
HAL Id: hal-00466542
https://hal.science/hal-00466542

Submitted on 24 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A UML based deployment and management modeling
for cooperative and distributed applications

Mohamed Nadhmi Miladi, Fatma Krichen, Mohamed Jmaiel, Khalil Drira

To cite this version:
Mohamed Nadhmi Miladi, Fatma Krichen, Mohamed Jmaiel, Khalil Drira. A UML based deployment
and management modeling for cooperative and distributed applications. ACIS International Con-
ference on Software Engineering, Management and Applications (SERA 2010), May 2010, Montreal,
Canada. 16p. �hal-00466542�

https://hal.science/hal-00466542
https://hal.archives-ouvertes.fr

A UML based deployment and management

modeling for cooperative and distributed

applications

Mohamed Nadhmi MILADI1, Fatma KRICHEN1, Mohamed JMAIEL1, and Khalil
DRIRA2,3

1 University of Sfax, ReDCAD laboratory, ENIS, Box.W 1173, 3038, Sfax, Tunisia,
MohamedNadhmi.Miladi@isimsf.rnu.tn,

2 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
3 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

Abstract. Thanks to the major evolutions in the communication technologies and in order
to deal with a continuous increase in systems complexity, current applications have to cooper-
ate to achieve a common goal. Modeling such cooperatives applications should stress regular
context evolutions and increasingly users requirements. Therefore, we look for a model based
solution suitable to cooperative application that can react in response to several unpre-
dictable changes. Driven by the cooperative application structure, we propose, in this paper,
an UML extension named “DM profile” ensuring a high-level description for modeling the
deployment and its management in distributed application. The proposed contribution is
validated through a “Follow Me” case study and implemented through an Eclipse plug-in.

1 Introduction

Current distributed systems are continuously increasing in size and especially in
complexity. Cooperating several software entities, to achieve a common goal, is a key
to cope with such complexity. These cooperative applications have to adapt their
deployed architectures due to several purposes: improving performance, evolutionary
user requirements, context changes, etc.

A successful adaptation is based on providing architecture deployment models
that can be dynamically managed to meet such required purposes. This deploy-
ment and management modeling should be, in addition, suitable to the distributed
and cooperative features of the application. However, modeling the architecture de-
ployment and its management is often closely coupled to the underlying supported
platform. Such a description especially targets the modeling of real deployment units
such as artifacts, communication links, and computing units. This requires knowing
the context and the underlying deployment platforms before starting the deploy-
ment process. For the actual systems where adaptively properties are usually unpre-
dictable, such a deployment and its management modeling remains inappropriate.
User requests and the application context are continuously evolving. In addition, the
availability of deployment structures such as deployment platform and communica-
tion flows are not always guaranteed.

2 Mohamed Nadhmi MILADI, Fatma KRICHEN, Mohamed JMAIEL, and Khalil DRIRA

The challenge is to design high-level deployment and management solution that
can easily handles diverse deployment infrastructures. This modeling should provide
not only platform-independent models, but also a modeling abstraction that han-
dles various architecture deployment approaches applicable for the service-oriented
and the component-based architectures. This deployment and management model-
ing should ensure a best effort adaptation while taking advantage of all available
resources whatever their architecture development approach or their underling plat-
form are. Moreover, such modeling should take advantage of the structured organi-
zation of the cooperative application.

Basing on the UML standard language, several works propose extensions to han-
dle software architecture deployment such as [9], [12], [3], and [22]. These works
follows a structural management reconfiguration on behalf of a deployment man-
agement modeling. Other works focus on a high-level modeling that describes the
deployment management such as [10], [13], and [17].

The contribution made by this paper merges both: the modeling power of the
UML language specification and a high-level modeling. It proposes an UML pro-
file extension providing an abstract model that describes the deployment and its
management of distributed software architectures while taking into consideration
cooperative architectures specificities. This modeling ensures a best effort solution
for the management of an architecture deployment to meet their adaptiveness re-
quirements.

The rest of this paper is organized as follows: Section 2 discuses the related work.
In section 3, we present our UML extension profile. Then, in Section 4, we illustrate
our extension by a case study Follow Me. Section 5 presents the realization of our
profile as a plug-in for eclipse. Finally, section 6 concludes this paper and presents
future work directions.

2 Related work

Many works dynamically manage their software architecture in response to the con-
text evolution requirement. Various management techniques are used. We distin-
guish the interface management, implementation management, structure manage-
ment [11], [15]. Other works including [23] merge some of these techniques in order
to ensure dynamic management. Despite these research efforts, they remains not well
appropriate with the distributed architecture specificities. Works including [13] rely
on a deployment management for the context adaptivity requirement of distributed
architectures. Modeling dynamic architecture management carries several techniques
including ADLs (Architecture Description Languages), formal techniques, graphical
techniques. . . . Several research works focus on standard modeling techniques which
are based especially on the UML language and its standard mechanisms. Since our
proposed contribution follows a standard modeling techniques and it grants a dis-

Title Suppressed Due to Excessive Length 3

tributed architecture managing, we focus in this section on researches that handle
both: the deployment management and UML extension modeling.

Modeling deployment management through UML extensions can be subdivided
into two main issues. The “heavyweight” [21], [22] which set new meta-classes extend-
ing UML meta-classes. The other category defines UML profiles while maintaining
the UML meta-model. Among these works some researches focus on a context mod-
eling using an UML profile in order to meet the adaptiveness requirements. Some
other research efforts including [8], [12], [18] are based on the UML component
diagram to achieve a dynamics structural management of architecture applications.
However, such works describe a structural management reconfiguration instead of a
deployment management modeling.

In order to manage the deployed software architecture, works including [9] are
based on a UML profile extending the modeling power of the deployment diagram.
Other research efforts addressing the deployment management modeling driven by
the architecture type. Works including [20] focus on a service-oriented approach while
others including [5] opted for a component-based approach. A third class includ-
ing [10], [13] and [17] provides a high level description for modeling the deployment
and its management.

A final group of research efforts, including [2] merges both: a deployment man-
agement modeling based on the UML language and a high-level of abstraction mod-
eling. Our contribution match these efforts while providing a more explicit models
for the deployment and its management description especially for cooperative ap-
plications. It provides a description that takes advantages of the modeling power
of a model based description, a high-level of abstraction modeling and a deploy-
ment and management modeling. It is also based on standard direction as well for
adopted approach: the MDA approach, as for the used modeling language: the UML
language.

3 The deployment and management (DM) profile

This work addresses the deployment and its management modeling for software ar-
chitectures in general and more specifically for collaborative applications. It proposes
models with a high-level of abstraction ensuring a platform independent deployment
description as well as a best effort management solution for adaptive requirement
evolving.

This work is the high-level of a multi-level based approach 1. Based on the
MDA approach, the proposed models are transformed towards more specific models
through a model transformation process. This process tends to reduce the gap be-
tween our abstract models and a more refined model supporting service-oriented [19]
or component-based Architectures. These models are mapped towards specific plat-
forms such as CCM [6], OSGi [1], and other platforms as depicted in Figure 1.

4 Mohamed Nadhmi MILADI, Fatma KRICHEN, Mohamed JMAIEL, and Khalil DRIRA

21/03/2010

1

PIM

MDA Deployment Model Management Model

Platform Independent Deployment
(PID)Model : “DM Profile”

M d l T f ti

Other

Mapping

OSGi

PIM

PSM

Model Transformation
Process

Service Oriented Deployment &
management Model: “3DxSoAdl”

Component Based Deployment
& management Model

CCM

Platforms
PSM

Fig. 1. The multi-level based approach for deploying and managing software architectures

3.1 The deployment model

The architecture deployment modeling is based on two major ideas. The first idea
highlights a deployment model without any prior description of the real deployment
architecture entities. This modeling is based on the Unified Modeling Language. The
architecture deployment modeling in UML2 is ensured mainly through the deploy-
ment diagram. Meta-models of this diagram, which are related to the L2 level of the
MOF approach, provide the basic concept for modeling deployment architectures.

In UML2, the deployment modeling process is closely coupled with the real phys-
ical architectural entities. Most provided meta-models and versioning update efforts
on this diagram follow a modeling vision that focus on the description of physical
architecture entities such as “device”, “execution environment”, “artifact”. . . . Thus,
the deployment diagram is associated with a PSM level. In the proposed deployment
model, we extend the modeling power of UML deployment diagram to enable a PIM
level deployment modeling. This extension ensures a high-level description to model
an architectural deployment process. Two new stereotypes are achieved to overtake
such deployment modeling:
�Deployed Entity� stereotype: it ensures the modeling of the functional

aspect of the deployment architecture. “Deployed Entity” models each software en-
tity that establishes a functional contract through its provided and required inter-
faces and can be deployed in a container. Such modeling enhances the description
power of UML component model in order to cover several software entities includ-
ing components, services, service-components [4]. . . Therefore, it describes the basic
software unit in a high deployment level. The defined stereotype extends the com-
ponent meta-model, as depicted in Figure 2, establishing a more abstract semantic
in a deployment context.
�Logical Connection� stereotype: it ensures the connections modeling be-

tween deployed entities of the architecture. The described connections span several
connection types ensuring the communication between two “deployed entities”. The

Title Suppressed Due to Excessive Length 5

“Logical Connection” stereotype enhances the connector semantics enabling to span
physical connections such wired, wireless or satellites connections, software connec-
tions, or connections that express functional dependencies between two “Deployed
Entities”. This stereotype extends the connector meta-model of UML as depicted in
Figure 2.

Modeling software architecture deployment requires the description of, first, the
suitable/available deployment containers, second, the deployable software entities
such as components and services in their related nodes and, third, the connection
links within these entities. This modeling, although it’s higher-level description,
remains especially focused on concepts reduced to their location typically modeled
through the node concept.

« metaclass »
Components::BasicComponents::

Component

« stereotype »
Deployed Entity

«extension»

« metaclass »
UML::Classes::
Kernel::Class

« stereotype »
Category

«extension»

« metaclass »
Components-

BasicComponents-
Connector

« stereotype »
Logical Connection

«extension»

« metaclass »
Deployments::Nodes::

Node

« stereotype »
Domain

«extension»

« metaclass »
Classes::Dependencies::

Dependency

« stereotype »
Logical Deployment

«extension»

Fig. 2. “DM profile” stereotypes for the deployment modeling

Our second basic idea is to extend the container deployment scope using some
virtual structures which have a more enhanced semantics than the traditional node
concept. These structures ensure a more flexibility and better organization in the
deployment process. Each entity will be deployed in virtual structures meeting the
context requirements and accustoming to the available resources. In addition, struc-
turing software entities under some virtual structures emphasize the cooperative
aspect of an application and match its cooperative guard. Typically, in these appli-
cations, deployed entities are virtually underlying other entities to cooperate in the
achievement of the same goal. In a cooperative application, several actors should be
established. Each one plays a specific role in the cooperation process. For instance,

6 Mohamed Nadhmi MILADI, Fatma KRICHEN, Mohamed JMAIEL, and Khalil DRIRA

« stereotype »
Logical Deployment

« stereotype »
Domain

1

*

« stereotype »
Deployed Entity

« stereotype »
Category

**

**

{XOR}

« stereotype »
Logical Connection

* *

*

2..*

Fig. 3. ‘DM profile” structure for the deployment modeling

in a cooperative document edition, various roles are identified such as writer, reader,
manager. . . This carries a vertical vision, as depicted in Figure 4, of the cooperative
deployment structure. On the other hand, actors cooperate in the establishment of
complex activities to meet a common goal through several activity categories. For
example, in a cooperative document edition, we can identify various categories such
writing, document correction, review. . . . This carries a horizontal vision, as depicted
in Figure 4, of the cooperative deployment structure. Moreover, it achieves a better
management of the deployed architecture. This will be more detailed in the next
section.

This structured modeling is achieved through the definition of three new stereo-
types on our profile:

�Domain� stereotype: it models a virtual structure owning “Deployed En-
tities” that ensure the same role. This stereotype extends the node meta-model,
as depicted in Figure 2, establishing a more specific semantics in the deployment
context of cooperative application.

�Category� stereotype: it models a virtual structure owning “Deployed
Entities” that cooperate in the same activity category. This stereotype extends the
class meta-model, as depicted in Figure 2, establishing a more specific classification
of the “Deployed Entities” upon cooperative activities process.

Title Suppressed Due to Excessive Length 7

DE4

DE6

DE3

Category1

N1:Domain2 N2:Domain1

Category3

DE4

Category2

DE2

DE1

N3:Domain2 N4:Domain1

DE5 DE7

DE8

DE9

Fig. 4. A description of the cooperative deployment structure

�Logical deployment� stereotype: it expresses all available dependencies
within the profile stereotypes. This stereotype extends the dependency meta-model,
as depicted in Figure 2, establishing deployment dependency in cooperative ap-
plication. Restrictions bound to the definition of this profile depicted in Figure 3
presented in the following:

– A relation of composition is established between the stereotype “Logical De-
ployment” and the stereotype “Domain”, while a deployed architecture includes
several “Domain”;

– A relation of aggregation is established between the stereotype “Domain” and the
stereotype “Category” (respectively “Deployed Entity”), while the same “Cate-
gory” (respectively “Deployed Entity”) can belong to several “Domains”;

– A relation of aggregation is established between the stereotype “Category” and
the stereotype “Deployed Entity”, while the same “deployed entity” can to be
deployed in several categories;

– The relation “XOR” between the two previous aggregation relations ensuring
that a “Deployed entity” belongs to a “Domain” as well as to a “Category” but
not at the same time;

– An association between the stereotype “Deployed Entity” and the stereotype
“Logical Connection”, while two or more “Deployed entities” can be connected
through several “logical connections”.

3.2 The management model

In order to take over an evolving context and unexpected events or requirements,
a dynamic architecture deployment should be modeled. The challenge is to provide
notations and mechanisms to cope with the current architecture properties such as
large scale deployment while being able to target the appropriate entities to manage.
The idea is to describe specific redeployment rules. A redeployment rule describes

8 Mohamed Nadhmi MILADI, Fatma KRICHEN, Mohamed JMAIEL, and Khalil DRIRA

what’s transformation should be achieved on the fly upon the actual deployment
architecture to meet the requirement adaptations.

In a large-scale deployment, in order to meet unexpected events or requirements,
several redeployment rules should be achieved. In fact, an occurrence of a single
event may lead to achieve a set of redeployment rules. In a cooperative context,
such redeployment rules may affect all “deployed entities” without expecting their
task in a cooperative process. These rules should target some specific “Deployed
Entities” establishing a cooperative task. Describing all these redeployment rules
requires both a meticulous and an excessive modeling time and efforts. This mod-
eling solution became especially limited in applications that require a quick and
specific management description. The idea is to propose a more expanded redeploy-
ment rules. The deployment scopes of such rules are no longer limited to a single
“deployed entity” but they handle a set of “deployment entities”. The execution
of a single expanded deployment rule induces the execution of several underlying
deployment rules. Establishing these expanded rules is based on the deployment
structures proposed in the previous section including “Domain” and “Category”.
This enables a more target deployment management driven by the cooperative as-
pects of the application. Describing these expanded redeployment rules is based on
a multi-formalism management approach.

« metaclass »
UML::Classes:: Kernel::Class

« stereotype »
Rule

« stereotype »
L

« stereotype »
K

« stereotype »
R

«extension» «extension»

«extension»«extension»

Fig. 5. “DM profile” stereotypes for the management modeling

Title Suppressed Due to Excessive Length 9

« stereotype »
Rule

« stereotype »
L

« stereotype »
K

« stereotype »
R

1

1

1

1

Fig. 6. “DM profile” structure for the management modeling

Fig. 7. “Follow Me” high-level deployed structured modeling

10 Mohamed Nadhmi MILADI, Fatma KRICHEN, Mohamed JMAIEL, and Khalil DRIRA

This management approach combines the power of two formalisms. First, it is
based on the theoretical efforts achieved on grammar productions techniques such as
graph DPO, ∆, Y [16], [12]. We are based especially on the DPO technique. DPO is
a richer structure for grammar productions. These productions are specified with a
triplet <L;K;R>. The application of this production is achieved through the removal
of the graph corresponding to the occurrence of Del=(L\K) and the insertion of a
copy of the graph Add=(R\K). Indeed, DPO technique, describes each uplet graph
as an autonomic entity. There is no exclusion as the Y and/or ∆ techniques. This
is very useful when, for instance, we should express the relationship of two elements
sharing the same container; one should be preserved and the other one should be
added.

Second, the proposed management approach is based on the high expressive
power of UML language and its standard notations. Based on a graphical notation,
our profile provides a clear solution modeling for dynamic deployment management.
This solution is achieved through four new stereotypes as depicted in Figure 5:
�Rule� stereotype: It models an expanded redeployment rule that its de-

scription is ensured through the three following stereotypes: �L�, �K�, and
�R� stereotypes. �L� stereotype presents the initial sub-architecture from the
system where the redeployment rule can be applied. �K� stereotype presents the
sub-architecture to preserve from the sub-architecture stereotyped by �L� stereo-
type. �R� stereotype present the sub-architecture after the execution of the rule.
Otherwise, �L�\�K� (respectively �K�, �R�\�K�) models the deploy-
ment structures (“Domain”, “Category”) and their owning “Deployed Entities” to
be deleted (respectively preserved, added) in the rule execution. In other words, af-
ter the execution of a redeployment rule the current deployed architecture shifts by
adding �R�\�K� sub-architecture, keeping �K� sub-architecture and delet-
ing �L�\�K� sub-architecture.

A restriction, depicted in Figure 6, bound to the definition of this profile. In
fact, a relation of composition is established between the stereotype “Rule” and the
stereotype “L” (“K” and “R”), because the same sub-architecture “L” (“K” or “R”)
can belong to only one reconfiguration rule.

4 Case study: Follow Me

In this section, we present a case study called “Follow Me” for illustrating our
profiles. The “Follow Me” case study, which is similar to the one presented in [14],
is an adaptive application reacting on the context change. It is an audio application
whose audio flow follows the listener movement among many rooms. Each room has
some predefined sinks (a player and its speakers). The “Follow Me” architecture
ensures the context adaptation thanks to its deployment management ability. In
fact, “Follow Me” architecture depends on the available system listeners. If there is

Title Suppressed Due to Excessive Length 11

no person present in a given room, sinks stop the audio flow. In addition, if a listener
moves from a room to another, audio flow follows him/her in a continuous manner.

Fig. 8. High-level Rule for the duplication of “Sink” instance

As an example, we present the case of hotel that has a set of rooms with different
roles: reception, hall, restaurant. . . . Each room has a data base which contains songs
and players which play music. Rooms sharing the same role play the same music
category. Besides, each room can provides to the maximum three players, and each
player can serve to the maximum fifteen clients in order to offer better audio flow
quality.

In order to describe our case, we need to have some virtual structures which have
a more enhanced semantics than the traditional node concept. Thus, we defined the
two semantics domains and categories. Additionally, this system must react with the
change of context. For that and in order to handle the cooperative aspect, we describe
this architecture with a high-level of description: deployed entities interconnect with
logical connectors. The following section describe with details our case study “Follow
Me” of a hotel.

4.1 Structural architecture description

In this section, we propose a modeling process that guide the architecture designer
in order to describe a high-level modeling of the deployed structured architecture.
First, we begin by identifying the various architecture types (domains, categories and
deployed entities), then we associate categories to domains and deployed entities to
domains and categories.

12 Mohamed Nadhmi MILADI, Fatma KRICHEN, Mohamed JMAIEL, and Khalil DRIRA

Figure 7 describes deployed structured architecture of the “Follow Me” case study
, and in particular the case of hotel, through our realized plug-in and profile.

Identify architecture types:

– Domains: Reception, Hall, Restaurant, Sport Space
– Categories: Slow, Oriental, Jazz, RAP, POP, ROC
– Deployed entities: Sink, Client, Data Base
• Sink: It provide audio flow
• Client: He use audio service
• Data Base: this is an audio data base

– Logical Connections
• Connection between Data Base and Sink
• Connection between Sink and Client

Associate categories to domains:

– Reception = Slow, Oriental
– Hall = Slow, Jazz
– Restaurant = Slow
– Sport Space = RAP, POP, ROC

Associate deploymed entities to domains and categories:

– Deployed entities Sink and Data Base belong to the defined categories
– Deployed entities Client belong to defined domains

From this high-level description of the “Follow Me” architecture, we can define
several architectural instances of hotels.

Besides, this high level description enables us to specify the different reconfigura-
tion rules of our case study. In the following, we present an example of reconfiguration
rules. Such rules model some of elementary redeployment actions that can be applied
on deployed structured architecture instance.

4.2 Reconfiguration architecture description

In order to highlight the dynamic management aspect, we consider the case of the
arrival of client number sixteen in the reception, a duplication of the deployed entity
“Sink” instance should be achieved to serve the new client. Figure 8 models the du-
plication of “sink1” instance (regarding the deployed entity “Sink”) in the category
“Slow” in the instance “reception1” regarding the “Reception” domain :

– Add new instance sink2 of deployed entity Sink identical to instance sink1 (same
state)

– Add connection between the new instance of deployed entity Sink and the in-
stance data base1 of deployed entity Data Base

Title Suppressed Due to Excessive Length 13

21/01/2009

1

<?xml version="1.0" encoding="UTF-8" ?>
<xmi:XMI …

<uml:Package xmi:id …>
<packagedElement xmi:type="uml:Class“ xmi:id=…

name="deployment">
<nestedClassifier xmi:type="uml:Node"

xmi:id=…name="policeman Coordinator">
<nestedClassifier xmi:type="uml:Component" xmi:id=…

name="policeman's chief">

“Category” XMI transformation

“Domain” XMI transformation

“Deployed Entity” XMI transformation p
<clientDependency xmi:type="uml:Usage" href=…/>
<clientDependency

xmi:type="uml:InterfaceRealization" href…/>
<interfaceRealization xmi:id=… supplier=… client=…

contract=…./>
</nestedClassifier>
<nestedClassifier xmi:type="uml:Interface" xmi:id=…/>
<nestedClassifier xmi:type="uml:Component"

xmi:id=…name="policeman">
<clientDependency xmi:type="uml:Usage" href… />
<clientDependency xmi:type="uml:Usage" href />

Structural deployment
modeling

“Deployed Entity” XMI transformation

<clientDependency xmi:type uml:Usage href…/>
</nestedClassifier>

</nestedClassifier>
</packagedElement>
<packagedElement xmi:type="uml:Usage" …supplier=…client=…

/>
<profileApplication xmi:id=“…">

……….
</profileApplication>

</uml:Package>
<LogicalDeployment:DeployedEntity xmi:id=…

b C t />
High-level modeling

base_Component=…/>
<LogicalDeployment:DeployedEntity xmi:id=…

base_Component=…/>
<LogicalDeployment:LogicalConnection xmi:id=…

base_Interface=…/>
<LogicalDeployment:Domain xmi:id=… base_Node=…/>
<LogicalDeployment:Category xmi:id=…base_Class=…/>

</xmi:XMI>

Management modeling …

Fig. 9. Mapping of the “DM profile” models towards XML language

14 Mohamed Nadhmi MILADI, Fatma KRICHEN, Mohamed JMAIEL, and Khalil DRIRA

5 Eclipse plug-in extension

In this section, we provide an UML graphical editor as a plug-in in Eclipse that
implements the proposed “DM profile”. It ensures a technical issue to model a
structural deployment and its management in cooperative distributed architectures.
Implementing the “DM Plug-in” is directed by the “UML2Tools” [7] project. This
project aims at providing a graphical solution for modeling UML diagrams with
respect to their latest version. More specifically, the “DM plug-in” is implemented
using the “UML2Tools” deployment diagram. In addition, developing the proposed
plug-in is based on several frameworks: the GMF framework (Graphical Modeling
Framework) for graphical editor generation, The EMF Framework (Eclipse Model-
ing Framework) for meta-model construction, and the GEF Framework (Graphical
Editing Framework) for graphical drawings.

The Developed “DM Plug-in” did not guarantee only a graphical modeling but
also it ensures the mapping of the achieved models towards the XML language as
depicted in figure 9. The resulted XML files are generated with respect to the XMI
(XML Metadata Interchange) standard recommended by the OMG group. Baring in
mind, all XMI files are automatically validated through XML schemas (integrated
in the Plug-in). Generating XML files is a fundamental step in a refinement pro-
cess which starts with already designed models towards a more platform specific
description.

Figure 9 shows the different stereotypes defined in our profile and applied in
a simple example. For each graphical modelling, an XMI file is generated which
contains with details all used UML models and stereotypes.

6 Conclusion

In this paper, we propose an UML profile, named “DM profile” for the deployment
and its management in cooperative and distributed architectures. Driven by the co-
operative system structure, the proposed profile ensures: first, a high level description
for a deployment modeling decoupled with related platforms and architecture style
specificities. Second, an explicit model for managing the deployed architecture based
on graph transformation theories. Third, a suitable solution for a large scale deploy-
ment of cooperative architectures. The proposed solution is illustrated through a
follow me example and implemented through an Eclipse plug-in.

The modeling solution depicted, here, ensures a generic and a platform inde-
pendent modeling according to the MDA approach. In our future works, we will
focus on the model transformation process that fit our multi-level based approach
introduced in the top of “The deployment and management (DM) profile” section.
This approach seeks to refine the “DM profile” models towards a deployment and
management description [19] which can easily mapped to a specific platform such

Title Suppressed Due to Excessive Length 15

as OSGi. Such model transformation process, is driven by a set of implemented al-
gorithms that translates our high-level models to a set of elementary redeployment
actions more suitable with specific platform management.

References

1. O. Alliance, “sgi service platform core specifcation the osgi alliance,”
http://www.osgi.org/Download/Release4V41, April 2007, release 4, version 4.1.

2. J. P. A. Almeida, M. van Sinderen, L. F. Pires, and M. Wegdam, “Platform-independent dynamic
reconfiguration of distributed applications,” in Proceedings of the 10th IEEE International Workshop
on Future Trends of Distributed Computing Systems (FTDCS 2004). IEEE Computer Society, May
2004, pp. 286–291.

3. D. Ayed and Y. Berbers, “UML profile for the design of a platform-independent context-aware appli-
cations,” in Proceedings of the 1st workshop on MOdel Driven Development for Middleware (MODDM
06). New York, NY, USA: ACM, 2006, pp. 1–5.

4. F. Curbera, “Component contracts in service-oriented architectures,” Computer, vol. 40, no. 11, pp.
74–80, 2007.

5. A. Dearle, G. N. C. Kirby, and A. J. McCarthy, “A Framework for Constraint-Based Deployment
and Autonomic Management of Distributed Applications,” in Proceedings of the 1st International
Conference on Autonomic Computing (ICAC 2004). IEEE Computer Society, May 2004, pp. 300–
301.

6. G. Deng, J. Balasubramanian, W. Otte, D. Schmidt, and A. Gokhale, “Dance: A qos-enabled com-
ponent deployment and configuration engine,” in in Proceedings of the 3rd Working Conference on
Component Deployment, 2005, pp. 67–82.

7. T. E. Foundation, “UML2 Tools,” http://www.eclipse.org/modeling/mdt/ downloads/pro-
ject=uml2tools.

8. S. Göbel, “An MDA Approach for Adaptable Components,” in Proceedings of the first European Con-
ference of Model Driven Architecture - Foundations and Applications(ECMDA-FA 05). Nuremberg,
Germany: Springer, November 2005, pp. 74–87.

9. V. Grassi, R. Mirandola, and A. Sabetta, “A UML Profile to Model Mobile Systems,” in Proceedings
of the 7th International Conference on The Unified Modelling Language: Modelling Languages and
Applications. Springer-Verlag, October 2004, pp. 128–142.

10. ——, “A model-driven approach to performability analysis of dynamically reconfigurable component-
based systems,” in Proceedings of the 6th international workshop on Software and performance. New
York, NY, USA: ACM, 2007, pp. 103–114.

11. T. Han, T. Chen, and J. Lu, “Structure Analysis for Dynamic Software Architecture,” in Proceedings
of the 6th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD 2005). Towson, Maryland, USA: IEEE Computer Society,
May 2005, p. 338.

12. M. H. Kacem, M. N. Miladi, M. Jmaiel, A. H. Kacem, and K. Drira, “Towards a UML profile for
the description of dynamic software architectures,” in Component-Oriented Enterprise Applications,
Proceedings of the Conference on Component-Oriented Enterprise Applications (COEA 2005), ser.
LNI. GI, September 2005, pp. 25–39.

13. A. Ketfi and N. Belkhatir, “Model-driven framework for dynamic deployment and reconfiguration of
component-based software systems,” in Proceedings of the 2005 symposia on Metainformatics (MIS
05). New York, NY, USA: ACM, 2005, p. 8.

14. R. Kirk and J. Newmarch, “A Location-aware, Service-based Audio System,” in Proceedings of the
Second IEEE Consumer Communication and Networking Conference (CCNC 05). IEEE Computer
Society, January 2005.

15. A. B. Letaifa, Z. Choukair, and S. Tabbane, “Dynamic Reconfiguration of Telecom Services Architec-
tures According to Mobility and Traffic Models,” in Proceedings of the 18th International Conference
on Advanced Information Networking and Applications (AINA 04). Fukuoka, Japan: IEEE Computer
Society, March 2004, pp. 447–450.

16 Mohamed Nadhmi MILADI, Fatma KRICHEN, Mohamed JMAIEL, and Khalil DRIRA

16. I. Loulou, A. H. Kacem, M. Jmaiel, and K. Drira, “Towards a Unified Graph-Based Framework for
Dynamic Component-Based Architectures Description in Z,” in Proceedings of the The IEEE/ACS
International Conference on Pervasive Services (ICPS 04). IEEE, 2004, pp. 227–234.

17. M. Mikic-Rakic, S. Malek, N. Beckman, and N. Medvidovic, “A Tailorable Environment for Assessing
the Quality of Deployment Architectures in Highly Distributed Settings,” in Proceedings of the Second
International Working Conference on Component Deployment. Springer, May 2004, pp. 1–17.

18. M. N. Miladi, M. H. Kacem, and M. Jmaiel, “A UML profile and a FUJABA plugin for modelling
dynamic software architectures,” in MoDSE’07: Workshop on Model-Driven Software Evolution, March
20-23. Amsterdam, Netherlands: IEEE - CSMR, March 2007.

19. M. N. Miladi, I. Krichen, M. Jmaiel, and K. Drira, “An xADL extension for managing dynamic deploy-
ment in distributed service oriented architectures,” in Proceedings of the 3rd International Conference
on Fundamentals of Software Engineering (FSEN). Kish Island, Persian Gulf, Iran: Springer, April
2009, pp. 439–446.

20. F. Moo-Mena and K. Drira, “Reconfiguration of Web Services Architectures: A model-based approach,”
in Proceedings of the 12th IEEE Symposium on Computers and Communications (ISCC 2007). IEEE
Computer Society, July 2007, pp. 357–362.

21. J. E. Pérez-Mart́ınez, “Heavyweight extensions to the UML v metamodel to describe the C3 architec-
tural style,” SIGSOFT Softw. Eng. Notes, vol. 28, no. 3, pp. 5–5, 2003.

22. A. Poggi, G. Rimassa, P. Turci, J. Odell, H. Mouratidis, and G. A. Manson, “Modeling Deployment
and Mobility Issues in Multiagent Systems Using AUML,” in Proc. of the 4th International Workshop
on Agent-Oriented Software Engineering IV (AOSE), ser. Lecture Notes in Computer Science, vol.
2935. Springer, 2003, pp. 69–84.

23. D. Walsh, F. Bordeleau, and B. Selic, “A Domain Model for Dynamic System Reconfiguration,” in
Proceedings of the 8th International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2005). Springer-Verlag, October 2005, pp. 553–567.

