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ABSTRACT

This paper presents an application of the recent advanc#seifiield of Spherically Invariant Random Vectors (SIRV) mod
elling for coherency matrix estimation in heterogeneouwstet. The complete description of the POLSAR data set ieaet
by estimating the span and the normalized coherency inakgely. The normalized coherency describes the polariméir
versity, while the span indicates the total received poWwke main advantages of the proposed Fixed Point estimatothat it
does not require any "a priori” information about the probdity density function of the texture (or span) and it can lrectly
applied on adaptive neighborhoods. Interesting resulésatained when coupling this Fixed Point estimator with daptive
spatial support based on the scalar span information. Basethe SIRV model, a new maximum likelihood distance measure
is introduced for unsupervised POLSAR classification. Thpgsed method is tested with both simulated POLSAR data and
airborne POLSAR images provided by the RAMSES system.tfRetahtropy/alpha/anisotropy decomposition, followsd b
unsupervised classification, allow to discuss the use ofitlimalized coherency and the span as two separate desipto

POLSAR data sets.
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NOMENCLATURE

BN : Boxcar Neighborhood.

[C] : generic covariance matrix.

FP : Fixed Point estimator.

i.i.d. : independent and identically distributed.

LLMMSE : Locally Linear Minimum Mean-Squared Error.
[M] : generic normalized polarimetric coherency matrix.
ML : Maximum Likelihood.

MPWEF : Multilook Polarimetric Whitening Filter.

P : generic span.

PDF : Probability Density Function.

PWEF : Polarimetric Whitening Filter.

SCM : Sample Covariance Matrix.

SDAN : Span Driven Adaptive Neighborhood.

SIRP : Spherically Invariant Random Process.

SIRV : Spherically Invariant Random Vectors.

[T] : generic polarimetric coherency matrix.



I. INTRODUCTION

A Synthetic Aperture Radar (SAR) measures both amplitudiepdrase of the backscattered signal, producing one complex
image for each recording. The sensors being able to emiteivetwo orthogonal polarizations, fully POLarimetricrBiyetic
Aperture Radar (POLSAR) systems describe the interackietvgeen the electromagnetic wave and the target area bysméan
the Sinclair matrix [1]. Among the difficulties encounterglden using POLSAR imagery, one important feature is thegoes
of speckle. Occurring in all types of coherent imagery, theckle is due to the random interference of the waves sedttsyr
the elementary targets belonging to one resolution celllf2§jeneral, POLSAR data are locally modelled by the muliata,

zero mean, circular Gaussian probability density fungtigimich is completely determined by the covariance matrjx [3

The recently launched POLSAR systems are now capable ofipioglhigh quality images of the Earth’s surface with meter
resolution. The decrease of the resolution cell offers pgpootunity to observe much thinner spatial features thaldtametric
resolution of the up-to-now available SAR images. Recardist [4] show that the higher scene heterogeneity leadsre n
Gaussian clutter modelling, especially for urban arease @mmonly used fully polarimetric non-Gaussian cluttedsias
the product model [5]: the spatial non-homogeneity is ipooated by modelling the clutter as the product betweendhare
root of a scalar random variable (texture) and an independero mean, complex circular Gaussian random vector kégec
If the texture random variable is supposed to be a Gammaaspladiributed intensity, the product model is equivalenttte

well-known K-distributed clutter model [6], [7].

For Gaussian polarimetric clutter model, the estimatiorhef polarimetric coherency matrix is treated in the context
POLSAR speckle filtering. The POLSAR adaptive filtering teicjues can be roughly divided in two main classes [8]: based
on the optimization of the spatial support and based on tkeofishe local statistics to derive adaptive estimators. s€he
two directions are not exclusive since both of them can beiegpgimultaneously [9], [10]. For example, the refined Lee
filter couples eight edge-aligned directional neighbodswith an adaptive estimator based on the Locally Linearirlim

Mean-Squared Error (LLMMSE) criterion [9].

In the context of non-Gaussian polarimetric clutter modedseral studies tackled POLSAR parameter estimationyubkin
product model. For deterministic texture, Novak et al. witithe Polarimetric Whitening Filter (PWF) by optimallyrabining
the elements of the polarimetric covariance matrix to poeda single scalar image [11], [12]. Using the complex Wishar
distribution, the PWF for homogeneous surfaces has beegrgiered to multilook PWF (MPWF) [13], [14]. In general, the
texture random variable is specified by the probability dgrisnction. For Gamma-distributed texture, Lopes aedySlerived
the Maximum Likelihood (ML) estimator of the covariance mvaf13]. Moreover, the vector spatial LLMMSE filter applied
on the scalar ML texture estimator has also been introdwelen the texture variance and spatial correlation funstame "a
priori” known [13]. In [15], De Grandi et al. performed an eRrsive study on the dependency of the normalized secoret-ord
moment of intensity on polarization state f6rdistributed clutter model. This dependency was condeimsgiphical form by
a formalism called the polarimetric texture signature.situdy has been applied for target detection and texturaesgigtion
using the discrete wavelet frame transform generated WwéHitst derivative of aB-spline of order three as mother wavelet
[16].

The POLSAR information allows the discrimination of diféat scattering mechanisms. In [17], Cloude and Pottieointr



duced the target entropy and the entropy-alpha-aniso{i@py« — A) model by assigning to each eigenvector the correspond-
ing coherent single scattering mechanism. Based on thisnajgasition, unsupervised classification for land applicet was

performed by an iterative algorithm based on complex Wisthansity function [18], [19].

The objective of this paper is to present a new coherencynattin technique [20] based on the Spherically Invariant
Random Vectors model [21], and to analyze the consequehaeghis model has on the conventional POLSAR processing
chain. The paper is organized as follows. Sect. Il is deditéd the presentation of the proposed estimation scheme. Th
heterogeneity of polarimetric textured scenes is takemactount by coupling the ML normalized coherency estimaith
adaptive neighborhoods driven on the scalar ML span estifiaf new ML distance measure is also introduced for clgpissjf
normalized coherency matrices under the SIRV model. In.SBcthe results obtained using the proposed approach are
presented and compared to those given by the Gaussian Mhatsti Results off — o« — A decomposition, followed
by unsupervised POLSAR classification allow to discuss e af the normalized coherency and the span as two separate
descriptors of POLSAR data sets. Detailed discussion ormadvantages and the limitations of the SIRV model is given in

Sect. IV. Eventually, in Sect. V, some conclusions and pEatypes are presented.

Il. HETEROGENEOUS MODEL FOR POLARIMETRIC TEXTURED SCENES

The goal of the estimation process is to derive the scenasignfrom the observed data set. In the case of spatiallygthg
surfaces ("heterogeneous” or "textured” scenes) the fieqi & to define an appropriate model describing the depeyden
between the polarimetric signature and the observable@sctién of the speckle. In general, the multiplicative mdéghas
been employed for SAR data processing as a product betweesgtiare root of a scalar positive quantity (texture) and the

description of an equivalent homogeneous surface (spduklmeans of:

« the intensity descriptor for single-polarization SAR irrag22], [23],

« the complex SAR signal descriptor for single-polarizat8AR data [24],

« the polarimetric target vector descriptor in lexicograpbasis for monostatic POLSAR images, [11], [25], [26],
« the normalized polarimetric target vector descriptor kidegraphic basis, [27], [6], [28],

« the polarimetric covariance matrix descriptor for POLSA&Rad[29], [13].

In this paper, the polarimetric descriptors used are thgetarectork = [k1, k2, k3]” in the Pauli basis (monostatic acquisi-
tion). The following section presents an application ofraeent advances, in the field of Spherically Invariant Ram¥ectors

modelling [20], for estimating span and normalized coheyanatrices of high resolution POLSAR data.

A. Gaussian model

The elements of the vector are generally modelled by a nauitite zero mean, complex, Gaussian random process. The

probability density function (PDF) is given by the follovgiexpression [2]:

Pm(k) = mexp{—w [T 'k}, (1)



where[T] = E{kk'} is the polarimetric coherency matrix, det} denotes the matrix determinanis the conjugate transpose
operatoryn the dimension of the target vecton(= 3 for monostatic POLSAR acquisitions) afif ...} denotes the statistical

mean over the polarimetric channels.

According to Eqg. 1, a Gaussian stochastic process is coetpletharacterized by the coherency matrix. In this case, the
Maximum Likelihood (ML) estimator of the polarimetric catemcy matrix is the Sample Covariance Matrix (SCM) obtain by

replacing the statistical mean by spatial averaging:

. 1
[T)scm = N ; kik;r, (2
where N is the number of samples. The SCM is statisticallgrieined by the Wishart PDF [2].
Another POLSAR parameter is the span (or total powegenerally defined for each pixel as [1]:
Psrc = k'k. @)
The corresponding multilook span can be estimated withatallneighborhood according to:
P = FE{k'k} = Tr{[T]}, (4)

where T{[T]} denotes the trace of the matfik]. Hence, the common span estimator for the Gaussian casesagirebtly
obtained from the SCM as:

ﬁSCM =Tr { [T\]SCM} . (5)
B. SIRV model

Spherically Invariant Random Vectors (SIRV) and their aggilons to estimation and detection in communication theo
were firstly introduced by Kung Yao [21]. The SIRV is a classioh-homogeneous Gaussian processes with random variance.
The complex m-dimensional measuremkns defined as the product between the independent complexiairGaussian
vectorz (speckle) with zero mean and covariance mathi = E{zz'} and the square root of the positive random variable

(representing the texture):
k =z, (6)
It is important to notice that in the SIRV definition, the PDftloe texture random variable is not explicitly specified. &s

consequence, SIRVs describe a whole class of stochastiegses defined by Eq. 6. This class includes the conventiortizr

models having Gaussiaki-distributed, Chi, Rayleigh, Weibull or Rician PDFs [30].

For POLSAR data, the SIRV product model is the product of tejpesate random processes operating across two different

statistical axes:

« The polarimetric diversity is modelled by the multidimemsal Gaussian kernel characterized by its covariance xnatri
[M].

« Therandomness of spatial variations in the radar backsasdtfrom cell to cell is characterized by The corresponding
random process operates along the spatial axis given bynthge support. Relatively to the polarimetric axis, theusxt

random variable can be viewed as a unknown deterministic parameter frontace#!l.



One major advantage of the SIRV clutter model is the high@egf generality with respect to other texture-aware models
employed in the literature [30], [4]. Nevertheless, thisdmlds founded on the validity of three basic assumptionsitéxture
random variable affects the backscattered power only, ntugtiplicative and spatially uncorrelated. When appliechtgh
resolution POLSAR clutter, the SIRV model postulates thattexture descriptar from Eq. 6 is identical for all polarization

channels.

Let nowp(7) be the texture PDF associated to the SIRV model. The Spligringariant Random Process (SIRP) corre-
sponding to Eq. 6 has the following PDF [31]:

+oo
PO =0 = [ e

kM)~ 1k
_ KIM] )pde. ™)

1) Model identification: When using the product model, an identification problem capdinted out: the SIRV model is
uniquely defined with respect to the covariance matrix patemup to a multiplicative constant. Lgt/;] and[Ms] be two
covariance matrices such that';| = « - [M2], (V) x € R’_. Notice that the two sets of parameters define¢ias[)M]} and
{72 =k, []\/[2]} describe the same SIRV. For solving this identification peof) the covariance matrix has to be normalized.

In the following the covariance matr{d/] is normalized such that TfM]} = m, with m the dimension of the target vector.

One important consequence of the imposed normalizatiodition is that the resulting normalized polarimetric cadray
matrix reveals information concerning the polarimetrigauigity only: the total power information is transferretbithe texture
random variable. The POLSAR data can be fully characteriBedoupling the normalized coherency matrix with the span
descriptor:

PSLC = ka = T(ZTZ). (8)

When operating on the polarimetric statistical axis, thensjor the SIRV case is given by:
P:E{T(ZTZ);T}:T'E{ZTZ}:T'TT{[M]}:T'WL. 9)
An estimate ofP can be obtained when considerings an unknown deterministic parameter from cell to cell.

2) Stationarity definition: In the following several generic concepts are recalled eGie SIRP, this process is wide-sense
stationary if and only if both the texture random variablel &ine speckle random vector are wide-sense stationary. és th
speckle is a zero mean complex Gaussian vector, the lat@nsitbat the statistical samplesused in the estimation process

must have the same theoretical covariance matfix This condition is called "matrix stationarity”.

However, as the results presented in this section can beedpphatever the texture PDF (7)), the previous properties
can be reformulated using the SIRV class of stochastic gesse Given a "matrix stationary” stochastic process,pgiosess
is "SIRV homogeneous” if and only if the texture random vhléais "texture homogeneous”. Where "texture homogeneous”
means that it is possible to define a texture PBp((r)) such that the stochastic process can be described by teqimodel

from Eqg. 6. We illustrate these properties using four locgdydations which often occur in practical POLSAR applicat:

« One zero mean Gaussian process with covariance njatijx \/(0, [M]). Being a "Gaussian stationdfyprocess, it is
also "SIRP stationary” and "SIRV homogeneous”. This modetidely used for POLSAR data analysis [32].

1A "Gaussian stationary” process is a stochastic processev@aussian PDF does not change when shifted in time or space.



« Two adjacent Gaussian processes with different covariavatex: A = { A (0, [M],), N (0, [M],)}. The Gaussian
mixture A is neither "SIRP stationary” nor "SIRV homogeneous” as thwtrix stationarity” condition is not respected.
Generally, such cases are treated by employing adaptiveatstn schemes [9], [8] in order to approximate the local
"Gaussian stationarity” condition.

o One K-distributed process [33] with Gamma distributed textupg(r;7,~) and covariance matrix[M]:

Fic {pc(7;7,v),[M]}. This process is "SIRP stationary” as it i 'stationary” but obviously it is not "Gaussian station-
ary”.

« Two adjacenfC-distributed processes with two different Gamma textur& B@’ (7571,11), pg) (1; 72, 2) and the same
covariance matrifM|: Fi = {F,(Cl) {pg)(T;Fl, n), [M]} s {pg)(T;Fg, ), [M]}}. TheK-distributed processes
F,(Cl) andF,(CQ) are "SIRP stationary” and stationary”, but the mixturé&jc is not "kC stationary”. Despite this, the process
Fx is "SIRV homogeneous” as it is possible to define a texture RBiEh models the Gamma mixture. As a consequence,

the results presented in this section can still be appli¢kigcase.

In conclusion, the two properties to be verified in order tplgphe SIRV model are the "matrix stationarity” and the "teve
homogeneity”. Moreover, the latter considerably relates texture stationarity” condition required when usingpkoit

texture models such as the Gamma or the Fisher PDF.

3) SIRV parameter estimationn the field of target detection for radar applications, tiiR\Gmodel led to many investiga-
tions [34], [35], [36], [37]. In Egs. 6 and 7, the normalizezvariance matrix is an unknown parameter which can be ettima
from ML theory. In [31], Gini et al. derived the exact ML estite [M\] of the normalized covariance matrix whenare
assumed to be unknown deterministic parameters.N\Fardependent and identically distributed (i.i.d.) data likelihood

function to maximize with respect {d/] andr;, is given by:

N Trag—1

1 1 k! [M]k;
Li(ky, ....kn; [M = — e 10
k( 1yeeey N?[ ]17-11 aTN) ﬂ_mNdet{[M]}N XHTZnexp< P ) ( )

For a given [M], maximizingLy (ki, ..., kn; [M], 71, ..., Ta ) with respect tar; yields the texture ML estimator
T —11,.
%:ki[M] kl. (11)
m

Replacingr; in Eq. 10 by their ML estimates the generalized likelihoodhisained as:

L1, ki [M]) = —em—— ﬁw 0
kK1, ..., kn; medet{[M]}N xiZI (kI[M]_lki)m'

The ML estimator of the normalized covariance matrix in thgedministic texture case is obtained by cancelling thdigra

of L. with respect td)/] as the solution of the following recursive equation:

— —~ m N k-kJf m N z»zT
(Tler = F([ep) = B3 0 _mn__zm (13
N i=1 kz [M]F}Dki N i=1 ZJ[M]F}DZZ'

This approach has been used in [38] by Conte et al. to derieLasive algorithm for estimating the matfiX]. This algorithm

consists in computing the Fixed Point plusing the sequendéM/];);>( defined by:

[M]iy1 = f([M];). (14)

2A” K stationary” process is a stochastic process who&DF does not change when shifted in time or space.



This study has been completed by the work of Pascal et al., [30], which recently established the existence and the
uniqueness, up to a scalar factor, of the Fixed Point estinwdtthe normalized covariance matrix, as well as the cayemce
of the recursive algorithm whatever the initialization.€Tgorithm can therefore be initialized with the identitstnix [M ], =

[I»]. One way to analyze the convergence of the Fixed Point efgtiroansists in evaluating the following criterion:
oGy = 106+ D - BN@lr as)
I[M]()]] 7

where||...|| r represents the Frobenius norm. When computing the FP estinfiay. 14 is iterated until’ becomes smaller

than a predefined lower limit. Note that only few iterationffise to reach an error less thad—'° [20].

It has also been shown in [31] and [38] that the recursiveregion scheme from Eq. 14 can be applied to derive an exact

ML estimator of the normalized covariance matrix:

N e -
— M en By (K MK, ot / g
M == E o kk), with h,(¢q) = TPexp ( =) p(r)dr. (16)
e N hm(kj[]V[]XflLki) @ 0 (T) )

In the previous equation, the exact ML estimator depend$eriexture PDF through the SIRV density generating function
hm(q). Chitour and Pascal have been recently demonstrated thdi6Eagdmits a unique solution and that its corresponding
iterative algorithm converges to the Fixed Point solutiondvery admissible initial condition [40]. Pascal et al.véalso
demonstrated that normalized covariance ML estimatorldpee under the deterministic texture case (Eq. 13), yielsis an

approximate ML estimator under stochastic texture hym#i20], [39].

We propose to apply these results in estimating normalinbdrency matrices for high resolution POLSAR data. The main
advantage of this approach is that the local "scene hetagiiyé can be taken into account without any "a priori” hypesis
regarding the texture random variablg Eq. 14 does not depend o). The obtained Fixed Point is the approximate ML
estimate under the stochastiassumption and the exact ML under deterministiassumption. Moreover, the normalized
polarimetric coherency matrix estimated using the FixethPmethod is unbiased and asymptotically Gaussian digtib
[20], [39].

Note also that the texture estimator from Eq. 11 can be dyjréoked to the total scattered power (span) according t®Eq
By estimating the normalized coherency as the Fixed Poiatiea of Eq. 13, the derived estimate is independent of ¢! t
power and it contains polarimetric information only. Usiihgs matrix, it is possible to compute the SIRV span ML estona
for unknown deterministie as:

Ppwr = ki [M] Lk (17)
One can observe that the span estimator from Eq. 17 has treefeamas the Polarimetric Whitening Filter (PWF) introddce
by Novak et al. in [11]. The only difference is the use of themalized coherency estimate given by the Fixed Point estima

instead of the conventional Sample Covariance Matrix.

Finally, it is possible to derive an estimate of the conwamdi polarimetric coherency matrix according to Eq. 6:

[Trp = Prwr [M]rp. (18)

m

4) Gaussian model in the SIRV contexthe multivariate Gaussian distribution presented in Sk is obviously a

member of the SIRV class. Let us assum¥ei.i.d. realizations of the target vectk: The SCM from Eq. 2 is the ML
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estimator of[ 7] in Gaussian clutter, but not in clutter described by the pobdnodel [41]. In the specific case of completely
correlated texturer(= 7;, Vi € {1,..N}), Richmond proved that SCM is again the exact ML estimatdi\éf provided the
M-normalization is respected [42]. In fact, the completetyrelatedr case is equivalent to the Gaussian model for a given
realization of data across all resolution cells [31]. Capmtly, it is possible to define the normalized Sample Janae
Matrix as:

~

_[Tlsom (19)
Tr{[T]scm}

(M)sorr = m—L
In other words, in Gaussian clutter the local pov’is no more random in Eq. 9, but - = = P with probability one [31].

Based on this consideration and according to Eq. 17, theilb#tPolarimetric Whitening Filter (MPWF) can be defined as
N 1 X _
Pypwr = N Z ;' [M;] 7 pki. (20)
i=1

MPWEF is the span ML estimator for Gaussian clutter with kngwaver P and it is unbiased [13], [14]. When compared to
the span estimator from Eq. 5, the main advantage of MPWHRalsitttakes into account the correlation between the differe

polarization channels (speckle) in the whitening process.

C. Spatial support

In the estimation process a certain number of samples mugthered for deriving the observation vector. In this psgo
the boxcar sliding neighborhood (BN) is usually employele Thain drawback of BN non-adaptive neighborhood is that the
available number of samples is directly proportional whté koss of spatial resolution. In order to deal with this i effect,
several strategies to obtain locally Adaptive Neighbod®@\N) were proposed for POLSAR data processing. In [8gehr
local neighborhoods are analyzed and their performaneediscussed with respect to different end-user applicatjeisual
interpretation, classification...). Experiments on resthdsets have shown that the Intensity-Driven-AdaptivegiNeorhood
(IDAN) represents, on the whole, a good trade-off betweesgnving signal characteristics and gathering a signifitamber

of samples for coherency artdl — o« — A parameter estimation [8], [43].

Recent studies have revealed that the original IDAN algoritends to introduce a bias with respect to the radiometry
information [44]. The main reasons are the use of a symmetrifidence interval around the mean for the Gamma distidbute
intensity and the estimation of the initial seed by the mediamputed within & x 3 neighborhood. In order to deal with
these problems the SDAN algorithm (Span-Driven-Adaphlaghborhood) has been introduced in [45]. It allows to use
heterogeneous scene models, such as SIRV, in the estinsédjonNote that this approach is not optimal as the resukiNg
is driven on the texture (span) information only. One may atber existing locally adaptive neighborhoods (e.g. dioaal

neighborhoods [9]) but, up to now, the existing AN algorithare also tributary to the span information.

SDAN successively truncates the texture PDF using two sytiereonfidence intervals around the mean. The truncation
thresholds are expressed with Gamma-distributed textdoevever, different PDFs can be truncated according to theesa
thresholds (initially set using a Gamma prior). In this paplee SDAN is employed to eliminate eventual outliers frdra t
local neighborhood. The main advantage of this approackisbim selecting spatially connected pixels within a derta
confidence interval. Its main inconvenient is the estimmabi@ms which can be induced by truncating the significant piattie

unknown texture PDF.



11

Within the SIRV context, the SDAN algorithm operates undetedministic texture hypothesis: if is deterministic, the
span statistics over "matrix stationary” areas is givenhey@amma PDF resulting from the complex Gaussian kernes ighi
coherent with the general hypothesis adopted for POLSARI$pltering stating that the local "matrix stationaritgfoperty

is revealed by changes in the span image when texture istdB$en

D. Application to POLSAR parameter estimation

One way to derive the normalized coherency matrix is the atimed Sample Covariance estimator, obtained by locally
replacing the statistical mean by spatial average witherstiding neighborhootlv:

Mscar(i, ) = —— " [Flsen with [Tlscar = ————— f
[M]scm (i, ) Tr{mSCM}[T]SCM with  [T]scm Card{w(i’j)}(pyq)g\;(i,j)k(p’q)k (p,q), (21)

where(i, j) represent the current range/azimuth position and{darpgdenotes the cardinal 0. The main advantage of the
[J/VT]SCM estimator consists in deriving the polarimetric covar@ntatrix independently of the span for the Gaussian case.
The normalized SCM estimator presents also one major disddge: it is not "SIRP stationary” and, as a consequenis, th
estimator is not consistent over textured areas. Finadlllgpagh the derivation of the normalized SCM estimator frima

standard SCM estimator is straightforward, we could notding specific paper to report its use for POLSAR data.

In this paper, we propose to extend the estimation of the atized polarimetric coherency matrix by using a heterogese
scene model over the sliding neighborhood. The Fixed Paititnator of the normalized covariance matrix for the SIRV
model is applied using the procedure described in Sect. M&e precisely, the FP normalized coherency matrix is ostexh

iteratively as:

@ dW(i )] | 21 (ra) Mol ), 0)

[Mi]rp(i,j) = with  [Mo]pp = [In), (22)

wherel is the iteration index. Eq. 22 gives the covariance matriinete of the SIRV complex Gaussian kernel, without
imposing any statistical constraint over the texture randariabler. The resulting matri*fvf |rp is asymptotically Gaussian
distributed. The proposed procedure (SDAN-FP) starts loypeding the adaptive neighborhood using the SDAN algorithm
presented in Sect. II-C at each range/azimuth position.réfgting adaptive neighborhood is supposed to respetirtagix
stationarity” condition. Finally, the FP estimator is applto derive the normalized polarimetric coherency matsiimate

under compound Gaussian polarimetric clutter model (E}}. 22

Another physical parameter to be estimated is the total power the SIRV model, the PWF span estimator is the ML
estimator, hence it should be applied for textured areasveder, on Gaussian textureless areas, a stronger spedkieticn
can be obtain using the MPWF estimator. In practical apptiog, the PWF and the MPWF estimators should be applied as
follows: on "Gaussian stationary” regions the best spaimesbr is the MPWF, while on "SIRV homogeneous” areas orhig, t

PWF should be applied. We propose to deal with this tradé#pplying the LLMMSE criterion for the span estimation:[9]

2 2
~ ~ ~ ~ . o l1+o
Provvse = Pupwr + appumse(Ppwr — Pupwr) With  appyuse = — Pwr( 5 ) 5 (23)
OMmpPwF — HMPWFIn
whereuy pwr, opw F, oM pw F are respectively the signal mean and standard deviationpuied inside the local estimation
neighborhood and whereg, is the noise standard deviation ("a priori” known). In Eq, #3e two span estimators can be

computed according to Egs. 17 and 20.
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In the last stage, it also possible to unify these two desmsgby multiplying them according to the SIRV model from Bq.
An important remark is that by multiplying the two descrigthe separation between the total received power (spaithan
polarimetric information (speckle normalized cohererisypst. Finally, the resulting coherency mat[‘ﬁ] does not obey the

Wishart PDF as it depends on the estimated span PDF.
[Figure 1 about here.]

In summary, this section introduces a novel estimationmsehgsee Fig. 1) for deriving normalized polarimetric colmese
matrices and resulting estimated span. The proposed @igodouples span-driven multi-resolution techniques #8h
heterogeneous SIRV scene models [20] to deal with the moddric texture inside the estimation neighborhood. It ipamant
to notice that the proposed Fixed Point estimator uses rim@dacoherency matrix inversion and thus it works only with
Hermitian positive definite normalized coherency matridédss constraint is still acceptable since, in practiceggacoherency
matrices are generally of full rank for monostatic POLSAR data) [46]. However, in the specifisecaf a non-invertible
matrix, which can correspond to a strongly polarized spadtsignal, the SIRV model can be applied by using only theamm

signal subspace.

E. Distance measures for POLSAR segmentation

Classification of ground cover with POLSAR data is an impatrggpplication [17], [18], [19], [47], [48], [49]. Genergllone
has to find a distance between the pixel covariance mgifizand the class centéf’],,. Based on this distance, conventional
clustering methods have already been introduced with PGR_84ta: "naive” Bayesian ML classifier or K-means [18], fuzzy

K-means or Expectation-Maximization [47].

When the POLSAR data are modelled by a stochastic processwitown PDF, it is possible to derive optimal ML distance
measures (e.g. the Wishart distance for Gaussian progess¢a7], Yueh et al. derived an optimal ML distance meadore
terrain cover classification using the normalized targetaen the lexicographical basis. The adopted normabizedondition
was the Euclidian norm and the distance measure was compppeging the Bayesian ML classifier with the PDF of the
normalized polarimetric data. Note that in Yueh's apprgdich covariance matrix is estimated using the sample cavegi
matrix (ML estimator only with Gaussian clutter). In conseqce, the derived optimal distance is a Generalized Maximu

Likelihood distance for Gaussian clutter only.

We propose the following general binary hypothesis tesafgiven class:

Hy : [C] = [Cla
24
{le[cmc]w e4)
According to the Neyman-Pearson Lemma, the LRT (LikelihBatio Test) provides the most powerful test [50]:
A P, o ke /Hy) (25)

~ pm(ki, . kn/Ho)

For Gaussian clutter, maximizing the LRT from Eq. 25 andaejpilg the pixel coherency matri¥’] with the ML estimate
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[T“]SCM is equivalent to minimizing the the conventional Wishasdtdnce:

_ded{[Tlo} 4 Loy . 26
se{iTse] {71 Plsca ) (26)

This distance has been widely used for supervised and unsspe POLSAR data clustering [18], [19], [47].

Dwishart ([ﬂSCM,[ |w ) =In

In the case of the SIRV model, one can rewrite the hypothesisis:

Ho M) =[M], < k=/1z, withz~ N (0,[M]) 27)
([M] # M), < k=./tz, withz ~ N (0,[M],)
wherer is the unknown deterministic texture.
For a given clas§l/],,, the LRT with respect to the textureand the normalized coherency matii¥] is given by:
N TM) 5k,
[T Wem{ T}
Asirv = (28)

TIM]—1 :
Hr]:]:1 Wmexp{—%}ﬁl}
Notice the likelihood function in Eq. 28 does not use thels&stic texture description as the PP ) is supposed unknown in
the SIRV model. As previously stated in Sect. 1I-B.3, thaues parameter can be considered either as a random variable with
unknown PDFp(7) or as an unknown deterministic parameter with RIDF) = §(7 — 7,,) which characterizes yet a particular
SIRV process. It can be shown that the ML estimation of thesoaiicy matrix yields a good approximate ML estimate in the
first case and the true ML estimate in the second case [3]]], [BBe general PDF being unknown, it is therefore impossible
to derive a texture independant closed-form expressiothfot ikelihood Ratio of the test given by Eq. 27. This proaedu

is here simplified, considering a particular SIRV procesh &itexture characterized by an unknown deterministicpeter.
Consequently, each resolution cell is now associated wstiownp(7) = 6(r — 7,,) in Eq. 7, wherer,, are the unknown

deterministic texture variables. This way the texture dpsar can be discarded for each pixel independently.

By taking the natural logarithm in Eq. 28, one obtains:

N .t —1 -1
IH(AS]Rv) =—Nln det{ Z [M] ) kn

det{] M (29)

Now, since ther,’s and[M] are unknown, they are replaced by their ML estimates fromIBcand Eq. 13. The resulting

Generalized Likelihood Ratio Teaty, ., is given by:

Nkt
In(As py) = —Nlnw -m % + Nm. (30)

det{[JVf]FP} n—=1 K (M) pkn

Maximizing the generalized LRT over all classes is equiveie minimizing the following SIRV distance:

- det{[M].} . m o~ ki[M]S'k,
D Mlpp, My ) =In——"—+ 5 > — =" .
SIRV ([ Irp, [M] ) det{[M]FP} TN ; kL [M] bk, o

Notice that computing the distance from Eq. 31 needs thénaligcattering vectork,,.

In this paper, the distance measure from Eq. 31 is used asimdésity measure in the conventional K-means clustefang

POLSAR data. The full description of the K-means algoritran be found in [18].
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In summary, this section introduces a new distance measivecbn normalized coherency matrices. The resulting ap-
proximate generalized ML distance is optimal, in the gelimd LRT sense, for POLSAR data characterized by the SIRV

model.

An interesting remark concerning the SIRV distance can sended in Eq. 31. On one hand, when the texture (span
information) is high, the second term of the SIRV distardge; gy becomes small and the distance measure is dominated
by the determinants ratio. This usually corresponds tagisopolarized targets with a dominant scattering mechmarfeg.
dihedral, trihedral ...). On the other hand, with smallearspalues, the distance is dominated by the second term wdiiels

into account theV observed samples. This second case often correspondsribude targets.

Ill. RESULTS AND DISCUSSION

This section has two main objectives. The first one consisevaluating the performance of the normalized coherency
estimation techniques presented in Sect. Il. The secorettg is to show the improvement in the conventional POLSAR

processing chain brought by introducing the normalizedecehce matrix related to the SIRV model.

Three different estimation techniques are analyzed: th@alized Sample Covariance Matrix coupled with the 7 Boxcar
Neighborhood (BN-SCM) and the Fixed Point estimator cotdipi¢éher with the7 x 7 Boxcar Neighborhood (BN-FP) or with the
SDAN adaptive neighborhood (SDAN-FP). In all three cadas,corresponding span image is estimated using the LLMMSE
estimator from Eq. 23. The parameters used for the SDAN #lfgoareL., = 3 andN,,,, = 50. Note that\V,,,,, is limiting
the number of samples for the SDAN region growing only. Treting of SDAN background pixels is not limited to a fixed

number of samples to approximate the final i.i.d. condite®e(Appendix A).

A. Simulated POLSAR data

As, for real data, it is impossible to find reference regioith \wnown coherency matrix, the effectiveness of the ediona

schemes is demonstrated using simulated POLSAR data [30].

1) Gaussian caseThe first POLSAR data set consists of four adjacent Gaussgions as presented in Fig. 2. Each of the
four quadrants is associated with a known deterministitutexvalue [Fig. 2-(a)] and a known theoretical covarian@grix.
Using these parameters each component of the polarimatgettvector is simulated accordingly. Fig. 2-(b) illugdsathe
initial span image computed using Eqg. 3 and Fig. 2-(c) shdwsrésulting amplitude color composition of the three targe

vector components.

[Figure 2 about here.]

The LLMMSE spanP and the normalized coherency matii | are estimated using the three different estimation schemes
Note that in the Gaussian case, the optimal ML estimatidmriggie is the BN-SCM from Fig. 3-(a) and Fig. 3-(d). Insidelea
quadrant, the stochastic process characterizing the sld@aiussian stationary”, hence it is also "SIRV homogen&otlke
BN-FP estimation yields quite similar results, from thewakpoint of view, as illustrated in Fig. 3-(b) and Fig. 3-(Elowever,

the use of the BN is associated with the well-known edgerinigeffect as the "matrix stationarity” condition is nospected
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over the transitions between the quadrants. The SDAN-RRa&sbn reduces this undesired effect as presented in Hg) 3
and Fig. 3-(f). As a general remark, the blurring is more enésvithin the normalized coherency diagonal elementsitinin

the span images due to the use of the adaptive LLMMSE spanatsti.

[Figure 3 about here.]

In order to objectively asses the estimation performanttesmean and the variance for each element of the normalized
coherency are computed over the SE quadrant. A global emasure for the normalized coherency matrix is also introduced

as:

1 LM — Mgl
- N ; ”[M'ref]HF ’ (32)

where[M,..¢] is the reference normalized coherency matrix used for datalation. As observed in Tab. I, the best results
are obtained using the BN-SCM estimator. Being the ML edtiméor "Gaussian stationary” regions, the SCM is used as
benchmark for the SDAN neighborhood and the FP estimata.ni¢an value is well preserved for both BN-FP and SDAN-FP
estimates, while the variance of the BN-FP is smaller thamtlieasured variance of the SDAN-FP. The latter observadion i
explained by the fact that the boxcar neighborhood is opgtanasuch "SIRV homogeneous” regions. One can also note that,
despite the mean of each element of the normalized coheleiay quite similar, a better error measure is provided ey th
e parameter. Using the Frobenius norm, which is a norm agsakcta the inner product on the ring of all complex matrices,
the corresponding errarshows that the smallest error is obtained for the optimal®IM estimator. When introducing the
FP estimatore increases and it increases even more by using the SDAN sdaptatial support. This behavior corresponds
to the expected theoretical observations. However, it fgoirtant to notice that for both BN-FP and SDAN-FP the erraras
increased by more that¥ with respect to the ML estimator. This is acceptable for the BAR applications where the clutter

is characterized by a "Gaussian stationary” stochasticez®.
[Table 1 about here.]

A similar objective performance assessment is carried authfe estimation of the span image. Tab. Il shows the span
mean ratio and the speckle coefficient of variation comptdethe same "Gaussian stationary” region. As for the noizedl
coherency, the bias in the estimated radiometry is less Thaor all three estimation techniques. An interesting remark
consists in the fact that, when using the Fixed Point estiméte bias from Tab. Il is also linked with the average cotagu
over the corresponding homogeneous region. Even if the meginis a standard parameter for evaluating the speckds filt
radiometric bias, this parameter is not so well adaptedifeiRixed Point estimation. Although being asymptoticalpuGsian
distributed, the FP estimator is outperformed by the SCM @dtimator for Gaussian clutter) with a fixed number of sasple
Consequently, the average over homogeneous area showdpled with the estimation of the FP normalized cohereney ov
the same homogeneous population for optimal performarideis. effect can be noticed with the SDAN-FP span, where the
local SDAN neighborhood can gather more thi@insamples over "Gaussian stationary” areas. The resultirgNsBP span

estimator exhibits a radiometric bias less théh(same as for BN-SCM).

[Table 2 about here.]
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In summary, subjective and objective performance assegsragied out for Gaussian POLSAR clutter shows that, despi
being suboptimal, the proposed Fixed Point estimator am@daptive SDAN neighborhoods give good overall performaanc

The corresponding error measure is less tiarfor all estimation schemes.

2) SIRV case: The second simulated POLSAR data set proposes the sameuadragts, but with Gamma distributed
texture [Fig. 4-(a)]: each quadrant/s-distributed. The texture coefficient of variation used $onulation equals, which
corresponds to a highly non-Gaussian clutter (urban arddg) 4-(b) presents the initial span image. Fig. 4-(c) shohe

corresponding amplitude color composition of the thregdavector components.

[Figure 4 about here.]

The overall data set is not "SIRV homogeneous” as the "matiaxionarity” condition is not respected on the boundaries
however each quadrantis "SIRP stationary”. In the follggyiwe shall use only the "SIRV homogeneity” assumption oaehe
quadrant, namely the texture PDF is supposed unknown. Higs&ates the LLMMSE spai® and the normalized coherency

matrix [M] estimated using the three different estimation schemes.

[Figure 5 about here.]

As the data set is not Gaussian, the PWF span estimator isndatrin the LLMMSE criterion and the corresponding
speckle reduction is performed using only three sampleacéleconcerning the LLMMSE span estimation, BN-SCM, BN-FP
and SDAN-FP [Fig. 5-(a),(b),(c)] look similar from the velpoint of view.

The effectiveness of the Fixed Point estimator in compouaddSian clutter can be observed in Fig. 5-(e),(f). While the
BN-SCM normalized coherency [Fig. 5-(d)] presents a "pgtappearance, the BN-FP estimation [Fig. 5-(e)] providetdy
visual homogeneity within each quadrant. The adaptive SBpatial support [Fig. 5-(f)] assures better edge presermvéor
the transitions between quadrants. One important issumighe diagonal elements of the BN-FP normalized coherficy
the SIRV case [Fig. 5-(e)] have the same visual aspect abégrievious Gaussian POLSAR data set [Fig. 3-(e)]. This show

that the FP estimate of the covariance matrix does not depetite texture PDF.

Using the same reference region as for Gaussian case, Tabesents the mean and the variance for each element of the
normalized coherency, and also the overall error meascoenputed for the three estimation schemes. BN-FP and SDRN-F
outperform BN-SCM in retrieving the reference value and alterms of variance reduction. Since the "matrix statrdgais
always assured within the reference region, BN-FP outp@i$sdhe SDAN-FP also. Finally, another interesting resoiitsists
in the fact that Tab. Il indicates the same BN-FP value fercthrror parameter as in the Gaussian case (Tab. I). This algect

issue confirms the visual comparison mentioned in the pvavp@ragraph.

[Table 3 about here.]

[Table 4 about here.]



17

Objective performance assessment has been carried outddttMMSE span estimation also. Tab. IV presents the
Kolmogorov—Smirnov (KS) test with respect to the referegpan used for simulation. The resulting KS values, computed
over the entire span image, indicate that BN-FP outperf@hMs$SCM. The best results are reported when using the SDAN-FP

estimator. Note that the KS distance is rather small(0.07,0.12) in all three cases.

B. Airborne POLSAR data

To illustrate the improvements in the standard POLSAR ssiog chain, results obtained with high and very high regmu
airborne data are reported. Both data sets were acquirdeetgirborne ONERA RAMSES system [51].

1) High resolution POLSAR dataThe first POLSAR data set was acquired in Brétigny, Franbe. Mean incidence angle
is 30V, It represents a fully polarimetric (monostatic mode) Xaacquisition with a spatial resolution of approximatelym

in range and azimuth.

[Figure 6 about here.]

Fig. 6-(a) presents the color composition of target vectoplgudes. The target area is composed of three buildings, a
parking lot and the surrounding agricultural areas. Fothirrillustration, a non-Gaussian urban (building) redias been

selected, namely the span image superposed over the arpbato from Fig. 6-(b).

The LLMMSE span and the normalized coherency matrix arenas&id using the three different estimation schemes [Fig. 7]
The BN-FP span illustrated in Fig. 7-(b) exhibits bettert&hing in the estimation process than the BN-SCM span frgm-i
(a). This can be observed on the isolated brilliant poirdvgigsuctures surrounding the building. However, both BNVISdhd
BN-FP are tributary to the "ring effect” (two large dips ong@asial profile near the boundaries of a pointwise target)oed
by coupling the BN spatial support with the LLMMSE estimafe2]. This effect is reduced in the SDAN-FP span image as it

can be observed over the metallic structures present ondi®f the building from Fig. 7-(c).

[Figure 7 about here.]

Visual assessment is carried out also with normalized @stoyf M| estimates. Color compositions, constructed from either
the diagonal elements @¥/] or the correspondingf —« — A parameters [17], are computed for the three estimatiomtquks
[Fig. 7-(d),(e),(f) and Fig. 7-(g),(h),(i)]. Both paranees exhibit the same behavior:

« BN-SCM: "patchy” appearance mainly due to the texture;
« BN-FP: blurring as the "matrix stationarity” condition istrespected,;

« SDAN-FP: higher spatial feature preservation but moreavene.

As the target area is highly heterogeneous, the SDAN-FRattn is a good trade-off between robust estimation antepa

resolution preservation.

Finally, it is possible to derive the SDAN-FP polarimetragherency matrix as the product between the span image @] 7

and the corresponding normalized coherency [Fig. 7-(fFib. 8, the SDAN-FP coherency is compared with the conoeati
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coherency matrices obtained by the sample covariancexwstiimator coupled with two spatial supports: the boxcaghme
borhood (BN) and the Intensity-Driven-Adaptive-Neighihood (IDAN) [8]. Subjective visual assessment can be e
terms of the hue-saturation-lightness (HSL) color spa8¢hy associating the lightness to the span and the satoratibe po-
larimetric diversity. The SDAN-FP coherency from Fig. §-€&hibits better performances in terms of lightness anaraton,
meaning that both the span and the normalized coherencyetter bstimated. The correspondifig— « classification maps
[17] are illustrated in Fig. 8-(d),(e),(f). Fdf — « classification also, the SDAN-FP coherency provides bptgiormances as

it achieves stronger noise reduction than the IDAN filter.

[Figure 8 about here.]

One key issue to be discussed is weather the normalizederatyematrix and the span should be aggregated in the final
estimation step or not (the question mark from Fig. 1). Mdshe existing processing chains use the conventional eoivgr
matrix for representing POLSAR data for unsupervised lameecclassification [18], [19], [47], [43] and for target detion
applications [33], [12]. Due to the SIRV model identificatiproblem discussed in Sect. II-B, the complete description
the POLSAR data set is achieved by estimating the span antbtingalized coherency independently. The latter descthees
polarimetric diversity, while the span indicates the toémleived power. Moreover, the Fixed Point estimation ofthienalized
coherence does not depend on the span information. Givee thets, we propose to investigate this problem in the freorie
of unsupervised POLSAR classification. The classificatdreme discussed in the following is the standard Wishart «
segmentation [18]. For segmenting the normalized cohgreve have modified the Wishaff — « algorithm by replacing
the Wishart distance with the SIRV ML distance discusseceict S1-E. For comparison, we have also used the scalar Gamma
K-means classification witlil — « initialization. The corresponding ML distance measurelitamed using the GLRT with

the Gamma PDF.

[Figure 9 about here.]

Fig. 9illustrates the POLSAR unsupervised classificatésults using three descriptors estimated by SDAN-FP: dgign9-
(a)], coherency [Fig. 9-(b)] and normalized coherency [Bigc)]. The selected scene is composed of both Gaussiais{kag
tural fields) and non-Gaussian (urban) areas. This case@iatered in many practical POLSAR classification applcet.
Fig. 9-(e) presents theclass segmentation map obtained using the SDAN-FP cotyereatrix. When compared to the scalar
unsupervised classification map [Fig. 9-(d)] obtained gigipan only, one can observe the high degree of similaritydot
them. This leads to the following conclusion: the Wishdrt- « classification is mainly influenced by the information con-
tained in the span image. Regarding the polarimetric in&diom, Fig. 9-(f) presents the classification map compugiag.the
normalized coherency matrix and the associated SIRV distarhe visual assessment of Fig. 9-(e) and Fig. 9-(f) revtbat a
significant part of the polarimetric information is lost whasing the standard coherency matrix: the building clagarsdion
is lost, as well as the natural canonical targets (trihedtialedral...) present over different "field” classes. Ompaortant
remark concerning the Wishakt — « classification is that a large number of samples are ususdigaed to the class feature
vector when iterating the K-means clustering algorithmeRw this, locally Gaussian areas (agricultural fields) magone

heterogeneous regions as neither the "matrix statioriaritythe "texture homogeneity” conditions are respected.
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The same behavior can be also observed in Fig. 9-(g),(Wii) the classification maps obtained after basic scatierin
mechanism identification [54]. The use of polarimetric aadors, derived from the eigenvector-eigenvalue decoitipo®f
the normalized coherency matrix, allows the interpretatibeach cluster scattering mechanism from Fig. 9-(d{ffe)n all
three cases, the POLSAR parameters were computed usin@#&N-5P normalized coherency from Fig. 9-(f). The observed
scene is then classified into three canonical scatteringstypven bounce (blue or cyan), odd bounce (red or dark retl) an

volume scattering (green) [55].

2) Very high resolution POLSAR dataThe second POLSAR data (Fig. 10) set was acquired in Touldtra@ce with a
mean incidence angle 60°. It represents a fully polarimetric (monostatic mode) Xxacquisition with a spatial resolution

of approximatelys0 cm in range and azimuth.

[Figure 10 about here.]

Fig. 11 presents the visual assessment of the proposedagistinscheme applied to very high resolution POLSAR data
acquired in urban environment. The obtained results ateilhiscompared to those obtained by the refined Lee filteratpey
under Gaussian clutter hypothesis [9]. WitlhGacm spatial resolution, the SDAN-FP normalized coherenesnfFig. 11-(c)
reveals higher variability in polarimetric signaturesrthdth al.5 m spatial resolution [Fig. 7-(f)]. Fig. 11-(b) presents tiodor
composition of the diagonal elements of the SDAN-FP cohgrematrix after multiplication by the corresponding LLMMSE
span. When compared to the polarimetric coherency deriyatidrefined Lee filter [Fig. 11-(a)], the SDAN-FP coherency
better preserves the polarimetric and radiometric sigeatover thin spatial features (brilliant points and edgds)is can
be also observed in th&class segmentation maps obtained by Wisliart « clustering [Fig. 11-(d),(e)]. It is important
to stress that, for very high resolution urban POLSAR ddia, golarimetric coherency matrix is not Wishart distrilalite
Hence, the unsupervisédl — « classification based on the SIRV distance measure can benyapplied using the SDAN-FP
normalized coherency. The result is illustrated in Fig(f)1Finally, the three classification maps are interpretecording to
the basic scattering mechanism identification procedufk [Subjective visual assessment indicates that quitéstiealesults
are obtained using the SDAN-FP normalized coherency dasciiFig. 11-(i)]: buildings and cars are mainly retrieviadhe

red "odd bounce” class, while "even bounce” scattering naatdm (cyan class) appears on the flat regions (roads).

[Figure 11 about here.]

In conclusion, the joint analysis of the span and the nomadlicoherency presents several advantages with respéet to t
coherency matrix descriptor: separation between the tetaived power and the polarimetric information, estioranf the
normalized coherency matrix independently of the span ha@xistence of the SIRV distance measure for unsupervised M
classification of normalized coherencies. However, thespamalized coherency description of POLSAR images saissv
problems which still remain under investigation. The fisstuie concerns the use of span for testing the "matrix statityh
condition for the normalized coherency estimation. Thi te currently used for POLSAR data speckle filtering and it i
founded on the basic principle that changes within the puoktric signature are revealed by changes in the total vedei
power. Consequently, one may envisage other estimatioenses dedicated to the SIRV model with stochastic texture by

considering external estimators of "matrix stationarityThe second important remark concerns the Wishart unsigeerv
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classification scheme. Although all statistical requirata@mployed for unsupervised classification are met, theripmetric
information is quite difficult to extract using the K-mearsastering. As it can be noticed in Fig. 9-(c), the polarirmetr
signatures are strongly mixed and the class boundariesraretbed within high resolution POLSAR images (even for high
heterogeneous target areas). Therefore, other clustetriaiggies should be better suited to capture the spasigitlition of
different polarimetric signatures. One starting pointiddoe the POLSAR segmentation by likelihood approximatiog]|

spectral clustering ensemble [57], or the Support Vectochitees kernel-based non-linear classification [58].

Finally, one can observe that span information does alssotine cases, contribute to classification quality (e.g.ridisec
nation of roads in Fig. 9 and buildings in Fig. 11), althoulgé polarimetric signature clustering suffers. Based orSii/
model, the separation span/polarimetric signature isexeli. Future work is needed to objectively asses the cleest$ifn

potential of these two descriptors separately.

IV. GENERAL REMARKS

One critical point of the SIRV model is linked to the scalatttge (span) descriptar. The validity of the product model for
POLSAR data has been investigated in many papers over theeleades [28], [11], [12], [7], [13].

Yueh et al. derived the generalized likelihood of the noireal polarimetric target vector in Gaussian clutter [27hisT
approach has been extended tokhdistributed clutter in [6], [28]. Note that this extensismot optimal since the covariance
matrix parameter is replaced by the Sample Covariance ¥dadi the SCM depends on the texture PR(F) and it is not the
ML estimator of the covariance matrix i6-distributed clutter. The exact ML normalized covariansgreator can be derived

using the Yao’s representation theorem for SIRVs and itstexgpression is given in Eq. 16.

The product model have also been also used by Novak et alefaiing the Polarimetric Whitening Filter [11], [12]. Babe
on this result, Lopes et al. derived the Multilook PolarieWhitening Filter as well as the adaptive LLMMSE filter for
Gaussian anf{-distributed clutter [13]. The SIRV representation theomdlows the derivation of the PWF as a ML estimator
of the deterministic texture. Once the texture parametebiained for every resolution cell further statistical ggesing can

be applied over a population of texture parameters (e.gprthygosed LLMMSE span filter).

For Gaussian clutter, Lee at al. introduced optimal polatiio covariance matrix classification schemes based oWisieart
distance [18], [19], [47]. The proposed methods can be elaério the SIRV model by using the SIRV distance presented in
Sect. II-E. Moreover, the asymptotical distribution of figed Point estimator from Eq. 13 has been derived in [39k FR
estimator computed withv samples (secondary data) converges in distribution to dnealized Sample Covariance Matrix
computed withV .- secondary data. Since the normalized SCM is the SCM up tole fzdor, we may conclude that, in
problems invariant with respect to a scale factor on the tanae matrix, the FP estimate is asymptotically equivieienhe

SCM computed withV - secondary data.

We can conclude that the Yao’s representation theorem slégtimal multivariate signal processing of POLSAR data in a
general framework. The SIRV model provides the methodofogyetrieving the conventional cases (multivariate Garss
and multivariateC-distribution). This methodology can be also generalizedther heterogeneous clutter models defined by

explicit texture PDFs (inverse Gamma, Fisher ...).



21

More recent studies have revealed the presence of diffeoatitering characteristics between the cross-polar aqmble
terms of the Sinclair matrix [59], [16]. In consequence, B@LSAR clutter could be modelled by different texture ramdo
variables for each polarization channel. Such a stochastitel already exists in the literature and it is known as teedgalized
SIRV model [60]. Unfortunately, the covariance matrix Getized SIRV estimator of the Gaussian kernel could not beéo
without taking into account any "a priori” information abidhe texture multivariate PDF. Future work should investigthe
coupling between SIRVs and multiple single-channel spigtidure descriptors, such as the nonstationary anisistt@gussian-

kernel model [61].

Despite being quite general, the SIRV clutter model suppdlse "matrix stationarity” condition to be verified over the
observation vector. We proposed the use of an adaptiveaspatiport based on the scalar span information. The regi8pan-
Driven-Adaptive-Neighborhood operates under deterriiciisxture hypothesis and it states that the local "mataisnarity”

property is revealed by changes in the span image.

One limitation of the proposed estimation scheme concémslétermination of the "SIRV homogeneous” neighborhood
surrounding a pixel. The strategy adopted for this papesisbim testing the "matrix stationarity” condition usinget span,
under deterministic texture assumption. Despite not beptgnal in the context of the SIRV model, the proposed apghoa

does not require additional "a priori” information regardithe local clutter statistics.

Finally, the SDAN-FP algorithm is more computation inteesthan other existing POLSAR speckle filtering algorithms
developed for Gaussian clutter [9], [8], [10] and it handbisgle Look Complex data only. Further work should addriss t
extension of the proposed approach to adaptive nonlinéaniriiy of multilook POLSAR data.

V. CONCLUSIONS AND PERSPECTIVES

This paper presented a new estimation scheme for derivirgadized coherency matrices and the resulting estimatad sp
with high resolution POLSAR images. The proposed approaciples nonlinear ML estimators with span driven adaptive

neighborhoods for taking the local scene heterogeneitydntount.

The heterogeneous clutterin POLSAR data was describedtSIRV model. Two estimators were introduced for describing
the POLSAR data set: the Fixed Point estimator of normalizgterency matrix and the corresponding LLMMSE span.
The Fixed Point estimation is independent on the span PDRem@sents an approximate ML estimator for a large class
of stochastic processes obeying the SIRV model. Moreokierderived normalized coherency is asymptotically Gaussia

distributed.

For SIRV clutter, a new ML distance measure was introducedifsupervised POLSAR classification. This distance was
used in conventional K-means clustering initialized by the- o polarimetric decomposition. Other extensions of the eéxgst
unsupervised or supervised POLSAR clustering methods Bages ML or fuzzy K-means) can be derived by replacing the

conventional Wishart distance with the proposed SIRV dista

The effectiveness of the proposed estimation scheme wedrdted by high and very high resolution ONERA RAMSES
X-band POLSAR data. The reliability of the obtained reswiés demonstrated by quantitative performance assessuosangs
simulated POLSAR data.
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This work has many interesting perspectives. We believighiepaper contributes toward the description and theyarsabf
heterogeneous clutter over scenes exhibiting complexipwdéric signatures. The proposed approach presents adeigtee
of generality as no explicit stochastic texture model isdeee Finally, the proposed estimation scheme can be exdende
to other multidimensional SAR techniques using the cowvagamatrix descriptor, such as: multi-baseline interfextiyn
polarimetric interferometry or multi-frequency polaritne Future work should address the quantitative perfoceamalysis

of classification and target detection algorithms basedhese estimators.
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(@)

Fig. 2. Simulated POLSAR data, Gaussian c&8® (x 200 pixels): (a) texture image, (b) initial 1-look span estigthtising Eq. 3 and (c) amplitude color
composition of the target vector elemehts/:;-ko.
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(b)

(d) (e)

Fig. 3. Simulated POLSAR data, Gaussian ca®® (x 200 pixels). Square root of LLMMSE span image using the nornedlizoherency estimated by: (a)
BN-SCM, (b) BN-FP and (c) SDAN-FP. Color composition of trermalized coherency diagonal elemeptg] -/ ]33-[M]22 estimated by: (d) BN-SCM,
(e) BN-FP and (f) SDAN-FP.



Figures 29

(b)

Fig. 4. Simulated POLSAR data, SIRV cag®( x 200 pixels); (a) texture image, (b) initial 1-look span estigthusing Eq. 3 and (c) amplitude color
composition of the target vector elemehts/:;-ko.
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Fig. 5. Simulated POLSAR data, SIRV cag®(@ x 200 pixels). Square root of LLMMSE span image using the nornedlizoherency estimated by: (a)
BN-SCM, (b) BN-FP and (c) SDAN-FP. Color composition of trermalized coherency diagonal elemeptg] ;- -[M]22 estimated by: (d) BN-SCM,

(e) BN-FP and (f) SDAN-FP.
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(b)
Fig. 6. Brétigny, RAMSES POLSAR data, X-bari@({ x 501 pixels): (a) amplitude color composition of the target ee@lements:; -4 ;-k2 and (b) optical
image (137 x 137 pixel zoom of the initial span superposed for illustratihg tegion of interest).
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(9 (h)

Fig. 7. Brétigny, RAMSES POLSAR data, X-bantB{ x 137 pixels). Square root of LLMMSE span image using the nornedlizoherency estimated
by: (a) BN-SCM, (b) BN-FP and (c) SDAN-FP. Color compositiohthe normalized coherency diagonal elemémts| ;- 1/]33-[M]22 estimated by: (d)
BN-SCM, (e) BN-FP and (f) SDAN-FP. Color composition of thegrimetric //-o- A parameters estimated by: (g) BN-SCM, (h) BN-FP and (i) SDAR-
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(d) () ®

Fig. 8. Brétigny, RAMSES POLSAR data, X-bantB{ x 137 pixels). Color composition of the coherency diagonal elet®iEl"|11-|7"|33-[T]22 estimated
by: (d) BN, (e) IDAN and (f) SDAN-FP after multiplication witthe LLMMSE span from Fig. 7-(c)H -« classification results using: (d) BN, (e) IDAN and
(f) SDAN-FP.
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Fig. 9. Brétigny, RAMSES POLSAR data, X-bangD( x 501 pixels). LLMMSE span using the normalized coherency edthdy SDAN-FP: (a) span
image, (d) Gamma unsupervised classification and (g) phlysiechanism identificatiorofld bounce classgsven bounce classesolume claspusing the
SDAN-FP normalized coherency. SDAN-FP coherency mattirapan multiplication: (b) color composition of the diagbelement$T]11-[ 7] 35-[T]22, (€)
Wishart unsupervised classification and (h) physical meishaidentification. SDAN-FP normalized coherency mat(@:color composition of the diagonal
elementg M ]11-[ M |33-[M]22, (f) SIRV unsupervised classification and (i) physical netbm identification.
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(b)

Fig. 10. Toulouse, RAMSES POLSAR data, X-bas@({ x 500 pixels), resolution azimuth and range ¥ cm: (a) amplitude color composition of the
target vector elements; -/:5-k2 and (b) optical imagé&d)CNES/Spot-Image.
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Fig. 11. Toulouse, RAMSES POLSAR data, X-basd({ x 500 pixels), resolution azimuth and rangessf cm. Color composition of the diagonal elements
of the diagonal elementd]11-7"]33-[T]22: (a) the Lee refined filter, (b) SDAN-FP coherency matrix raffean multiplication. (c) color composition of
the diagonal elements\/]11-/1/]33-[M]22 estimated by SDAN-FP. Wishart unsupervised classificat{dy coherency estimated by the Lee refined filter,
(e) SDAN-FP coherency matrix after span multiplicatior). Ufisupervised classification of the SDAN-FP normalizedecehcy based on the SIRV distance
measure. Physical mechanism identificatiodd bounce classesven bounce classesolume claspusing: (g) coherency estimated by the Lee refined filter,
(h) SDAN-FP coherency matrix after span multiplication, SDAN-FP normalized coherency.
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Tables

TABLE |
SIMULATED POLSARDATA, GAUSSIAN CASE MEAN AND STANDARD DEVIATION OF NORMALIZED COHERENCY ELEMENTS OVER"GAUSSIAN
STATIONARY” AREAS.

Parameter Value Mean Standard deviation
(3378 pixels) BN-SCM | BN-FP | SDAN-FP || BN-SCM | BN-FP | SDAN-FP
My, 1.79 1.78 1.77 1.77 0.13 0.15 0.19
Moo 0.77 0.78 0.78 0.78 0.11 0.12 0.15
Mss 0.43 0.44 0.44 0.44 0.06 0.07 0.09
R{ M2} 0.01 0.01 0.01 0.01 0.10 0.13 0.16
S{ M2} -0.19 -0.17 -0.17 -0.17 0.12 0.13 0.16
R{ M3} 0.07 0.08 0.08 0.08 0.09 0.10 0.11
S{ M3} 0.03 0.03 0.03 0.03 0.09 0.10 0.12
R{ Mas} 0.16 0.15 0.15 0.15 0.06 0.07 0.08
S{Mos} 0.02 0.02 0.02 0.02 0.06 0.07 0.08
Mean normalized errok) 0.17 0.19 0.23
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TABLE Il
SIMULATED POLSARDATA, GAUSSIAN CASE SPAN MEAN RATIO i/ [ty f AND COEFFICIENT OF VARIATION OVER"G AUSSIAN STATIONARY” AREAS.

Span Mean ratio Coefficient of variation
(3378 pixels) || BN-SCM | BN-FP | SDAN-FP [ BN-SCM | BN-FP | SDAN-FP
[ LLMMSE || 099 | 107 | 099 [ 010 | 013 | 016 |
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SIMULATED POLSARDATA, SIRV CASE: MEAN AND STANDARD DEVIATION OF NORMALIZED COHERENCY ELEMENTS OVER”SIRP STATIONARY”

AREAS.

Parameter Value Mean Standard deviation
(3378 pixels) BN-SCM | BN-FP | SDAN-FP || BN-SCM | BN-FP | SDAN-FP
My, 1.79 1.75 1.80 1.76 0.35 0.14 0.24
Moo 0.77 0.75 0.75 0.79 0.27 0.10 0.20
Mss 0.43 0.49 0.44 0.44 0.23 0.08 0.11
R{ M2} 0.01 0.04 0.01 0.02 0.36 0.14 0.22
S{ M2} -0.19 -0.17 -0.19 -0.17 0.35 0.11 0.24
R{ M3} 0.07 0.09 0.07 0.06 0.30 0.11 0.17
S{ M3} 0.03 0.04 0.04 0.04 0.26 0.09 0.17
R{ Mas} 0.16 0.18 0.16 0.15 0.18 0.06 0.10
S{Mos} 0.02 0.03 0.02 0.02 0.19 0.06 0.10
Mean normalized errok) 0.51 0.19 0.28
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TABLE IV
SIMULATED POLSARDATA, SIRV CASE: THE KOLMOGOROW-SMIRNOV TEST K.S;, = maxg |Fn(x)

— Frcf(z)| FOR THE SPAN DISTRIBUTION

Span
(3378 pixels)

K-S test

BN-SCM | BN-FP [ SDAN-FP

LLMMSE

0.111

[ 0.100 |

0.068
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