estimator.

[Figure 3 about here.]

In order to objectively asses the estimation performances,the mean and the variance for each element of the normalized

coherency are computed over the SE quadrant. A global error measureǫ for the normalized coherency matrix is also introduced

as:

ǫ =
1

N

N∑

i=1

‖[M̂i] − [Mref ]‖F

‖[Mref ]‖F

. (32)

where[Mref ] is the reference normalized coherency matrix used for data simulation. As observed in Tab. I, the best results

are obtained using the BN-SCM estimator. Being the ML estimator for ”Gaussian stationary” regions, the SCM is used as

benchmark for the SDAN neighborhood and the FP estimator. The mean value is well preserved for both BN-FP and SDAN-FP

estimates, while the variance of the BN-FP is smaller than the measured variance of the SDAN-FP. The latter observation is

explained by the fact that the boxcar neighborhood is optimal on such ”SIRV homogeneous” regions. One can also note that,

despite the mean of each element of the normalized coherencybeing quite similar, a better error measure is provided by the

ǫ parameter. Using the Frobenius norm, which is a norm associated to the inner product on the ring of all complex matrices,

the corresponding errorǫ shows that the smallest error is obtained for the optimal BN-SCM estimator. When introducing the

FP estimator,ǫ increases and it increases even more by using the SDAN adaptive spatial support. This behavior corresponds

to the expected theoretical observations. However, it is important to notice that for both BN-FP and SDAN-FP the error isnot

increased by more than7% with respect to the ML estimator. This is acceptable for the POLSAR applications where the clutter

is characterized by a ”Gaussian stationary” stochastic process.

[Table 1 about here.]

A similar objective performance assessment is carried out for the estimation of the span image. Tab. II shows the span

mean ratio and the speckle coefficient of variation computedfor the same ”Gaussian stationary” region. As for the normalized

coherency, the bias in the estimated radiometry is less than7% for all three estimation techniques. An interesting remark

consists in the fact that, when using the Fixed Point estimator, the bias from Tab. II is also linked with the average computed

over the corresponding homogeneous region. Even if the meanratio is a standard parameter for evaluating the speckle filter

radiometric bias, this parameter is not so well adapted for the Fixed Point estimation. Although being asymptotically Gaussian

distributed, the FP estimator is outperformed by the SCM (MLestimator for Gaussian clutter) with a fixed number of samples.

Consequently, the average over homogeneous area should be coupled with the estimation of the FP normalized coherency over

the same homogeneous population for optimal performances.This effect can be noticed with the SDAN-FP span, where the

local SDAN neighborhood can gather more than49 samples over ”Gaussian stationary” areas. The resulting SDAN-FP span

estimator exhibits a radiometric bias less than1% (same as for BN-SCM).

[Table 2 about here.]
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In summary, subjective and objective performance assessment carried out for Gaussian POLSAR clutter shows that, despite

being suboptimal, the proposed Fixed Point estimator and the adaptive SDAN neighborhoods give good overall performances.

The corresponding error measure is less than7% for all estimation schemes.

2) SIRV case: The second simulated POLSAR data set proposes the same four quadrants, but with Gamma distributed

texture [Fig. 4-(a)]: each quadrant isK-distributed. The texture coefficient of variation used forsimulation equals3, which

corresponds to a highly non-Gaussian clutter (urban areas). Fig. 4-(b) presents the initial span image. Fig. 4-(c) shows the

corresponding amplitude color composition of the three target vector components.

[Figure 4 about here.]

The overall data set is not ”SIRV homogeneous” as the ”matrixstationarity” condition is not respected on the boundaries,

however each quadrant is ”SIRP stationary”. In the following, we shall use only the ”SIRV homogeneity” assumption over each

quadrant, namely the texture PDF is supposed unknown. Fig. 5illustrates the LLMMSE spanP and the normalized coherency

matrix [M ] estimated using the three different estimation schemes.

[Figure 5 about here.]

As the data set is not Gaussian, the PWF span estimator is dominant in the LLMMSE criterion and the corresponding

speckle reduction is performed using only three samples. Hence, concerning the LLMMSE span estimation, BN-SCM, BN-FP

and SDAN-FP [Fig. 5-(a),(b),(c)] look similar from the visual point of view.

The effectiveness of the Fixed Point estimator in compound Gaussian clutter can be observed in Fig. 5-(e),(f). While the

BN-SCM normalized coherency [Fig. 5-(d)] presents a ”patchy” appearance, the BN-FP estimation [Fig. 5-(e)] provides better

visual homogeneity within each quadrant. The adaptive SDANspatial support [Fig. 5-(f)] assures better edge preservation for

the transitions between quadrants. One important issue is that the diagonal elements of the BN-FP normalized coherencyfor

the SIRV case [Fig. 5-(e)] have the same visual aspect as for the previous Gaussian POLSAR data set [Fig. 3-(e)]. This shows

that the FP estimate of the covariance matrix does not dependon the texture PDF.

Using the same reference region as for Gaussian case, Tab. III presents the mean and the variance for each element of the

normalized coherency, and also the overall error measureǫ computed for the three estimation schemes. BN-FP and SDAN-FP

outperform BN-SCM in retrieving the reference value and also in terms of variance reduction. Since the ”matrix stationarity” is

always assured within the reference region, BN-FP outperforms the SDAN-FP also. Finally, another interesting result consists

in the fact that Tab. III indicates the same BN-FP value for theǫ error parameter as in the Gaussian case (Tab. I). This objective

issue confirms the visual comparison mentioned in the previous paragraph.

[Table 3 about here.]

[Table 4 about here.]
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Objective performance assessment has been carried out for the LLMMSE span estimation also. Tab. IV presents the

Kolmogorov–Smirnov (KS) test with respect to the referencespan used for simulation. The resulting KS values, computed

over the entire span image, indicate that BN-FP outperformsBN-SCM. The best results are reported when using the SDAN-FP

estimator. Note that the KS distance is rather smallǫ ∈ (0.07, 0.12) in all three cases.

B. Airborne POLSAR data

To illustrate the improvements in the standard POLSAR processing chain, results obtained with high and very high resolution

airborne data are reported. Both data sets were acquired by the airborne ONERA RAMSES system [51].

1) High resolution POLSAR data:The first POLSAR data set was acquired in Brétigny, France. The mean incidence angle

is 300. It represents a fully polarimetric (monostatic mode) X-band acquisition with a spatial resolution of approximately1.5 m

in range and azimuth.

[Figure 6 about here.]

Fig. 6-(a) presents the color composition of target vector amplitudes. The target area is composed of three buildings, a

parking lot and the surrounding agricultural areas. For further illustration, a non-Gaussian urban (building) regionhas been

selected, namely the span image superposed over the airborne photo from Fig. 6-(b).

The LLMMSE span and the normalized coherency matrix are estimated using the three different estimation schemes [Fig. 7].

The BN-FP span illustrated in Fig. 7-(b) exhibits better whitening in the estimation process than the BN-SCM span from Fig. 7-

(a). This can be observed on the isolated brilliant pointwise structures surrounding the building. However, both BN-SCM and

BN-FP are tributary to the ”ring effect” (two large dips on a spatial profile near the boundaries of a pointwise target) induced

by coupling the BN spatial support with the LLMMSE estimator[52]. This effect is reduced in the SDAN-FP span image as it

can be observed over the metallic structures present on the roof of the building from Fig. 7-(c).

[Figure 7 about here.]

Visual assessment is carried out also with normalized coherency[M ] estimates. Color compositions, constructed from either

the diagonal elements of[M ] or the correspondingH−α−A parameters [17], are computed for the three estimation techniques

[Fig. 7-(d),(e),(f) and Fig. 7-(g),(h),(i)]. Both parameters exhibit the same behavior:

• BN-SCM: ”patchy” appearance mainly due to the texture;

• BN-FP: blurring as the ”matrix stationarity” condition is not respected;

• SDAN-FP: higher spatial feature preservation but more variance.

As the target area is highly heterogeneous, the SDAN-FP estimation is a good trade-off between robust estimation and spatial

resolution preservation.

Finally, it is possible to derive the SDAN-FP polarimetric coherency matrix as the product between the span image [Fig. 7-(c)]

and the corresponding normalized coherency [Fig. 7-(f)]. In Fig. 8, the SDAN-FP coherency is compared with the conventional
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coherency matrices obtained by the sample covariance matrix estimator coupled with two spatial supports: the boxcar neigh-

borhood (BN) and the Intensity-Driven-Adaptive-Neighborhood (IDAN) [8]. Subjective visual assessment can be expressed in

terms of the hue-saturation-lightness (HSL) color space [53] by associating the lightness to the span and the saturation to the po-

larimetric diversity. The SDAN-FP coherency from Fig. 8-(c) exhibits better performances in terms of lightness and saturation,

meaning that both the span and the normalized coherency are better estimated. The correspondingH − α classification maps

[17] are illustrated in Fig. 8-(d),(e),(f). ForH −α classification also, the SDAN-FP coherency provides betterperformances as

it achieves stronger noise reduction than the IDAN filter.

[Figure 8 about here.]

One key issue to be discussed is weather the normalized coherency matrix and the span should be aggregated in the final

estimation step or not (the question mark from Fig. 1). Most of the existing processing chains use the conventional coherency

matrix for representing POLSAR data for unsupervised land cover classification [18], [19], [47], [43] and for target detection

applications [33], [12]. Due to the SIRV model identification problem discussed in Sect. II-B, the complete descriptionof

the POLSAR data set is achieved by estimating the span and thenormalized coherency independently. The latter describesthe

polarimetric diversity, while the span indicates the totalreceived power. Moreover, the Fixed Point estimation of thenormalized

coherence does not depend on the span information. Given these facts, we propose to investigate this problem in the framework

of unsupervised POLSAR classification. The classification scheme discussed in the following is the standard WishartH − α

segmentation [18]. For segmenting the normalized coherency, we have modified the WishartH − α algorithm by replacing

the Wishart distance with the SIRV ML distance discussed in Sect. II-E. For comparison, we have also used the scalar Gamma

K-means classification withH − α initialization. The corresponding ML distance measure is obtained using the GLRT with

the Gamma PDF.

[Figure 9 about here.]

Fig. 9 illustrates the POLSAR unsupervised classification results using three descriptors estimated by SDAN-FP: span [Fig. 9-

(a)], coherency [Fig. 9-(b)] and normalized coherency [Fig. 9-(c)]. The selected scene is composed of both Gaussian (agricul-

tural fields) and non-Gaussian (urban) areas. This case is encountered in many practical POLSAR classification applications.

Fig. 9-(e) presents the8-class segmentation map obtained using the SDAN-FP coherency matrix. When compared to the scalar

unsupervised classification map [Fig. 9-(d)] obtained using span only, one can observe the high degree of similarity between

them. This leads to the following conclusion: the WishartH − α classification is mainly influenced by the information con-

tained in the span image. Regarding the polarimetric information, Fig. 9-(f) presents the classification map computed using the

normalized coherency matrix and the associated SIRV distance. The visual assessment of Fig. 9-(e) and Fig. 9-(f) reveals that a

significant part of the polarimetric information is lost when using the standard coherency matrix: the building class separation

is lost, as well as the natural canonical targets (trihedral, dihedral...) present over different ”field” classes. One important

remark concerning the WishartH − α classification is that a large number of samples are usually assigned to the class feature

vector when iterating the K-means clustering algorithm. Due to this, locally Gaussian areas (agricultural fields) may become

heterogeneous regions as neither the ”matrix stationarity” nor the ”texture homogeneity” conditions are respected.
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The same behavior can be also observed in Fig. 9-(g),(h),(i)with the classification maps obtained after basic scattering

mechanism identification [54]. The use of polarimetric indicators, derived from the eigenvector-eigenvalue decomposition of

the normalized coherency matrix, allows the interpretation of each cluster scattering mechanism from Fig. 9-(d),(e),(f). In all

three cases, the POLSAR parameters were computed using the SDAN-FP normalized coherency from Fig. 9-(f). The observed

scene is then classified into three canonical scattering types: even bounce (blue or cyan), odd bounce (red or dark red) and

volume scattering (green) [55].

2) Very high resolution POLSAR data:The second POLSAR data (Fig. 10) set was acquired in Toulouse, France with a

mean incidence angle of500. It represents a fully polarimetric (monostatic mode) X-band acquisition with a spatial resolution

of approximately50 cm in range and azimuth.

[Figure 10 about here.]

Fig. 11 presents the visual assessment of the proposed estimation scheme applied to very high resolution POLSAR data

acquired in urban environment. The obtained results are visually compared to those obtained by the refined Lee filter operating

under Gaussian clutter hypothesis [9]. With a50 cm spatial resolution, the SDAN-FP normalized coherency from Fig. 11-(c)

reveals higher variability in polarimetric signatures than with a1.5 m spatial resolution [Fig. 7-(f)]. Fig. 11-(b) presents thecolor

composition of the diagonal elements of the SDAN-FP coherency matrix after multiplication by the corresponding LLMMSE

span. When compared to the polarimetric coherency derived by the refined Lee filter [Fig. 11-(a)], the SDAN-FP coherency

better preserves the polarimetric and radiometric signatures over thin spatial features (brilliant points and edges). This can

be also observed in the8-class segmentation maps obtained by WishartH − α clustering [Fig. 11-(d),(e)]. It is important

to stress that, for very high resolution urban POLSAR data, the polarimetric coherency matrix is not Wishart distributed.

Hence, the unsupervisedH −α classification based on the SIRV distance measure can be properly applied using the SDAN-FP

normalized coherency. The result is illustrated in Fig. 11-(f). Finally, the three classification maps are interpretedaccording to

the basic scattering mechanism identification procedure [54]. Subjective visual assessment indicates that quite realistic results

are obtained using the SDAN-FP normalized coherency descriptor [Fig. 11-(i)]: buildings and cars are mainly retrievedin the

red ”odd bounce” class, while ”even bounce” scattering mechanism (cyan class) appears on the flat regions (roads).

[Figure 11 about here.]

In conclusion, the joint analysis of the span and the normalized coherency presents several advantages with respect to the

coherency matrix descriptor: separation between the totalreceived power and the polarimetric information, estimation of the

normalized coherency matrix independently of the span and the existence of the SIRV distance measure for unsupervised ML

classification of normalized coherencies. However, the span-normalized coherency description of POLSAR images raises new

problems which still remain under investigation. The first issue concerns the use of span for testing the ”matrix stationarity”

condition for the normalized coherency estimation. This test is currently used for POLSAR data speckle filtering and it is

founded on the basic principle that changes within the polarimetric signature are revealed by changes in the total received

power. Consequently, one may envisage other estimation schemes dedicated to the SIRV model with stochastic texture by

considering external estimators of ”matrix stationarity”. The second important remark concerns the Wishart unsupervised
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classification scheme. Although all statistical requirements employed for unsupervised classification are met, the polarimetric

information is quite difficult to extract using the K-means clustering. As it can be noticed in Fig. 9-(c), the polarimetric

signatures are strongly mixed and the class boundaries are smoothed within high resolution POLSAR images (even for highly

heterogeneous target areas). Therefore, other clusteringstrategies should be better suited to capture the spatial distribution of

different polarimetric signatures. One starting point could be the POLSAR segmentation by likelihood approximation [56],

spectral clustering ensemble [57], or the Support Vector Machines kernel-based non-linear classification [58].

Finally, one can observe that span information does also, insome cases, contribute to classification quality (e.g. discrimi-

nation of roads in Fig. 9 and buildings in Fig. 11), although the polarimetric signature clustering suffers. Based on theSIRV

model, the separation span/polarimetric signature is achieved. Future work is needed to objectively asses the classification

potential of these two descriptors separately.

IV. GENERAL REMARKS

One critical point of the SIRV model is linked to the scalar texture (span) descriptorτ . The validity of the product model for

POLSAR data has been investigated in many papers over the last decades [28], [11], [12], [7], [13].

Yueh et al. derived the generalized likelihood of the normalized polarimetric target vector in Gaussian clutter [27]. This

approach has been extended to theK-distributed clutter in [6], [28]. Note that this extensionis not optimal since the covariance

matrix parameter is replaced by the Sample Covariance Matrix. Or the SCM depends on the texture PDFp(τ) and it is not the

ML estimator of the covariance matrix inK-distributed clutter. The exact ML normalized covariance estimator can be derived

using the Yao’s representation theorem for SIRVs and its exact expression is given in Eq. 16.

The product model have also been also used by Novak et al. for deriving the Polarimetric Whitening Filter [11], [12]. Based

on this result, Lopes et al. derived the Multilook Polarimetric Whitening Filter as well as the adaptive LLMMSE filter for

Gaussian andK-distributed clutter [13]. The SIRV representation theorem allows the derivation of the PWF as a ML estimator

of the deterministic texture. Once the texture parameter isobtained for every resolution cell further statistical processing can

be applied over a population of texture parameters (e.g. theproposed LLMMSE span filter).

For Gaussian clutter, Lee at al. introduced optimal polarimetric covariance matrix classification schemes based on theWishart

distance [18], [19], [47]. The proposed methods can be extended to the SIRV model by using the SIRV distance presented in

Sect. II-E. Moreover, the asymptotical distribution of theFixed Point estimator from Eq. 13 has been derived in [39]. The FP

estimator computed withN samples (secondary data) converges in distribution to the normalized Sample Covariance Matrix

computed withN m
m+1 secondary data. Since the normalized SCM is the SCM up to a scale factor, we may conclude that, in

problems invariant with respect to a scale factor on the covariance matrix, the FP estimate is asymptotically equivalent to the

SCM computed withN m
m+1 secondary data.

We can conclude that the Yao’s representation theorem allows optimal multivariate signal processing of POLSAR data in a

general framework. The SIRV model provides the methodologyfor retrieving the conventional cases (multivariate Gaussian

and multivariateK-distribution). This methodology can be also generalized to other heterogeneous clutter models defined by

explicit texture PDFs (inverse Gamma, Fisher ...).



21

More recent studies have revealed the presence of differentscattering characteristics between the cross-polar and co-polar

terms of the Sinclair matrix [59], [16]. In consequence, thePOLSAR clutter could be modelled by different texture random

variables for each polarization channel. Such a stochasticmodel already exists in the literature and it is known as the Generalized

SIRV model [60]. Unfortunately, the covariance matrix Generalized SIRV estimator of the Gaussian kernel could not be found,

without taking into account any ”a priori” information about the texture multivariate PDF. Future work should investigate the

coupling between SIRVs and multiple single-channel spatial texture descriptors, such as the nonstationary anisotropic Gaussian-

kernel model [61].

Despite being quite general, the SIRV clutter model supposes the ”matrix stationarity” condition to be verified over the

observation vector. We proposed the use of an adaptive spatial support based on the scalar span information. The resulting Span-

Driven-Adaptive-Neighborhood operates under deterministic texture hypothesis and it states that the local ”matrix stationarity”

property is revealed by changes in the span image.

One limitation of the proposed estimation scheme concerns the determination of the ”SIRV homogeneous” neighborhood

surrounding a pixel. The strategy adopted for this paper consist in testing the ”matrix stationarity” condition using the span,

under deterministic texture assumption. Despite not beingoptimal in the context of the SIRV model, the proposed approach

does not require additional ”a priori” information regarding the local clutter statistics.

Finally, the SDAN-FP algorithm is more computation intensive than other existing POLSAR speckle filtering algorithms

developed for Gaussian clutter [9], [8], [10] and it handlesSIngle Look Complex data only. Further work should address the

extension of the proposed approach to adaptive nonlinear filtering of multilook POLSAR data.

V. CONCLUSIONS AND PERSPECTIVES

This paper presented a new estimation scheme for deriving normalized coherency matrices and the resulting estimated span

with high resolution POLSAR images. The proposed approach couples nonlinear ML estimators with span driven adaptive

neighborhoods for taking the local scene heterogeneity into account.

The heterogeneous clutter in POLSAR data was described by the SIRV model. Two estimators were introduced for describing

the POLSAR data set: the Fixed Point estimator of normalizedcoherency matrix and the corresponding LLMMSE span.

The Fixed Point estimation is independent on the span PDF andrepresents an approximate ML estimator for a large class

of stochastic processes obeying the SIRV model. Moreover, the derived normalized coherency is asymptotically Gaussian

distributed.

For SIRV clutter, a new ML distance measure was introduced for unsupervised POLSAR classification. This distance was

used in conventional K-means clustering initialized by theH −α polarimetric decomposition. Other extensions of the existing

unsupervised or supervised POLSAR clustering methods (e.g. Bayes ML or fuzzy K-means) can be derived by replacing the

conventional Wishart distance with the proposed SIRV distance.

The effectiveness of the proposed estimation scheme was illustrated by high and very high resolution ONERA RAMSES

X-band POLSAR data. The reliability of the obtained resultswas demonstrated by quantitative performance assessmentsusing

simulated POLSAR data.
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This work has many interesting perspectives. We believe that this paper contributes toward the description and the analysis of

heterogeneous clutter over scenes exhibiting complex polarimetric signatures. The proposed approach presents a highdegree

of generality as no explicit stochastic texture model is needed. Finally, the proposed estimation scheme can be extended

to other multidimensional SAR techniques using the covariance matrix descriptor, such as: multi-baseline interferometry,

polarimetric interferometry or multi-frequency polarimetry. Future work should address the quantitative performance analysis

of classification and target detection algorithms based on these estimators.
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Fig. 1. The proposed estimation scheme.
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(a) (b) (c)

Fig. 2. Simulated POLSAR data, Gaussian case (200 × 200 pixels): (a) texture image, (b) initial 1-look span estimated using Eq. 3 and (c) amplitude color
composition of the target vector elementsk1-k3-k2.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Simulated POLSAR data, Gaussian case (200 × 200 pixels). Square root of LLMMSE span image using the normalized coherency estimated by: (a)
BN-SCM, (b) BN-FP and (c) SDAN-FP. Color composition of the normalized coherency diagonal elements[M ]11-[M ]33-[M ]22 estimated by: (d) BN-SCM,
(e) BN-FP and (f) SDAN-FP.
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(a) (b) (c)

Fig. 4. Simulated POLSAR data, SIRV case (200 × 200 pixels); (a) texture image, (b) initial 1-look span estimated using Eq. 3 and (c) amplitude color
composition of the target vector elementsk1-k3-k2.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Simulated POLSAR data, SIRV case (200 × 200 pixels). Square root of LLMMSE span image using the normalized coherency estimated by: (a)
BN-SCM, (b) BN-FP and (c) SDAN-FP. Color composition of the normalized coherency diagonal elements[M ]11-[M ]33-[M ]22 estimated by: (d) BN-SCM,
(e) BN-FP and (f) SDAN-FP.
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(a) (b)

Fig. 6. Brétigny, RAMSES POLSAR data, X-band (501×501 pixels): (a) amplitude color composition of the target vector elementsk1-k3-k2 and (b) optical
image (137 × 137 pixel zoom of the initial span superposed for illustrating the region of interest).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Brétigny, RAMSES POLSAR data, X-band (137 × 137 pixels). Square root of LLMMSE span image using the normalized coherency estimated
by: (a) BN-SCM, (b) BN-FP and (c) SDAN-FP. Color compositionof the normalized coherency diagonal elements[M ]11-[M ]33-[M ]22 estimated by: (d)
BN-SCM, (e) BN-FP and (f) SDAN-FP. Color composition of the polarimetricH-α-A parameters estimated by: (g) BN-SCM, (h) BN-FP and (i) SDAN-FP.
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Brétigny, RAMSES POLSAR data, X-band (137 × 137 pixels). Color composition of the coherency diagonal elements [T ]11-[T ]33-[T ]22 estimated
by: (d) BN, (e) IDAN and (f) SDAN-FP after multiplication with the LLMMSE span from Fig. 7-(c).H-α classification results using: (d) BN, (e) IDAN and
(f) SDAN-FP.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Brétigny, RAMSES POLSAR data, X-band (501 × 501 pixels). LLMMSE span using the normalized coherency estimated by SDAN-FP: (a) span
image, (d) Gamma unsupervised classification and (g) physical mechanism identification (odd bounce classes, even bounce classes, volume class) using the
SDAN-FP normalized coherency. SDAN-FP coherency matrix after span multiplication: (b) color composition of the diagonal elements[T ]11-[T ]33-[T ]22, (e)
Wishart unsupervised classification and (h) physical mechanism identification. SDAN-FP normalized coherency matrix:(c) color composition of the diagonal
elements[M ]11-[M ]33-[M ]22, (f) SIRV unsupervised classification and (i) physical mechanism identification.
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(a) (b)

Fig. 10. Toulouse, RAMSES POLSAR data, X-band (500 × 500 pixels), resolution azimuth and range of50 cm: (a) amplitude color composition of the
target vector elementsk1-k3-k2 and (b) optical imagec©CNES/Spot-Image.



Figures 36

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Toulouse, RAMSES POLSAR data, X-band (500× 500 pixels), resolution azimuth and range of50 cm. Color composition of the diagonal elements
of the diagonal elements[T ]11-[T ]33-[T ]22: (a) the Lee refined filter, (b) SDAN-FP coherency matrix after span multiplication. (c) color composition of
the diagonal elements[M ]11-[M ]33-[M ]22 estimated by SDAN-FP. Wishart unsupervised classification: (d) coherency estimated by the Lee refined filter,
(e) SDAN-FP coherency matrix after span multiplication. (f) unsupervised classification of the SDAN-FP normalized coherency based on the SIRV distance
measure. Physical mechanism identification (odd bounce classes, even bounce classes, volume class) using: (g) coherency estimated by the Lee refined filter,
(h) SDAN-FP coherency matrix after span multiplication, (i) SDAN-FP normalized coherency.
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TABLE I
SIMULATED POLSARDATA , GAUSSIAN CASE: MEAN AND STANDARD DEVIATION OF NORMALIZED COHERENCY ELEMENTS OVER ”GAUSSIAN

STATIONARY” AREAS.

Parameter
Value

Mean Standard deviation
(3378 pixels) BN-SCM BN-FP SDAN-FP BN-SCM BN-FP SDAN-FP

M11 1.79 1.78 1.77 1.77 0.13 0.15 0.19
M22 0.77 0.78 0.78 0.78 0.11 0.12 0.15
M33 0.43 0.44 0.44 0.44 0.06 0.07 0.09

ℜ{M12} 0.01 0.01 0.01 0.01 0.10 0.13 0.16
ℑ{M12} -0.19 -0.17 -0.17 -0.17 0.12 0.13 0.16
ℜ{M13} 0.07 0.08 0.08 0.08 0.09 0.10 0.11
ℑ{M13} 0.03 0.03 0.03 0.03 0.09 0.10 0.12
ℜ{M23} 0.16 0.15 0.15 0.15 0.06 0.07 0.08
ℑ{M23} 0.02 0.02 0.02 0.02 0.06 0.07 0.08

Mean normalized error (ǫ) 0.17 0.19 0.23
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TABLE II
SIMULATED POLSARDATA , GAUSSIAN CASE: SPAN MEAN RATIO bµ/µref AND COEFFICIENT OF VARIATION OVER”GAUSSIAN STATIONARY” AREAS.

Span Mean ratio Coefficient of variation
(3378 pixels) BN-SCM BN-FP SDAN-FP BN-SCM BN-FP SDAN-FP

LLMMSE 0.99 1.07 0.99 0.10 0.13 0.16
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TABLE III
SIMULATED POLSARDATA , SIRV CASE: MEAN AND STANDARD DEVIATION OF NORMALIZED COHERENCY ELEMENTS OVER ”SIRP STATIONARY”

AREAS.

Parameter
Value

Mean Standard deviation
(3378 pixels) BN-SCM BN-FP SDAN-FP BN-SCM BN-FP SDAN-FP

M11 1.79 1.75 1.80 1.76 0.35 0.14 0.24
M22 0.77 0.75 0.75 0.79 0.27 0.10 0.20
M33 0.43 0.49 0.44 0.44 0.23 0.08 0.11

ℜ{M12} 0.01 0.04 0.01 0.02 0.36 0.14 0.22
ℑ{M12} -0.19 -0.17 -0.19 -0.17 0.35 0.11 0.24
ℜ{M13} 0.07 0.09 0.07 0.06 0.30 0.11 0.17
ℑ{M13} 0.03 0.04 0.04 0.04 0.26 0.09 0.17
ℜ{M23} 0.16 0.18 0.16 0.15 0.18 0.06 0.10
ℑ{M23} 0.02 0.03 0.02 0.02 0.19 0.06 0.10

Mean normalized error (ǫ) 0.51 0.19 0.28
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TABLE IV
SIMULATED POLSARDATA , SIRV CASE: THE KOLMOGOROV–SMIRNOV TEST KSn = maxx |Fn(x) − Fref (x)| FOR THE SPAN DISTRIBUTION.

Span K-S test
(3378 pixels) BN-SCM BN-FP SDAN-FP

LLMMSE 0.111 0.100 0.068


