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We consider the families of finite Abelian groups Z/pZ × Z/pZ, Z/p 2 Z and Z/pZ × Z/qZ for p, q two distinct prime numbers. For the two first families we give a simple characterization of all functions whose support has cardinality k while the size of the spectrum satisfies a minimality condition. We do it for a large number of values of k in the third case. Such equality cases were previously known when k divides the cardinality of the group, or for groups Z/pZ.

Introduction sec:intro

In this work we consider a finite Abelian group G, which can always be described as

group group (1) G = Z/p 1 n 1 Z × • • • × Z/p r nr Z,
where the integers p i are prime numbers with possible repetition. We will write Z n := Z/nZ to simplify notation.

Uncertainty principles show how small the support and the spectrum of a nonzero function f may be simultaneously. The Fourier transform of f is defined, for χ ∈ G, as

f (χ) := x∈G f (x)χ(-x).
Here G is the group of characters of G, which identifies to G. More precisely, for G given by ( group 1), for some element x, which may be written as x = (x 1 , . . . , x r ), and some character χ that identifies with y = (y 1 , . . . , y r ), character character [START_REF] Delvaux | Rank-deficient submatrices of Fourier matrices[END_REF] χ(x) = exp   2πi r j=1

x j y j p

n j j   .
The spectrum of f is the support of its Fourier transform f . We refer to Terras [START_REF] Terras | Fourier Analysis on Finite Groups and Applications[END_REF] for background on finite Abelian groups.

The first well-known estimate has been stated by Matolcsi and Szücs in MS [7]. It is usually referred to as Donoho-Stark Uncertainty Principle and deals simultaneously with cardinalities of the supports of a nonzero function f and its Fourier transform f (see

DS [4] or

Terras [START_REF] Terras | Fourier Analysis on Finite Groups and Applications[END_REF]):

ds ds (3) | supp(f )| × | supp( f )| ≥ |G|.
Here |A| stands for the cardinality of the finite set A. Let us also fix the following notation. For A a subset of G we note 1 A its characteristic function.

When A is reduced to one point a, it is the Dirac mass at a. We note δ G the Dirac mass at 0 on the group G, so that δ G = 1 {0} . Equality cases for this inequality have been entirely described (see

DS [4]), that is, nonzero functions f for which | supp(f )| × | supp( f )| = |G|.
Up to translation, modulation and multiplication by a constant, they are given by characteristic functions of subgroups of G.

Then, it has been observed by Tao in Tao [START_REF] Tao | An uncertainty principle for cyclic groups of prime order[END_REF] 1 that Inequality ( ds 3) can be considerably improved for Z p when p is a prime number. Namely, he proved the following theorem.

Tao Theorem 1 (Tao). When f is a nonzero function on Z p with p prime, then

tao tao (4) | supp(f )| + | supp( f )| ≥ |G| + 1.
Moreover, for any A ⊂ G and B ⊂ G such that |A| + |B| = |G| + s, the space of functions with support in A and spectrum in B is exactly of dimension s.

In Tao's paper

Tao [START_REF] Tao | An uncertainty principle for cyclic groups of prime order[END_REF], the second part of the theorem is not exactly stated in this way, but this is seen by an easy modification of the proof.

Tao's Theorem contains a complete (but non explicit) description of equality cases, that is, of all nonzero functions f for which | supp(f )|+| supp( f )| = |G|+1. Namely, given A and B such that |A|+|B| = |G|+1, there is a unique (up to a constant) function f such that supp(f ) = A and supp( f ) = B.

In order to describe the situation for any finite Abelian group, let us give some definitions. Firstly, for any nonempty set A we denote L(A) the space of complex functions on A. Then we will use the following notations. Definition 2. For k, l two positive integers, we set Meshulam has given a better lower bound for θ(•, G) in M [START_REF] Meshulam | An uncertainty inequality for finite abelian groups[END_REF], see also KPR [START_REF] Krahmer | Uncertainty in time-frequency representations on finite abelian groups and applications[END_REF] for comments and extensions to the windowed Fourier transform. More precisely, let u(•, G) be the largest convex function on [1, |G|] that coincides with |G|/d at each divisor d of |G|. Equivalently, u(•, G) is continuous and linear between two consecutive divisors of |G|. Then Meshulam has shown that θ(•, G) ≥ u(•, G). This inequality is not sharp in general. We will see in particular that it is not sharp in general for groups Z p × Z q , with p and q two different prime numbers.

E(k, l) := f ∈ L(G); | supp(f )| ≤ k, | supp( f )| = l . E 0 (k, l) := f ∈ L(G); | supp(f )| = k, | supp( f )| = l .
The same problem has been considered recently by Delvaux and Van Barel DVB1, DVB2 [START_REF] Delvaux | Rank-deficient submatrices of Fourier matrices[END_REF][START_REF] Delvaux | Rank-deficient submatrices of Kronecker products of Fourier matrices[END_REF] with a different vocabulary. These authors give a large number of examples and revisit proofs with elementary methods of linear algebra. They give the precise value of Meshulam's Function as a minimum (while Meshulam stated only an inequality), see for instance Theorem 5 in DVB2 [START_REF] Delvaux | Rank-deficient submatrices of Kronecker products of Fourier matrices[END_REF]. They also have partial results in the direction that we consider here.

We are interested in the values k for which there exist equality cases according to the following definition. Definition 3. We say that there are equality cases for (k, G) if the set E 0 (k, θ(k, G)) is not empty. In this case, we call equality case for (k, G) any nonzero function f ∈ L(G) that belongs to the set E 0 (k, θ(k, G)). We say that f is an equality case for G when it is an equality case for some (k, G).

Delvaux and Van Barel implicitly pose the problem of finding all equality cases, that is, giving a complete description of the set E 0 (k, θ(k, G)) for all (k, G).

We will address this question in three particular cases. More precisely, we will consider groups Z p 2 , Z p × Z p and Z p × Z q , for p, q distinct prime numbers. In these three cases, except for a small number of values of k in the last case, we are able to give a simple description of all equality cases, in the same spirit as the already known one for k a divisor of |G|. It is particularly simple to describe the equality cases in the third case.

twoprimes Theorem 4. Let p > q be two prime numbers. Then, for k such that θ(k, Z p × Z q ) < θ(k -1, Z p × Z q ), except perhaps for k = q p+1 q+1 when q + 1 divides p + 1, a function f is an equality case for (k, Z p × Z q ) if and only if f may be written as a tensor product g ⊗ h, where g is an equality case for Z p , h is an equality case for Z q and, moreover, one of the two functions g or h is a character or a Dirac mass.

We postpone the description of equality cases in the two other cases to the corresponding sections. For these two families one has a complete answer, valid for all values of k ≤ p 2 .

Our results can be summarized as the fact that (except, possibly, for exceptional values for which we were not able to conclude) there are no other equality cases than trivial ones. Unfortunately, even if solutions are simple, proofs are technical and it seems difficult to generalize them to all finite Abelian groups, especially when an arbitrary number of primes p j is involved.

This paper is a first attempt to show that, even if Meshulam's Function is smaller than k → |G|k + 1, there are only a "small" number of functions such that | supp(f )| + | supp( f )| ≤ |G|, a phenomenon that is observed in CRT [START_REF] Candès | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF] in a random setting.

Some preliminary results

Let us first recall that the function θ is non increasing. If θ(k, G) < θ(k -1, G), then there are equality cases for (k, G). We will see (Remark Eab Eab (6)

E(A, B) := f ∈ L(G); supp(f ) ⊂ A, supp( f ) ⊂ B . Assume E(A, B) is of dimension ≥ 2.
Then we can find f and g two linearly independent functions in E(A, B) and there exists a nonzero linear combination of f and g whose Fourier transform vanishes at some b ∈ B. This implies that θ(k, G) ≤ l -1.

Note that all equality cases are (non explicitly) known as soon as we know all subsets A and B for which the space of functions with support in A and spectrum in B is not reduced to {0}. Proof. The function f = x∈A c(x)1 {x} belongs to E(A, B) if the k coefficients c(x) satisfy the k -1 linear equations given by f (y) = 0 for y / ∈ B. There is at least one nonzero solution to this system.

There is no equality in general between θ(k, G) and |G|k + 1 for k = 1, |G|, except for |G| a prime number or when k = |G| -1. This is described in the next proposition, as well as the values of k for which θ(k, G) = 2.

caseminus1 Proposition 7. Let G be a finite Abelian group G such that |G| is not prime. Let 1 < d 1 < • • • < d r < |G| be the divisors of |G|. Then (i) θ(k, G) = 2 if and only if |G| -d r ≤ k ≤ |G| -1.
(ii) Moreover, there are equality cases for (|G| -1, G) if and only if the group G is cyclic.

(iii) One has the inequality θ(k, G) ≤ |G| -k for 1 < k < |G| -1.
Proof. Let us first prove that θ(|G| -1, G) ≥ 2. Indeed, when the Fourier transform of f is a Dirac mass, then f is a character and its support has cardinality |G|.

Let us next consider values of k for which θ(k, G) = 2. We first compute the cardinality of the support of all functions f that vanish at one point at least and such that f is a linear combination of two Dirac masses with nonzero coefficients. Up to translation, modulation and multiplication by a constant, we can assume that f := 1χ, with χ ∈ G a non-principal character. Then f is supported by the set of all x ∈ G such that χ(x) = 1. 

f := 1 -χ belongs to E 0 (|G| -d r , 2). So θ(|G| -d r , G) ≤ 2. By monotonicity, for |G| -d r ≤ k ≤ |G| -1 we have 2 ≤ θ(|G| -1, G) ≤ θ(k, G) ≤ θ(|G| -d r , G) ≤ 2.
Therefore,(i) follows at once.

To see (ii), it is sufficient to prove that there exists a character χ such that χ(x) = 1 for x = 0 if and only if G is cyclic. Let us first assume that G is cyclic, that is, G = Z n for some positive integer n. Then the character that identifies with 1 by (

character 2) has the required property. Conversely, if χ is such a character, it takes |G| different values since χ(a)χ(b) -1 = χ(a -b) = 1 for a = b.
It follows that that the range of χ consists of all order |G| roots of unity, whence χ m is different from the principal character 1 for m < |G|, while χ |G| = 1. This implies that the character χ generates the whole group G. So G, equivalently G, is cyclic.

Let us now prove (iii). We have just proved that the inequality is satisfied for

|G| -d r ≤ k < |G| -1. For d r ≤ k ≤ |G| -d r , we use the inequalities θ(k, G) ≤ θ(d r , G) = d 1 ≤ |G| -d r ≤ |G| -k.
The first inequality is a consequence of monotonicity. Then the equality comes from equality cases in Donoho-Stark's Uncertainty Principle. We next use the fact that

d 1 +d r ≤ 2d r ≤ d 1 d r = |G|. It remains to consider 2 ≤ k < d r . This follows from the fact that θ(k, G) ≤ θ(2, G) = |G| -d r .
noconverse Remark 8. So there are equality cases for (|G| -1, G) when G is the group Z p × Z q , with p, q two distinct prime numbers, or when G is the group Z p 2 . This proves that for k = |G| -1 one may have simultaneously the equality

θ(k, G) = θ(k -1, G)
and the existence of equality cases for (k, G). Note that in the group Z p × Z p every element generates a proper subgroup and there is no equality case for k = p 2 -1.

onlycase Remark 9. For the same reasons as above, there are equality cases for (|G|d j , G) if and only if there exists a character χ such that the subgroup {x ∈ G ; χ(x) = 1} has cardinality d j . In particular, when G is the group Z p × Z q with p > q, there are equality cases for ((p -1)q, G). These equality cases can be written as f ⊗ ξ, with f an equality case for (p -1, Z p ) and ξ a character on Z q .

The next lemma allows to exchange the role of f and f .

reciproque Lemma 10. Assume that θ(k, G) < θ(k -1, G). Then θ(θ(k, G), G) = k.
Moreover, f is an equality case for (k, G) if and only if its Fourier transform is an equality case for (θ(k, G), G).

The proof is elementary and we leave it to the reader.

We next give all equality cases for a product with a supplementary assumption.

product Proposition 11. Let G = G 1 × G 2 and 1 ≤ k ≤ |G|. Then expression-theta expression-theta (7) θ(k, G) = min{θ(k 1 , G 1 )θ(k 2 , G 2 ); k 1 k 2 ≤ k, 1 ≤ k i ≤ |G i |, i = 1, 2}. Assume that (k 1 , k 2 ) is the only pair for which k 1 k 2 ≤ k and equal equal (8) θ(k, G) = θ(k 1 , G 1 )θ(k 2 , G 2 ).
Then there are equality cases for (k, G) if and only if k = k 1 k 2 and there are equality cases for

(k i , G i ), i = 1, 2.
Moreover, all equality cases for (k, G) may be written as

f 1 (x 1 )f 2 (x 2 ), with f i an equality case for (k i , G i ), i = 1, 2.
Proof. It is inspired by Meshulam's paper, who has proved the first statement. Let f be a nonzero function with support of size ≤ k and spectrum of size

θ(k, G). For χ(x) = χ 1 (x 1 )χ 2 (x 2 ) a character, that is, an element of G = G 1 × G 2 , we write f (χ 1 , χ 2 ) = x 1 ∈G 1 x 2 ∈G 2 f (x 1 , x 2 )χ 1 (-x 1 )χ 2 (-x 2 ) = F χ 1 (χ 2 ).
Here

F χ 1 (y) = x 1 ∈G 1 f (x 1 , y)χ 1 (-x 1 ) = f y (χ 1 ), if we put f y (x 1 ) := f (x 1 , y) for y ∈ G 2 . Then | supp( f (χ 1 , •))| ≥ θ(| supp(F χ 1 )|, G 2 ) when F χ 1 = 0. Let us denote S := {ξ ∈ G 1 ; F ξ = 0} = {ξ ∈ G 1 ; f (ξ, •) = 0}.
Then we have

equ1 equ1 (9) | supp( f (•, •))| ≥ | S| min ξ∈ S θ(| supp(F ξ )|, G 2 ).
Now take for t the size of T := {y; f y = 0}. The support of F ξ is contained in T for all ξ ∈ G 1 , so that, for ξ ∈ S, we have

equ2 equ2 (10) θ(| supp(F ξ )|, G 2 ) ≥ θ(t, G 2 ).
We also have

equ3 equ3 (11) | S| ≥ | ∪ y∈T {ξ; F ξ (y) = f y (ξ) = 0}| ≥ θ(s, G 1 )
for s the smallest size for the support of f y . We finally remark that st ≤ k. So we conclude from (

equ1 9), ( equ2 
10), ( equ3 
11) that equ4 equ4 (12) θ(k, G) ≥ θ(s, G 1 )θ(t, G 2 ).
We have proved that

θ(k, G) ≥ min{θ(k 1 , G 1 )θ(k 2 , G 2 ); k 1 k 2 ≤ k, 1 ≤ k i ≤ |G i |, i = 1, 2}.
Next we prove that there is equality in this inequality. Assume that the minimum is obtained for

k 1 , k 2 . Let f 1 ∈ L(G 1 ) and f 2 ∈ L(G 2 ) such that | supp(f i )| ≤ k i and | supp( f i )| = θ(k i , G i ) for i = 1, 2. Then f 1 ⊗ f 2 has support of size ≤ k 1 k 2 ≤ k and its spectrum has size θ(k 1 , G 1 )θ(k 2 , G 2 ) = θ(k, G). Next, assume that (k 1 , k 2 ) is the only pair for which k 1 k 2 ≤ k and ( equal 8 
) is valid. Let us characterize the values k for which we have equality. Assume that there is some equality case f for (k, G). If we proceed as above, the inequality ( equ4 12) is an equality and the minimum is obtained for (s, t), which coincides with (k 1 , k 2 ). Thus inequalities ( equ3 11), ( equ2 10) and ( equ1 9) are also equalities. Looking at the definition of T and S, it is easily seen that T is the projection of the support of f on G 2 while S is the projection of the support of f on G 1 . So t is the size of the projection T of supp(f ) on G 2 , while θ(s, G 1 ) is the size of the projection S of supp( f ) on G 1 . Exchanging the role of G 1 and G 2 , we define as well S and T , which are respectively of size s and θ(t, G 2 ). In particular, the size of supp(f ), which is contained in S × T , is at most st. This proves that k = st and the support of f is exactly S × T . Similarly the support of f is exactly S × T . Moreover, each f y has the same support S and the same spectrum S. It is in particular an equality case for (s, G 1 ). By symmetry, there are also equality cases for (t, G 2 ), with support T and spectrum T . More precisely, there exists some function h 1 on G 1 (resp. h 2 on G 2 ) with support S and spectrum S (resp. T and T ). Then h 1 ⊗ h 2 is an equality case for (st, G), with support S × T and spectrum S × T . So, both f and h 1 ⊗ h 2 belong to E(S × T, S × T ). By Lemma dim1 5, we have f = ch 1 ⊗ h 2 . We have proved that f can be written as a tensor product.

This finishes the proof of the proposition.

3. The case of groups Z p × Z q , with q < p prime numbers Let us first give Meshulam's Function, which one can already find in DVB2 [START_REF] Delvaux | Rank-deficient submatrices of Kronecker products of Fourier matrices[END_REF]. We give the proof, nevertheless, since we want to know when there is uniqueness of the minimum.

meshtwoprimes Proposition 12. Let G = Z p × Z q , with p and q prime numbers such that 1 < q < p. Then

θ(k, G) =            p(q -k + 1), 1 ≤ k ≤ q; p -[ k q ] + 1, q ≤ k ≤ q p+1 q+1 ; q(p -k + 1), q p+1 q+1 ≤ k ≤ p; q -[ k p ] + 1, p ≤ k ≤ pq.
Proof. Using Tao's Theorem and Proposition product 11, we know that

θ(k, G) = min{(p -s + 1)(q -t + 1); st ≤ k, 1 ≤ s ≤ p, 1 ≤ t ≤ q}.
Let us first consider the function F (s, t) := (ps + 1)(qt + 1) with real variables s, t. Let R be the rectangle defined by 1 ≤ s ≤ p, 1 ≤ t ≤ q and let ∆ := ∆ k be the region in R such that st ≤ k. We first look at the minimum of F on ∆. Because of the concavity of F its minimum cannot be attained inside the domain ∆. Moreover, the function is a concave function of s on the hyperbola st = k, so that it does not attain its minimum in the interior part of the hyperbola, but on its boundary. It decreases on the common boundary with R when s or t increases, so that the minimum is obtained on the intersection of the hyperbola with the boundary of R, which consists of two points (we assume that k is different from 1 or pq, where the conclusion is immediate). We have to consider separately four cases. In the following table, we give for each of them the values of the minimum, followed by the two points of intersection:

min ∆ F (s, t) =            p(q -k + 1) obtained in (1, k) or (k, 1), 1 ≤ k ≤ q; p -k q + 1 obtained in ( k q , q) or (k, 1), q ≤ k ≤ q p+1 q+1 ; q(p -k + 1) obtained in ( k q , q) or (k, 1), q p+1 q+1 ≤ k ≤ p; q -k p + 1 obtained in ( k q , q) or (p, k p ), p ≤ k ≤ pq.
Let us remark that the minimum is obtained at exactly one point, except when k = q p+1 q+1 . We give also the other point because it will play a role later on.

Let us now consider the minimum on the integer values for s and t, that is, θ(k, G) = min ∆∩(N×N) F (s, t). When the minimum on the whole ∆ is obtained for integer values of s and t, it is also the minimum on ∆ ∩ (N × N). This allows to conclude for the first and the third case.

Let us concentrate on the second case, for which the minimum on ∆ is obtained at ( k q , q). It coincides with the minimum on ∆ ∩ (N × N) when k is a multiple of q. It remains for this second case to consider values of k such that k is not a multiple of q, with q < k < q p+1 q+1 . Then the minimum on ∆ is not an integer and cannot be attained on ∆ ∩ (N × N). So the minimum on ∆ ∩ (N × N) is at least the smallest integer that is larger than min ∆ F (s, t), that is, p -[ k q ] + 1. It remains to see that this value is really attained, which is the case at the point ([ k q ], q). So θ(k, G) = p -[ k q ] + 1. The same argument allows to conclude for the fourth case as well.

In view of the use of Proposition product [START_REF] Terras | Fourier Analysis on Finite Groups and Applications[END_REF] we try to answer the following question. Is there uniqueness of the pair of integers (s, t) for which the minimum is obtained? Let us give the following definition.

Definition 13. We call M the set of integers k such that 1 < k < pq -1 and such that the minimum of F over ∆ k ∩ (N × N) is obtained at exactly one point (s, t).

Clearly k belongs to M when the minimum of F over ∆ k ∩(N×N) coincides with the minimum over all ∆ and when there is uniqueness for this last one. This excludes from M the integer k = q p+1 q+1 when p + 1 is a multiple of q + 1. But we directly conclude that all k ≤ q, as well as all k such that q p+1 q+1 < k ≤ p belong to M. In the two remaining intervals, multiples of q when q < k < q p+1 q+1 and multiples of p when p < k < pq belong to M. The next two lemmas give the complete description of M. k>q Lemma 14. When q < k < q p+1 q+1 , the minimum of F on ∆ k ∩ (N × N) is attained at one point exactly except perhaps for one exceptional value. More precisely, there exists a value of k for which the minimum is attained at two points if and only if p + 1 ≡ q mod q + 1. In this case, the exceptional value is k = q p+1 q+1 + q -1, for which the minimum is attained at ([ k q ], q) and (k, 1). For this particular value of k, there are equality cases of the form

f ⊗ δ Zq (• -b), with b ∈ Z q and f ∈ L(Z p ) such that | supp(f )| = k and | supp( f )| = p -k + 1.
Proof. The minimum p -[ k q ] + 1 is attained at only one point (s, t) = ([ k q ], q) on the line t = q. Assume that it is attained at some other point (s ′ , t ′ ). Then t ′ ≤ q -1. For the same reasons as before this can only occur for t ′ = 1 or t ′ = q -1, that is, at one of the points (k, 1) and ([ k q-1 ], q -1). But θ(k, G) is attained at the point (k, 1) if and only if q(pk + 1) = p -[ k q ] + 1. If we write k = qj +r, with 0 ≤ r < q, this means that qr = (q-1)(p-(q+1)j +1), which implies that r = q -1. Moreover, p + 1 = (q + 1)j + q, so that p + 1 ≡ q mod q + 1, and j = p+1 q+1 . So k = q p+1 q+1 + q -1 = q p+1 q+1 + q -1. For q = 2 this concludes the proof. For q > 2 it suffices to show that

F ( k q -1 , q -1) > F k q , that is, p + 1 > 2 k q -1 - k q . This follows from the inequalities 2 k q -1 - k q -1 ≤ k q -1 < q(p + 1) q 2 -1 < p.
We have used the assumption on k and the fact that q > 2.

Finally, it is easy to see that functions f ⊗δ Zq (•-b) are equality cases.

k>p Lemma 15. Let k = jp + r, with 1 ≤ j ≤ q -1 and 1 ≤ r ≤ p -1. Then k belongs to M if and only if r < (pq)(qj). When k / ∈ M, then the minimum is attained at the points (p, j) and ([ k q ], q). If, moreover, k = lq, then the minimum is attained at (l, q) if and only if (pl)(pq) < p and, in this particular case, there are equality cases of the form f ⊗ χ, with χ a character of Z q and f ∈

L(Z p ) such that | supp(f )| = l and | supp( f )| = p -l + 1.
Proof. We have θ(k, G) = qj + 1 = ab, with p + 1s = a and q + 1t = b. Moreover, we have st ≤ k < (j + 1)p, that is,

(p + 1 -a)(q + 1 -b) < p(q + 2 -ab).
This implies that a < 1 + p (p+1)(b-q-1) so that either a = 1, or (p + 1)b ≤ q + 1 + p, which can only happen when b = 1. The case a = 1 corresponds to the pair (p, [ k p ])) where we already know that θ(k, G) is attained, while the case b = 1 corresponds to the pair ([ k q ], q). So either the minimum is attained at only one point or it is attained at exactly two points. We finally find that it is also attained at the second point ([ k q ], q) if and only if p -k q ≤ qj, that is, (pq)(qj) ≤ r. The particular case k = lq is obtained from elementary computations.

We do not know whether the equality cases that we have described in the two lemmas k>q 14 and k>p 15 are the only ones. We do not know either how to describe all equality cases when the minimum is attained at two points. (i) All k ≤ q belong to M. (ii) All integers k such that q < k ≤ q p+1 q+1 belong to M except possibly one exceptional value of k. If p + 1 is not congruent to 0 or -1 mod q + 1 there is no exceptional value of k in this interval. (iii) All k such that q p+1 q+1 < k ≤ p belong to M. (iv) An integer k = jp + r ≤ pq -1 such that 1 ≤ j ≤ (q -1) and 0 ≤ r ≤ q -1 belongs to M if and only if r < (pq)(qj).

We will be able to give a complete description of equality cases for k ∈ M. We have seen earlier that one can conclude for equality cases for k ≥ p(q-1), for which θ(k, G) = 2. Namely, there are equality cases only when k = pq -1 and k = q(p -1) (see Proposition th-pq Theorem 17. Let G = Z p × Z q , with p and q prime numbers such that 1 < q < p and k ∈ M. Then we have the following.

(i) For k ≤ q, equality cases are of the form

δ Zp (• -a) ⊗ f , with a ∈ Z p and f ∈ L(Z q ) such that | supp(f )| = k and | supp( f )| = q -k + 1. (ii) Let k be such that q ≤ k < q p+1
q+1 . There exist equality cases for (k, G) if and only if k is divisible by q. When k = qj with 1 ≤ j < p+1 q+1 , equality cases are of the form f ⊗ χ, with χ a character of Z q and f ∈ L(Z p ) such that | supp(f )| = j and | supp( f )| = pj + 1. (iii) For k such that q p+1 q+1 < k ≤ p, equality cases are of the form

f ⊗ δ Zq (• -b), with b ∈ Z q and f ∈ L(Z p ) such that | supp(f )| = k and | supp( f )| = p -k + 1.
(iv) Let k be such that p ≤ k < pq-1. There exist equality cases for (k, G)

if and only if k is divisible by p. When k = pj with 1 ≤ j ≤ q -1, then equality cases are of the form χ ⊗ f , with χ a character of Z p and f ∈ L(Z q ) such that | supp(f )| = j and | supp( f )| = qj + 1.

For all other values k ∈ M, there are no equality cases.

Proof. Proposition product 11 allows to conclude directly.

Let us add some remarks.

Remark 18. For values of k that do not belong to M there may be equality cases as described in Lemmas k>q 14 and k>p 15. We do not know whether they are the only ones, except when k > p(q -1). Let us recall that for k > p(q -1), q(p -1) is the only value for which there are equality cases. They are described in Remark onlycase 9.

Remark 19. We have seen that equality cases for k = pq -1 may be written as cχ(1ξ(•a)), where χ and ξ are two characters with ξ that generates G, while a is an element of G. Let us note that they are not tensor products. This is the only case for which θ(k, G) = |G|k + 1, which may explain the difference of structure of equality cases.

Remark 20. It may be helpful to give another description of the set of values k for which there are equality cases. We define

(13) M 0 := {k ∈ (1, pq -1) ; θ(k, G) < θ(k -1, G)}.
From the definition of θ given by ( theta 5) we a priori know that there are equality cases for k ∈ M 0 . Moreover, when using Proposition product 11, we see that the minimum in

( expression-theta 7)is obtained only for k = k 1 k 2 , with θ(k, G) = θ(k 1 , Z p )θ(k 2 , Z q ).
From the expressions of θ given in Proposition meshtwoprimes 12, it follows that all integers k ∈ M 0 belong to M except for the exceptional value q p+1 q+1 (when it is an integer). On the opposite, it may be deduced from Theorem th-pq 17 that there are no equality cases when k ∈ M does not belong to M 0 .

The case of groups Z p × Z p , with p prime p^2

The formula for Meshulam's Function is also given in DVB2 [START_REF] Delvaux | Rank-deficient submatrices of Kronecker products of Fourier matrices[END_REF].

product-gp Proposition 21. Let G = Z p × Z p , with p a prime number. Then

θ(k, G) = p(p -k + 1), 1 ≤ k ≤ p; p -[ k p ] + 1, p ≤ k ≤ p 2 .
The proof is the same as for Proposition meshtwoprimes 12. Let us remark that now the minimum is not achieved at one point. For k < p it is attained for both pairs (1, k) and (k, 1) (and only there), while, for k > p it is attained for (p, [ k p ]) and ([ k p ], p). The same proof as for Lemma k>p 15 allows us to prove that there is no other pair for which the minimum is attained.

To describe equality cases, we will use the fact that Z p × Z p is a vector space of dimension 2 over the field Z p . The main difference with the previous case is the fact that there are many proper subgroups of size p, namely all proper subgroups generated by one element m = (m 1 , m 2 ), which we write G m . Let us define a scalar product on Z p × Z p (with values in Z p ) by x, ξ := x 1 ξ 1 + x 2 ξ 2 . Note that there exists isotropic directions if and only if -1 is a square in Z p (so, in particular, when p = 5, 13, 17, • • • ). In this case, assuming that p > 2, the two isotropic directions are given by the vectors (1, ±m 0 ), where m 0 is such that -1 ≡ m 2 0 mod p. The orthogonal of G m , which we denote

G ⊥ m , is G m , with m = (m 2 , -m 1 ). If m is non isotropic, then Z p × Z p can also be written as G m × G m . If m is isotropic, then m and m are collinear and G m = G m .
Let us consider the linear transformation A(m), given for m ∈ Z p × Z p non isotropic by the invertible matrix (that we still denote A(m))

A(m) := m 1 -m 2 m 2 m 1 . Then A(m) * = m 1 m 2 -m 2 m 1 = A(m), with m = (m 1 , -m 2 ), and 
A(m)A(m) * = (m 2 1 + m 2 2 )I. Moreover A(m)x, A(m)ξ = (m 2 1 + m 2 2 ) x, ξ . Let us identify G with G = Z p ×Z p by ( character 2 
). With this identification, matrices A(m) act on characters. In particular, when m is non-isotropic, i.e. when A(m) is nonsingular, let us write g(x) := f (A(m) -1 x), so that g is the image of f under the action of A(m). Its Fourier transform is g(ξ) = f (A(m) * ξ). So, when m is non isotropic, the transformation A(m) preserves the sizes of the support and the spectrum of a function, so that the sets E(k, l) and E 0 (k, l) are invariant under the action of A(m).

Here is a simple way to describe all equality cases, which do not distinguish between values of m. Let us first consider k < p. For each subgroup G m , the following lemma describes equality cases supported by G m .

G_m Lemma 22. Let m ∈ Z p × Z p and let f be a function supported in G m and k < p. Then f is an equality case for (k, Z p × Z p ) if and only if the function h defined on Z p by h(j) := f (jm) for j ∈ Z p is an equality case for (k, Z p ).

Proof. Let f be an equality case supported on G m and h as above. Elements in G m may be written as jm = (jm 1 , jm 2 ), with j ∈ Z p , where each product has to be interpreted as a product in Z p . The Fourier transform of f is given by

f (ξ) = j∈Zp e -2iπ j ξ,m p h(j).
As above in ( character 2), we have identified the character ξ with an element of

Z p × Z p in this expression. In particular f is constant on cosets of G ⊥ m . Since | supp( f )| = p(p -k + 1) by Proposition product-gp
21, the support of f is the union of pk + 1 cosets. Assume that G m is not generated by (0, 1) (which we can always ensure by exchanging the coordinates if necessary), so that G ⊥ m and Z p × {0} are not equal. Then f (l, 0) = h(m 1 l) is non zero for exactly pk + 1 values of l. Since p is prime, multiplication by m 1 is a bijection on

Z p and | supp( h)| = p -k + 1.
If m is non isotropic then f is the image under A(m) of h ⊗ δ Zp . We can now state the theorem, which says that all equality cases can be obtained from these examples. As in the previous case, we have already considered the value k = |G| -1 in Remark noconverse 8.

Theorem 23. Let G = Z p × Z p , with p a prime number. There are equality cases if and only if θ(k, G) < θ(k -1, G). They can be described as follows.

(i) For all k ≤ p, equality cases are translates of equality cases supported by some subgroup G m . In particular, when m 2 1 + m 2 2 is not equivalent to 0 mod p, they are transforms under the transformation

A(m) of a function of the form f ⊗ δ Zp (• -a), with a ∈ Z p and f ∈ L(Z p ) such that | supp(f )| = k and | supp( f )| = p -k + 1.
(ii) For all p ≤ k ≤ p 2 -1, there are equality cases if and only if k is divisible by p. For k = pj, their Fourier transforms are equality cases for pj + 1.

Proof. We have seen that the functions given in the statement are equality cases. Let us prove that they are the only ones. We assume first that k < p and consider an equality case f . Without loss of generality we can assume that f (0) = 0. By Lemma G_m 22 it is sufficient to prove that f is supported by some subgroup G m . We define T as before as Π 2 (supp f ), where Π 2 is the projection (l 1 , l 2 ) → l 2 . By the same proof as in Proposition product 11, we see that |T | take the values 1 or k. Note that the transform of f under the action of A(m) is also an equality case when m is non isotropic, hence the same conclusion holds for all transforms A(m) supp f with m non isotropic. We conclude from the next lemma, which we use for E := supp f . geo Lemma 24. Let 2 ≤ ν < p and 0 ∈ E ⊂ Z p × Z p with |E| = ν be given.

Assume that |Π 2 (A(m)E)| = 1 or ν for all non isotropic m ∈ Z p ×Z p . Then, for some

m ∈ Z p × Z p , the set E is contained in G m .
Proof. Let us first assume that there is a non isotropic element m ∈ E and prove that E is contained in

G m = A(m)G (1,0)
. Equivalently, we want to prove that the set A(m)E is contained in Z p ×{0}. We already know that the point (m 2 1 + m 2 2 , 0) belongs to A(m)E. This implies that |Π 2 (A(m)E)| < ν, so that, by assumption, |Π 2 (A(m)E)| = 1. The conclusion follows at once. We are done when there are no isotropic directions.

Let us now assume that there exists two isotropic directions, (1, ±m 0 ). We want to prove that, if there is no isotropic elements in E, and hence E is contained in the union of

G (1,m 0 ) and G (1,-m 0 ) , then E is contained either in G (1,m 0 ) or in G (1,-m 0 )
. So finally assume for a contradiction that there exists some a := (l 1 , l 1 m 0 ) ∈ E and also some b := (l 2 , -l 2 m 0 ) ∈ E with l i ≡ 0. Let us take now m := (l 2l 1 , m 0 (l 1 + l 2 )), which is non isotropic for

m 2 1 + m 2 2 ≡ (l 2 -l 1 ) 2 -(l 1 + l 2 ) 2 ≡ -4l 1 l 2 ≡ 0 mod p. An easy calculation yields Π 2 (A(m)a) = Π 2 (A(m)b) = 2m 0 l 1 l 2 , hence Π 2 cannot be bijective on A(m)E and so |Π 2 A(m)E| = 1. This implies that A(m)E ⊂ Z p × {0} or, which is equivalent, E ⊂ A(m) -1 G (1,0) = G m
. This is a contradiction to the working assumption that E does not contain a non isotropic element, hence this case cannot occur and the lemma is proven.

Let us now consider p ≤ k ≤ p 2 . For k = pj, equality cases are deduced from the ones of pj + 1 by taking Fourier transforms, and we recognize the functions given in the statement of the theorem. Let us prove that there are no equality cases when k cannot be divided by p. Assume that pr ≤ k < p(r + 1) and f is an equality case for k. Then, proceeding as in Proposition product 11 and defining T = Π 2 (supp f ) as before, we find again that | T | takes the values 1 or pj + 1. This is also valid for the supports of transforms of f through all transformations A(m) with m 2 1 + m 2 2 = 0. So the support of f satisfies the assumptions of Lemma geo 24, with pj + 1 in place of ν. This implies that f is supported in some G m . The support of its Fourier transform, that is, supp f as well, has a cardinality that is a multiple of p. This proves that k is a multiple of p.

The case of groups Z p 2 , with p prime

As remarked in DVB2 [START_REF] Delvaux | Rank-deficient submatrices of Kronecker products of Fourier matrices[END_REF], the functions θ(k, Z p 2 ) and θ(k, Z p × Z p ) are identical (and equal to the function u(k, G)). We will see that the values of f for which there are equality cases are the same except for p 2 -1, for which, by Remark noconverse 8, there are no equality cases for Z p × Z p while there are equality cases for Z p 2 .

Let us denote by H the unique proper subgroup of G, which is generated by the equivalence class of p in Z p 2 . The subgroup H identifies with Z p under the mapping Z p → H that maps the congruent class j = l mod p to the congruent class of pl mod p 2 . For simplification, we identify an element of Z p with its representative in the interval [0, p) and an element of Z p 2 with its representative in [0, p 2 ) and we denote by pj this element of Z p 2 .

We will also use equivalent classes modulo H. Let us note that, if we identify Z p 2 with its representative that lies between 0 and p 2 -1, these p equivalent classes may be described as

a + H = {a + pj ; j = 0, 1, • • • p -1} for a = 0, 1, • • • p -1.
The following lemma describes equality cases for functions that are supported in H.

H Lemma 25. Let f be a function supported in H and k < p. Then f is an equality case for (k, Z p 2 ) if and only if the function h defined on Z p by h(j) := f (pj) for j ∈ Z p is an equality case for (k, Z p ).

Proof. Let f be an equality case for (k, Z Translates of such equality cases, as well as Fourier transforms, are equality cases. We shall prove that they are the only ones, except when k = p 2 -1. Recall that for k = p 2 -1, by Proposition caseminus1 7 (ii) the Fourier transforms of the equality cases are of the form αχ(1 {x} -1 {y} ), with α a constant, χ a character and x, y two points such that xy / ∈ H. We will assume, from now on, that k < p 2 -1. We have the following theorem.

psquare Theorem 26. Let G = Z p 2 , with p a prime number. Then

θ(k, G) = p(p -k + 1), 1 ≤ k ≤ p; p -[ k p ] + 1, p ≤ k ≤ p 2 .
Moreover, when k < p 2 -1, there are equality cases if and only if θ(k, G) < θ(k -1, G). They can be described as follows.

(i) For all k ≤ p, equality cases are of the form

case1 case1 (14) f (px + x ′ ) = g(x) 1 {a} (x ′ ), x, x ′ = 0, . . . , p -1, with g ∈ L(Z p ) such that | supp(g)| = k and | supp( g)| = p -k + 1,
and a one of the values 0, . . . , p -1.

(ii) For all p ≤ k < p 2 -1, there are equality cases if and only k is divisible by p. For k = pj, equality cases are of the form

case2 case2 (15) f (px + x ′ ) = χ(x)g(x ′ ), x, x ′ = 0, . . . , p -1,
with χ a character of Z p and g ∈ L(Z p ) such that | supp(g)| = j and | supp( g)| = pj + 1.

Proof. Even if not stated in the same way, most of this theorem is proved in DVB1 [START_REF] Delvaux | Rank-deficient submatrices of Fourier matrices[END_REF] (and even its analog for any arbitrary power of p) but using a different vocabulary, with decomposition of Fourier matrices that are not simple to follow from a group point of view. So we give a complete proof in our vocabulary.

As in the case of products of groups, the computation of θ is given by Meshulam in M [START_REF] Meshulam | An uncertainty inequality for finite abelian groups[END_REF]. We nevertheless give some details of the proof, which we will use again for equality cases. For f a nonzero function such that | supp(f )| ≤ k, we define s and t as follows: t is the number of a = 0, . . . , p-1 such that the function f a defined by f a (x) := f (a + px), is not identically 0

on Z p ; s is the minimum of | supp(f a )|. Clearly st ≤ k. It is then proved in M [8] that | supp( f )| ≥ θ(s, Z p )θ(t, Z p ) = (p + 1 -s)(p + 1 -t), so that θ(k, G) ≥ min{(p -s + 1)(p -t + 1); st ≤ k, 1 ≤ s, t ≤ p}.
As we have already mentioned, the expression in the right hand side is the same as in the product case. The minimum is attained for (1, k) or (k, 1) when k ≤ p (resp. (p, j) or (j, p) when jp ≤ k < (j + 1)p, with j = 1, . . . , p -1). We have seen by Lemma H 25 that there are equality cases. So the function θ is equal to this minimum.

It remains to prove that there are no other equality cases. Let us first assume that k ≤ p. Let f be an equality case. By invariance by translation, we can assume that f (0) = 0 (so that a in ( case1 14) will be 0). We define s and t as before. If t = 1, we conclude directly that the support of f is contained in H and use Lemma H 25. Let us prove that there is no possible equality case f for which t = k > 1. Assume that there is such a function f . Because the support of f has cardinality k, each nonzero f a is a Dirac mass, so that

reduction reduction (16) f = k l=1 c l 1 {a l +pj l } (c ℓ = 0, ℓ = 1, . . . , k ≤ p) .
The rest of part (i) obtains directly from the following lemma, because such a function, whose spectrum has size strictly greater than p(pk + 1), is not an equality case.

diagonal Lemma 27. For k ≥ 2 let f be a nonzero function that may be written as in ( reduction 16), with a l taking k different values between 0 and p -1 and j l integers between 0 and p-1. Then, if k > 2, its spectrum has size at least p(p-k+2). If k = 2, its spectrum has size at least p 2 -1.

Proof. Let us first assume that k = 2. We assume that w idehatf vanishes at one point, otherwise there is nothing to prove. Without loss of generality (eventually multiplying f by a character), we may assume that f vanishes at 0, so that f may be written as c(1 {x} -1 {y} ). We have already seen that such a function does not vanish at any other point, unless xy ∈ H, which is contrary to the assumption.

From now on we assume that k > 2. We have the expression We write α = β ′β and call d l the value of g β at a l . By assumption the coefficients d l are nonzero for l = 1, • • • , k. Moreover, they are nonzero solutions of the system of k linear homogeneous equations with matrix (γ s,l ), which is obtained as follows. The k -1 first ones express the fact that g β vanishes at z 1 , • • • , z k-1 , the last one the fact g β ′ (z k ) = 0. Let us write w = e -2iπ p 2 . For s < k, we have γ s,l = w pa l zs , while γ k,l = w αa l w p(j l α+a l z k ) . A contradiction is obtained if we can prove that the determinant is nonzero. This determinant value is the value at w of a polynomial in one variable X with coefficients in Z. If we expand the determinant along the last row, it can be written as

f (α + pη) =
P = k l=1 X a l α X p(j l α+a l z k ) (Q l • X p )),
where Q l 's come from cofactors obtained from the k -1 first rows. Up to a multiplicative constant, each Q j (w p ) is a (k -1) × (k -1) determinant extracted from the Fourier matrix of Z p , so it does not vanish at w by Chebotarev's Lemma (see Tao [START_REF] Tao | An uncertainty principle for cyclic groups of prime order[END_REF]). The a l are all different and the a l α belong to different congruent classes mod p. So, if we reorder the terms, P can be written as P = p-1 j=0 X j (P j • X p ), with P j that does not vanish at w for k values of j. Now let us assume for a contradiction that P (w) = 0. It follows that the cyclotomic polynomial 1 + X p + • • • + X (p-1)p divides P in Z[X], that is, with a suitable Q ∈ Z[X], P can be written as

P = Q(1 + X p + • • • + X (p-1)p ).
We then use the fact that every polynomial can be written in a unique way as a sum p-1 j=0 X j (R j • X p ) to see that each P j • X p can also be factorized by the polynomial 1 + X p + • • • + X (p-1)p . So it vanishes at w, which gives a contradiction and proves that there is no such f . Continuation of the proof of Theorem psquare 26. The theorem has been proved when 1 ≤ k ≤ p. It is easy to conclude for k = pj, with 1 ≤ j ≤ p, by using Lemma reciproque 10. We now consider values k such that pj < k ≤ pj + p -1 and denote ℓ := θ(pj, G) = pj + 1. Considering Fourier transforms, we are led to prove that there does not exist a function φ whose support has size ℓ and whose Fourier transform has size k, with p(pℓ + 1) < k < p(pℓ + 2). We proceed by contradiction. Coming back to Meshulam's proof, if we define s and t as before, we know that k = | supp( φ)| ≥ (p + 1s)(p + 1t) and st ≤ ℓ. The two inequalities p(pℓ + 1) + p -1 ≥ (p + 1s)(p + 1t) and st ≤ ℓ imply as before that t = 1 or t = ℓ. Recall that t is the number of nonzero φ y 's. For t = 1, as in the proof of Lemma H 25, the support of φ is a multiple of p, which we have excluded. We use Lemma diagonal 27 to see that there is no such function φ with t = ℓ.

That concludes the proof of the theorem.

Next, for 1

 1 ≤ k ≤ |G|, let us define Meshulam's Function, which we denote by θ(•, G). It has been introduced by Meshulam in M [8] as theta theta (5) θ(k, G) := min{l; E(k, l) = ∅}. For |G| prime, by Tao's Theorem we have θ(k, G) = |G|k + 1 while, in other cases, we have only the inequality θ(k, G) ≤ |G|k + 1 (see Lemma

  the converse is not true.Next we have the following lemma. dim1 Lemma 5. The set E(k, θ(k, G)) is contained in a finite union of vector spaces of dimension 1. Proof. The set E(k, θ(k, G)) is contained in the union of E(A, B), where A and B are respectively subsets of G and G, verify |A| ≤ k, |B| = θ(k, G), and

dim1b Lemma 6 .

 6 For |A| = k and |B| = |G|k + 1, the space E(A, B) is not reduced to {0}. As a consequence, θ(k, G) ≤ |G|k + 1.

  comments above may be summarized in the following statement.Proposition 16.

  caseminus1

p 2 )

 2 supported in H, and h as above, so that | supp h| = k. A character ξ on Z p 2 identifies with an element of Z p 2 , which identifies with some α + pη, with α, η = 0, 1, • • • , p -1. If we denote by h the Fourier transform of the function h on Z p , then f (α + pη) = j e -2iπ αj p h(j) = h(α). The cardinalities of the supports of f and h are such that p(pk + 1) = | supp( f )| = p| supp( h)|. So | supp( h)| = pk + 1 and h is an equality case for (k, Z p ). Conversely such a function is an equality case.

(a l +pj l )α p 2 1 1 .

 21 where α and η may take the values 0, 1, • • • , p -1. As a consequence we see that, for fixed α = 0, 1, • • • , p-1, the function defined on Z p by η → f (α+pη) is the Fourier transform of the function g α on Z p , defined byg α := {a l } .The support of g α has cardinality k. So | supp( g α )| ≥ p + 1k by Theorem Tao We proceed by contradiction and assume that the cardinality of the support of f is less than p(pk + 2). Hence there existsβ such that | supp( g β )| = p + 1k. We call z 1 , • • • , z k-1 the zeros of g β . Moreover, one of the p -1 other ones, say g β ′ , vanishes at least at one point, say z k . Otherwise, we would have | supp( f )| = p(p -1) + pk + 1 ≥ p(pk + 2), which contradicts our assumption.

  Stark's Uncertainty Principle asserts that in general θ(k, G) ≥ |G|/k, with possible equality when k is a divisor of |G|.

1 This was also observed by other authors, in particular by A. Biró, see the Arxiv paper of Frenkel Fr [5]. One finds there different references for the lemma of Chebotarev on subdeterminants of a Van der Monde matrix (1926, Ch [12]), which is the clue of the proof. Remark that Chebotarev's Lemma is easily deduced from a theorem of Mitchell (1881, Mi [9]), as observed in DVB1 [2]. dim1b 6 below), with equality when k = |G| -1 only (see Proposition caseminus1 7). Donoho-

  The complement of supp(f ) is a subgroup H of G, so that the only possible values for | supp(f )| are |G|d r , . . . , |G|d 1 , |G| -1. If k < |G|d r , there does not exist any non-principal character χ that takes the value 1 on a set of cardinality larger than |G|k. So θ(G, k) > 2.Let us prove that θ(|G|d r , G) = 2. There exists a subgroup H of cardinality d r . The group G/H has cardinality |G|/d r , which is a prime number. So G/H is a cyclic group and any non-principal character χ 0 on G/H takes the value 1 at the neutral element 0 only. It extends into a character χ on G by the formula χ(x) := χ 0 ( ẋ), where ẋ is the equivalence class of x mod H. The character χ has the property that it takes the value 1 exactly on H. The corresponding function
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