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EQUALITY CASES FOR THE UNCERTAINTY PRINCIPLE

IN FINITE ABELIAN GROUPS

ALINE BONAMI & SAIFALLAH GHOBBER

Abstract. We consider the families of finite Abelian groups Z/pZ ×

Z/qZ and Z/p2Z, for p, q prime numbers. We give a simple character-
ization of all functions f for which the size of the support is at most
k and the size of the spectrum is minimal among such functions. Such
equality cases were previously known when k divides the cardinal of the
group, or for groups Z/pZ.

1. Introduction

In this work we consider a finite Abelian group G, which can always be
described as

(1) G = Z/p1
n1Z× · · · × Z/pr

nrZ,

where p′is are prime numbers with possible repetition.
We will write

Zn := Z/nZ

to simplify notation.
Uncertainty principles show how small the support and the spectrum of

a nonzero function f may be simultaneously. The Fourier transform of f is

defined, for χ ∈ Ĝ, as

f̂(χ) :=
∑

x∈G

f(x)χ(−x).

Here Ĝ is the group of characters of G, which identifies to G. More pre-
cisely, for G given by (1), some element x, which may be written as x =
(x1, · · · , xr), and some character χ that identifies with y = (y1, · · · , yr), then

χ(x) = exp


2πi

r∑

j=1

xjyj

p
nj

j


 .

The spectrum of f is the support of its Fourier transform f̂ . We refer to [8]
for background on finite Abelian groups.

The first well-known estimate has been stated by Matolcsi and Szücs in
[6]. It is usually referred to as Stark-Donoho Uncertainty Principle and deals
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UNCERTAINTY PRINCIPLE 2

simultaneously with cardinals of the supports of f and f̂ (see [4] or [8]):

(2) | supp(f)| × | supp(f̂)| ≥ |G|.

Here |A| stands for the cardinal of the finite set A.
Equality cases for this inequality have been entirely described (see [4]),

that is, nonzero functions f for which | supp(f)| × | supp(f̂)| = |G|. Up to
translation, modulation and multiplication by a constant, they are given by
characteristic functions of subgroups of G.

Then, it has been observed by Tao in [9] that Inequality (2) can be con-
siderably improved for Zp when p is a prime number. Namely, he proved
the following theorem.

Theorem 1 (Tao). When f is a non zero function on Zp with p prime,
then

(3) | supp(f)|+ | supp(f̂)| ≥ |G|+ 1.

Moreover, for any A ⊂ G and B ⊂ Ĝ such that |A|+ |B| = |G|+s, the space
of functions with support in A and spectrum in B is exactly of dimension s.

In Tao’s paper, the second part of the theorem is not exactly stated in
this way, but this is seen by an easy modification of the proof.

Tao’s Theorem contains a complete (but non explicit) description of equal-

ity cases, that is, of all nonzero functions f for which | supp(f)|+| supp(f̂)| =
|G|+1. Namely, given A and B such that |A|+|B| = |G|+1, there is a unique

(up to a constant) function f such that supp(f) = A and supp(f̂) = B.

In order to describe the situation for any finite Abelian group, let us give
some definitions. Firstly, for any nonempty set A we call L(A) the space of
complex functions on A. Then we will use the following notations.

Definition 2. For k, l two positive integers, we set

E(k, l) :=
{
f ∈ L(G); | supp(f)| ≤ k, | supp(f̂)| = l

}
.

E0(k, l) :=
{
f ∈ L(G); | supp(f)| = k, | supp(f̂)| = l

}
.

Next, for 1 ≤ k ≤ |G|, let us define Meshulam’s Function, which we note
θ(·, G). It has been introduced by Meshulam in [7] as

(4) θ(k,G) := min{l; E(k, l) 6= {0}}.

For |G| prime, by Tao’s Theorem we have θ(k,G) = |G| − k + 1 while, in
general, we have only the inequality θ(k,G) ≤ |G| − k + 1. Donoho Stark’s
Uncertainty Principle asserts that in general θ(k,G) ≥ |G|/k, with possible
equality when k is a divisor of |G|.

Meshulam has given a better lower bound for θ(·, G) in [7], see also [5]
for comments and extensions to the windowed Fourier transform. More
precisely, let u(·, G) be the largest convex function on [1, |G|] that coincides
with |G|/d at each divisor d of |G|. Equivalently, u(·, G) is continuous and
linear between two consecutive divisors of p. Then Meshulam has shown
that θ(·, G) ≥ u(·, G).

The same problem has been considered recently by Delvaux and Van
Barel [2, 3] with a different vocabulary. These authors give a large number
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of examples and revisit proofs with elementary methods of linear algebra.
They give the precise value of Meshulam’s Function as a minimum (while
Meshulam stated only an inequality). They also have partial results in the
direction that we consider here.

We are interested in the values k for which there exists equality cases
according to the following definition.

Definition 3. We say that there are equality cases for (k,G) if the set
E0(k, θ(k,G)) is not empty. In this case, we call equality case for (k,G) any
nonzero function f ∈ L(G) that belongs to the set E0(k, θ(k,G)). We say
that f is an equality case for G when it is an equality case for some (k,G).

Delvaux and Van Barel implicitly pose the problem of finding all equality
cases, that is, having a complete description of the set E0(k, θ(k,G)) for all
(k,G).

We will answer this question in three particular cases. More precisely,
we will consider groups Zp2 , Zp × Zp and Zp × Zq, for p, q distinct prime
numbers. In these three cases, we are able to give a simple description of all
equality cases, in the same spirit as the already known one for k a divisor of
|G|. It is particularly simple to describe the equality cases in the third case.

Theorem 4. Let p, q be two distinct prime numbers. Then, when a function
f is an equality case for Zp×Zq, it may be written as a tensor product g⊗h,
where g is an equality case for Zp, h is an equality case for Zq and, moreover,
one of the two functions g or h is a character or a Dirac mass.

Our description of equality cases allows us to answer positively to a con-
jecture of Delvaux and Van Barel for the three families of groups. Let us
give some notations. For M = (aij)i∈I,j∈J and N two matrices, we say that
N is said to be extracted from the matrix M if I ′ and J ′ are subsets of I
and J , and if N = (aij)i∈I′,j∈J ′. We say that M can be decomposed into
matrices Nℓ that are extracted from M if I×J is the disjoint union of Iℓ×Jℓ,
with each Nℓ having coefficients indexed by Iℓ × Jℓ. We have the following
theorem.

Theorem 5. Let G be a group of one of the three families under considera-

tion. Let A and B respectively in G and Ĝ, with |A| = k and |B| = θ(k,G).
Consider the matrix M := MA,B := (χi(j))i/∈B,j∈A, which is obtained by
extraction from the Fourier matrix. Then, if M does not have full rank, it
has rank k − 1 and may be decomposed into k − 1 matrices, extracted from
the matrix M , which have rank one.

Our results can be summarized as the fact that there are no other equal-
ity cases than trivial ones, except for one family of equality cases in Zp2.
Unfortunately, even if solutions are simple, proofs are technical and it seems
difficult to generalize them to all finite Abelian groups, especially when an
arbitrary number of primes pj are involved.

This paper is a first attempt to show that, even if Meshulam’s Function
is in general smaller than k 7→ |G| − k + 1, there is only a “small” number

of functions such that | supp(f)| + | supp(f̂)| ≤ |G|, a phenomenon that is
observed in [1] in a random setting.
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2. Some preliminary results

Let us first recall that the function θ is non increasing. If θ(k,G) <
θ(k − 1, G), then there are equality cases for (k,G). We will see in Section
4 that the converse is not true.

Next we have the following lemma.

Lemma 6. The set E0(k, θ(k,G)) is either reduced to 0, or is a finite union
of vector spaces of dimension 1.

Proof. It is sufficient to prove that E(k, θ(k,G)) is contained in a finite
union of vector spaces of dimension 1. The set E(k, θ(k,G)) is the union of

E(A,B), where A and B are respectively subsets of G and Ĝ, verify |A| = k,
|B| = θ(k,G), and

(5) E(A,B) :=
{
f ∈ L(G) : supp(f) ⊂ A , supp(f̂) ⊂ B

}
.

Assume E(A,B) is of dimension ≥ 2, with |A| = k and |B| = l. Then we
can find f and g two linearly independent functions in E(A,B) and there
exists a non zero linear combination of f and g whose Fourier transform
vanishes at some b ∈ B. This implies that θ(k,G) ≤ l − 1. �

As a corollary, all equality cases are known as soon as we know all subsets
A and B for which the space of functions with support in A and spectrum
in B is not reduced to 0.

Lemma 7. For |A| = k and |B| = |G| − k + 1, the space E(A,B) is not
reduced to 0. As a consequence, θ(k,G) ≤ |G| − k + 1.

Proof. The function f =
∑

x∈A a(x)δx belongs to E(A,B) if the k coeffi-

cients a(x) satisfy the k − 1 linear equations given by f̂(y) = 0 for y /∈ B.
There is at least one nonzero solution to this system. �

The next lemma allows to exchange the role of f and f̂ .

Lemma 8. Assume that θ(k,G)) < θ(k − 1, G). Then

θ(θ(k,G), Ĝ) = k.

The proof is elementary and we leave it to the reader.

We next give all equality cases for a product with a supplementary as-
sumption.

Proposition 9. Let G = G1 ×G2 and 1 ≤ k ≤ |G|. Then

θ(k,G) = min{θ(k1, G1)θ(k2, G2) ; k1k2 ≤ k, 1 ≤ ki ≤ |Gi|, i = 1, 2}.

Assume that (k1, k2) is the only couple for which k1k2 ≤ k and

(6) θ(k,G) = θ(k1, G1)θ(k2, G2).

Then there are equality cases for (k,G) if and only if k = k1k2 and there are
equality cases for (ki, Gi), i = 1, 2. Moreover, all equality cases for (k,G)
may be written as f1(x1)f2(x2), with fi an equality case for (ki, Gi), i = 1, 2.
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Proof. It is inspired from Meshulam’s paper, who has proved the first state-
ment. Let f be a nonzero function with support of size ≤ k and spectrum
of size θ(k,G). For χ(x) = χ1(x1)χ2(x2) a character, that is, an element of

Ĝ = Ĝ1 × Ĝ2, we write

f̂(χ1, χ2) =
∑

x1∈G1

∑

x2∈G2

f(x1, x2)χ1(−x1)χ2(−x2)

= F̂χ1(χ2).

Here
Fχ1(y) =

∑
f(x1, y)χ1(−x1) = f̂y(χ1),

if we pose fy(x1) := f(x1, y) for y ∈ G2. Then

| supp f̂(χ1, ·)| ≥ θ(| suppFχ1 |, G2)

when Fχ1 6= 0. Let us pose

Ŝ := {ξ ∈ Ĝ1; | Fξ 6= 0} = {ξ ∈ Ĝ1; | f̂(ξ, ·) 6= 0}.

Then we have

(7) | supp f̂(·, ·)| ≥ |Ŝ|min
ξ∈Ŝ

θ(| suppFξ|, G2).

Now take for t the size of T := {y | fy 6= 0}. The support of Fξ is contained

in T for all ξ ∈ Ĝ1, so that, for ξ ∈ Ŝ, we have

(8) θ(| suppFξ|, G2) ≥ θ(t,G2).

We also have

(9) |Ŝ| ≥ | ∪y∈T {ξ | Fξ(y) = f̂y(ξ) 6= 0}| ≥ θ(s,G1)

for s the smallest size for the support of fy. We finally remark that st ≤ k.
So we conclude from (7), (8), (9) that

(10) θ(k,G) ≥ θ(s,G1)θ(t,G2).

We have proved that

θ(k,G) ≥ min{θ(k1, G1)θ(k2, G2) ; k1k2 ≤ k, 1 ≤ ki ≤ |Gi|, i = 1, 2}.

Next we prove that there is equality in this inequality. Assume that the
minimum is obtained for k1, k2. Let f1 ∈ L(G1) and f2 ∈ L(G2) such that

| supp fi| ≤ ki and | supp f̂i| = θ(ki, Gi) for i = 1, 2. Then f1⊗f2 has support
of size ≤ k1k2 ≤ k and its spectrum has size θ(k1, G1)θ(k2, G2) = θ(k,G).

Next, assume that (k1, k2) is the only couple for which k1k2 ≤ k and
(6) is valid. Let us characterize the values k for which we have equality.
Assume that there is some equality case f for (k,G). If we proceed as
above, the inequality (10) is an equality and the minimum is obtained for
(s, t), which coincides with (k1, k2). Inequalities (9), (8) and (7) are also

equalities. Looking at the definition of T and Ŝ, it is easily seen that T is

the projection of the support of f on G2 while Ŝ is the projection of the

support of f̂ on Ĝ1. So t is the size of the projection T of supp(f) on G2,

while θ(s,G1) is the size of the projection Ŝ of supp(f̂) on Ĝ1. Exchanging

the role of G1 and G2, we define as well S and T̂ , which are respectively
of size s and θ(t,G2). In particular, the size of supp(f), which is contained
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in S × T , is at most st. This proves that k = st and the support of f is

exactly S × T . Similarly the support of f̂ is exactly Ŝ × T̂ . Moreover, each

fy has the same support S and the same spectrum Ŝ. It is in particular
an equality case for (s,G1). By symmetry, there are also equality cases for

(t,G2), with support T and spectrum T̂ . More precisely, there exists some

function h1 on G1 (resp. h2 on G2) with support S and spectrum Ŝ (resp.

T and T̂ ). Then h1 ⊗ h2 is an equality case for (st,G), with support S × T

and spectrum Ŝ× T̂ . By Lemma 7, it coincides with f , up to some constant.
We have proved that f can be written as a tensor product.

This finishes the proof of the proposition. �

3. The case of groups Zq × Zp, with q < p prime numbers

Let us first give Meshulam’s Function, which one can already find in
[3]. We give the proof, nevertheless, since we need to know when there is
uniqueness of the minimum.

Proposition 10. Let G = Zq × Zp, with p and q are prime numbers such
that 1 < q < p. Then

θ(k,G) =





p(q − k + 1) for 1 ≤ k ≤ q,

p− [kq ] + 1 for q ≤ k ≤ q p+1
q+1 ,

q(p− k + 1) for q p+1
q+1 ≤ k ≤ p,

q − [kp ] + 1 for p ≤ k ≤ pq.

Proof. Using Tao’s Theorem and Proposition 9, we know that

θ(k,G) = min{(p − s+ 1)(q − t+ 1) ; st ≤ k ; 1 ≤ s ≤ p ; 1 ≤ t ≤ q}.

We claim that the minimum is obtained when one of the following four
conditions is satisfied: s = 1, or s = p, or t = 1, or t = q. In the formula s
and t take only integer values, but we first deal with real numbers. Let R
be the rectangle defined by 1 ≤ s ≤ p, 1 ≤ t ≤ q and let ∆ be the region in
R such that st ≤ k, where we are looking for the minimum. If (s0, t0) is in
∆, the line q(s− s0)+ p(t− t0) = 0, which is tangent at the curve st = s0t0,
cuts R inside ∆. Moreover the function to minimize is concave on this line,
so that its minimum is obtained on the boundary of the rectangle. We are
only interested in integer values, so that the minimum is the integer part of
the minimum on the boundary of R. Finally we have to find the minimum
of the four quantities p(q − k + 1), p− [kq ] + 1, q(p− k+ 1), q − [kp ] + 1. We

conclude easily for the value of θ(k,G), and find only one couple (s, t) for

which the minimum value is obtained, except when k = p+1
q+1 . �

The following proposition gives the exact form of the equality cases for
each value of k and implies Theorem 4. The Dirac mass at 0 on G is denoted
by δG.

Proposition 11. Let G = Zq × Zp, with p and q are prime numbers such
that 1 < q < p. There are equality cases if and only if θ(k,G) < θ(k− 1, G).
They can be described as follows.

(1) For all k ≤ q, equality cases are of the form f⊗δZp(·−a), with a ∈ Zp

and f ∈ L(Zq) such that |supp(f)| = k and |supp(f̂)| = q − k + 1.
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(2) For all q ≤ k < p+1
q+1 , there are equality cases if and only if k is

divisible by q. For k = qr, equality cases are of the form χ ⊗ f ,
with χ a character of Zq and f ∈ L(Zp) such that |supp(f)| = r and

|supp(f̂)| = p− r + 1.

(3) For all p+1
q+1 < k ≤ p, equality cases are of the form δZq (· − b) ⊗ f ,

with b ∈ Zq and f ∈ L(Zp) such that |supp(f)| = k and |supp(f̂)| =
p− k + 1.

(4) For all p ≤ k ≤ qp, there are equality cases if and only k is divis-
ible by p. For k = pr, equality cases are of the form f ⊗ χ, with
χ a character of Zp and f ∈ L(Zq) such that |supp(f)| = r and

|supp(f̂)| = q − r + 1.

(5) When p+1
q+1 = r is an integer and k = rq, equality cases are of one

of the two following forms: either χ ⊗ f , with χ a character of Zq

and f ∈ L(Zp) such that |supp(f)| = r and |supp(f̂)| = p− r+1, or
δZq (· − b) ⊗ f , with b ∈ Zq and f ∈ L(Zp) such that |supp(f)| = k

and |supp(f̂)| = p− k + 1.

Proof. We have seen that there is only one couple (s, t) for which the min-

imum value is obtained, except when k = p+1
q+1 . So Proposition 9 allows to

conclude for the description of equality cases, except for the case (5), which
we now consider.

Assume now that r = p+1
q+1 is an integer. Let f be an equality case for

(qr,G). We want to prove that f is of one of the forms given in the statement
of the theorem. We use the notations of the proof of Proposition 9 and define

S, T, Ŝ, T̂ as before. The two possibilities for (s, t), which give the minimum,
are (1, qr) and (q, r). So s is 1 or q, and t is r or qr. If s = 1, it means that
S is reduced to one point and f may be written as the tensor product of a
Dirac mass on Zq and a function on Zp, from which we conclude directly. If

t = r, then θ(q,Zq) = 1 and Ŝ is reduced to one point. So f̂ is the tensor
product of a Dirac mass on Zq and a function on Zp. This implies that f is
the tensor product of a character of Zq and a function on Zp.

It remains to prove that there is no other case, that is, no nonzero func-

tion f such that |S| = |Ŝ| = q, while |T | = |T̂ | = qr, with | supp(f)| =

| supp(f̂)| = qr. Assume that f is such a function, which may be written as

f(x, y) =
∑

j∈Zq

δZq (x− j)fj(y),

with the functions fj having disjoint supports of cardinality r. We identify
Zq with {0, 1, · · · q − 1} and call Tj the support of fj, for j = 0, 1, · · · q − 1.
By assumption, we can also write

f̂(ξ, η) =
∑

l∈Zq

δZq (ξ − l)gl(η).

The support of gl, which we call T̂l, is also of cardinality r and T̂ is the

disjoint union of sets T̂l. We note T ′ = Zp \ T and T̂ ′ = Zp \ T̂ .
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Let us first prove that all f̂j’s vanish on T̂ ′. Take one of the r − 1 points

in T̂ ′, say k. Then, we have

f̂(l, k) =
∑

j

e−
2πijl

q f̂j(k) = 0

for l = 0, · · · , q − 1. This implies that each coefficient f̂j(k) is 0.

Next we consider k ∈ T̂l0 . We have the q− 1 equations, written for l 6= l0

f̂(l, k) =
∑

j

e−
2πijl

q f̂j(k) = 0,

which may be interpreted as the fact that the vector (f̂j(k))
q−1
j=0 is orthogonal

to the q − 1 vectors (e
2πijl

q )q−1
j=0, with l 6= l0. So it is colinear to the missing

vector in the Fourier basis of Zq. Namely,

(11) f̂j(k) = e
2πijl0

q f̂0(k) for k ∈ T̂l0 .

So, for k ∈ T̂l, we have that

gl(k) = f̂(l, k) = qf̂0(k).

In particular, because of (11), for j = 0, 1, · · · , q − 1 we have

g0(k) = qf̂j(k) for k ∈ T̂0.

These properties will be sufficient to find a contradiction. Let us note Ul

the isomorphism from L(T0) to L(T̂l) whose matrix is given by the ma-

trix
(
e
−

2iπjk

p

)
j∈T̂l,k∈T0

. Then gl, which identifies with a function on T̂l,

is given by qUlf0 (identified with a function on T0). Similarly, if Vj is

the isomorphism from L(Tj) to L(T̂0) whose matrix is given by the matrix(
e
−

2iπkl
p

)
k∈T̂0,l∈Tj

, then g0 = qVjfj.

Because of Plancherel’s Formula, we can exchange the role of G and Ĝ and
take conjugate Fourier transforms to obtain functions fj from the functions
gk, taking into account the Plancherel constant, which is equal to pq. The
role of U0 is played by U∗

0 , while the role of Vj is played by U∗

j . We get

pqf0 = qU∗

0 g0 = q2U∗

0U0f0,

pqf0 = qU∗

l gl = q2U∗

l Ulf0.

Let us finally call W the operator from L(T0) to L(T̂ ′) whose matrix is

given by the matrix
(
e−

2iπkl
p

)
k∈T̂ ′,l∈T0

. Since f0 has null coefficients on T̂ ′,

we have W ∗Wf0 = 0. As a consequence we have

pf0 = q

(
q−1∑

l=0

U∗

l Ul +W ∗W

)
f0.

We get a contradiction, since we assumed q > 1 and f0 nonzero, by proving
that

∑q−1
l=0 U∗

l Ul+W ∗W = p Id. But the (k, k′) coefficient of the correspond-

ing matrix is
∑

e
−

2iπkl
p e

2iπk′l
p , where the sum is taken on each T̂l separately,
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then on l, then on T̂ ′. Finally the sum is taken over 0, 1, · · · , p − 1. So it
vanishes unless k = k′, for which it is equal to p.

This finishes the proof of (5), and the proof of the proposition. �

4. The case of groups Zp × Zp, with p prime

The formula for Meshulam’s Function is also given in [3].

Proposition 12. Let G = Z
2
p, with p a prime number. Then

θ(k,G) =

{
p(p− k + 1) for 1 ≤ k ≤ p,

p− [kp ] + 1 for p ≤ k ≤ p2.

The proof is the same as for Proposition 10. Remark that now there is
no uniqueness for the minimum. For k < p it is obtained for both couples
(1, k) and (k, 1), while, for k > p and [kp ] = r, it is obtained for (p, r) and

(r, p).

To describe equality cases, we will use the fact that Z2
p is a vector space

of dimension 2 on the field Zp. The main difference with the previous case
is the fact that there are many subgroups of size p, namely all subgroups
generated by one element m = (m1,m2), which we write Gm. Let us define
a scalar product on Z

2
p by 〈x, ξ〉 := x1ξ1 + x2ξ2. Then the orthogonal of

Gm is Gm̃, with m̃ = (m2
1 +m2

2)
−1(m1,−m2). So G can also be written as

Gm ×Gm̃, and there are equality cases related to each such decomposition.
We consider the set of linear transformations A(m), given for m ∈ Zp×Zp

by the matrix (that we still note A(m))

A(m) :=

(
m1 −m2

m2 m1

)
.

It is easily seen that A(m)−1 = A(m̃), and

〈A(m)x,A(m)ξ〉 = (m2
1 +m2

2)〈x, ξ〉.

It follows in particular that the function g(x) := f(A(m)−1x), which is the
image of f under the action of A(m), has Fourier transform ĝ(ξ) = f((m2

1+
m2

2)A(m)−1ξ). Transformations A(m) preserve the size of the support and
the spectrum of a function, so that the sets E(k, l) and E0(k, l) are invariant
through the action of A(m). We can now state the theorem.

Theorem 13. Let G = Z
2
p, with p a prime number. there are equality cases

if and only if θ(k,G) < θ(k − 1, G). They can be described as follows.

(1) For all k ≤ p, equality cases are transforms under some transforma-
tion A(m) of a function of the form f ⊗ δZp(· − a), with a ∈ Zp and

f ∈ L(Zp) such that |supp(f)| = k and |supp(f̂)| = p− k + 1.
(2) For all p ≤ k ≤ p2, there are equality cases if and only k is divisible

by p. For k = pr, equality cases are transforms under some transfor-
mation A(m) of a function of the form f ⊗ χ, with χ a character of

Zp and f ∈ L(Zp) such that |supp(f)| = r and |supp(f̂)| = p− r+1.

Proof. It is clear that the functions given in the statement are equality cases.
Let us prove that they are the only ones. We consider an equality case f .
Without loss of generality we can assume that f(0) 6= 0. We define T as
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before, as the projection on the second factor of the support of f . Using
the same proof as in Proposition 9, we see that |T | take the values 1 or k.
If |T | = 1, we recognize directly a function of the required form. Assume
that |T | = k. Since | supp f | = k, it means that supp f has no other point
than 0 in Zp × {0}. We claim that it is not possible for all transforms of f
through some A(m), which are also equality cases. Indeed, consider some
nonzero m ∈ supp f , which can be written as A(m)(1, 0).We call g the image
by A(m̃) of f . Then (1, 0) belongs to the support of g. It follows that the
support of g is entirely contained in Zp×{0}. We recognize for g one of the
equality cases described in the statement. The same is valid for its transform
by A(m), that is, f .

Let us now consider p ≤ k ≤ p2. The value of θ is obtained as before, with
the minimum obtained for (s, t) = (p, [kp ]) or (s, t) = ([kp ], p). For k = pr,

the equality cases are deduced from the ones of p− r + 1 by taking Fourier
transforms, and we recognize the functions given in the statement of the
theorem. It remains to prove that there are no equality cases when k cannot
be divided by p. Assume that pr < k < p(r + 1). Let f be an equality

case for k. Then, proceeding as in Proposition 9 and defining Ŝ and T̂ as

before, we know that |Ŝ| and |T̂ | take the values 1 or p − r + 1, and this

is also valid for the supports of transforms of f̂ through all transformations
A(m). So after one of these transforms, the projection on one of the factors

of the support of f̂ is reduced to one point. This implies that the size of
the support of its Fourier transform, that is, the size of the support of f is
a multiple of p. This gives a contradiction. �

5. The case of groups Zp2, with p prime

As remarked in [3], the functions θ(k,Zp2) and θ(k,Z2
p) are identical (and

equal to the function u(k,G)). We will see that the values of f for which
there are identity cases are the same except for an exceptional new one, but
there are much less equality cases. Remark that this exceptional example
proves that there may exist equality cases for (k,G) when θ(k,G) = θ(k −
1, G).

Let us give some notations. We noteH the subgroup {pj; j = 0, 1, · · · , p−
1}, which identifies with Zp. For A a subset of G we note δA its characteristic
function. When A is reduced to one point a, then we write δa.

We have the following theorem.

Theorem 14. Let G = Zp2, with p a prime number. Then

θ(k,G) =

{
p(p− k + 1) for 1 ≤ k ≤ p,

p− [kp ] + 1 for p ≤ k ≤ p2.

Moreover there are equality cases if and only if θ(k,G) < θ(k − 1, G) or
k = p2 − 1. They can be described as follows.

(1) For all k ≤ p, equality cases are of the form

f(px+ x′) = g(x)δa+H (x′), x, x′ = 0, · · · , p− 1,

with g ∈ L(Zp) such that |supp(g)| = k and |supp(ĝ)| = p − k + 1,
and a taking one of the values 0, · · · , p − 1.
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(2) For all p ≤ k ≤ p2, there are equality cases if and only k is divisible
by p or k = p2 − 1. For k = pr, equality cases are of the form

f(px+ x′) = χ(x)g(x′), x, x′ = 0, · · · , p− 1,

with χ a character of Zp and g ∈ L(Zp) such that |supp(g)| = r and
|supp(ĝ)| = p − r + 1. For k = p2 − 1, then the Fourier transforms
of the equality cases are of the form αχ(δx − δy), with α a constant,
χ a character and x, y two points such that x− y /∈ H.

Proof. Even if not stated in the same way, most of this theorem is practically
proved in [2] (and even its analog for any arbitrary power of p) but using
a different vocabulary, with decomposition of Fourier matrices that are not
simple to follow from a group point of view. So we give the complete proof
in our vocabulary.

As for products of groups, the computation of θ is given by Meshulam in
[7]. We nevertheless give the whole proof, which we will use again for equality
cases. For f a nonzero function such that | supp(f)| ≤ k, one defines s et t,
with t the number of m = 0, · · · , p− 1 such that fm(x) = f(m+ px) is not
identically 0 on Zp and s the minimum of | supp(fm)|, so that st ≤ k. It is
then proved that

| supp(f̂)| ≥ θ(s,Zp)θ(t,Zp) = (p + 1− s)(p+ 1− t),

so that

θ(k,G) ≤ min{(p − s+ 1)(p − t+ 1) ; st ≤ k; 1 ≤ s, t ≤ p}.

In the right hand side we recognize the same expression as in the product
case. So the minimum is obtained for (1, k) or (k, 1) when k ≤ p (resp. (p, r)
or (r, p) when rp ≤ k < (r + 1)p, with r = 1, · · · , p − 1). It is easy to see
that the functions given in the statement of the theorem give the equality.
This gives the value of the function θ.

It remains to prove that there are no other equality cases. Let us first
assume that k ≤ p. Let f be an equality case. By invariance by translation,
we can assume that f(0) 6= 0 (so that a will be 0). We define s and t as
before. If t = 1, we conclude directly that the support of f is contained in
one coset a+H, and a = 0 since the coset contains 0. We claim that in this
case f is of the form given in the theorem: the function g on Zp is such that
f(pj) = g(j), so that | supp(g)| = k. If we note also ĝ the Fourier transform

on Zp, then the Fourier transform of f is given by f̂(pξ + η) = ĝ(η) for all

ξ ∈ {0, 1, · · · , p−1}, which gives that | supp(f̂)| = p(p−k+1) = p| supp(ĝ)|.
So it remains to prove that there is no possible equality case f for which

t = k > 1. If it was the case, since the support of f has cardinal k, then
each non zero fm is a Dirac mass, so that

f =
k∑

j=1

ajδmj+pm′

j
.

We conclude directly from the following lemma.
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Lemma 15. For k ≥ 2 let f be a nonzero function that may be written as

f =
k∑

j=1

ajδmj+pm′

j

with mj taking k different values between 0 and p−1 and m′

j integers between

0 and p− 1. Then its spectrum has size at least p(p− k + 2), or k = 2 and

f̂ vanishes exactly at one point.

Proof. From the expression

f̂(y) =

k∑

j=1

aje
2iπ

(mj+pm′

j )y

p2 ,

we see that for each fixed y′ /∈ H, the function defined on Zp by y′′ 7→

f̂(y′ + py′′) has its support of cardinal ≥ p + 1 − k by Theorem 3. Assume

that f̂ takes p(p + 1 − k) + j non zero values on Zp2 , with 0 ≤ j < p − 1.

So at least one of the p functions y′′ 7→ f̂(y′ + py′′) has its support of size
p+ 1− k and at least one of the other ones has support of size less than p,
unless k = 2 and j = p− 1. From now on we assume that we are not in this
particular case and want to find a contradiction. By replacing eventually
f by its product with a character, which has the effect to translate its
Fourier transform, we can assume that for y′ = 0 the size is p. By replacing
eventually f by f(x0·) for some x0 ∈ Zp, we can assume that for y′ = 1 the

function y′′ 7→ f̂(y′ + py′′) vanishes at least at one point. This means that
the sequence a1, · · · , ak is a nonzero solution of a system of k equations,

whose determinant vanishes. The determinant is the value at w = e
2iπ
p2 of

a polynomial in one variable X with coefficients in Z. If we expand the
determinant along the last row, which comes from the equation relative to
y′ = 1, it can be written as

P =

k∑

j=1

XmjPj(X
p)Xp(mjy′′+m′

j),

with Pj ’s cofactors obtained from the k − 1 first rows. It is easily seen
that, up to a multiplicative constant, each Pj(w

p) is a (k − 1) × (k − 1)
determinant extracted from the Fourier matrix of Zp, so it does not vanish
by Chebotarev’s Lemma (see [9]). Since P (X) has coefficients in Z and
vanishes at w, it can be factorized by the polynomial

Q = 1 +Xp + · · ·+X(p−1)p,

see for instance [2]. The uniqueness of the writing of P as
∑k

j=0X
jRj(X

p)

allows to see that each Pj(X
p) can also be factorized by the polynomial Q.

So it vanishes at w, which gives a contradiction.
When k = 2 and j = p − 1, we conclude by hand. The fact that there

exists such functions f is elementary. Up to a translation we can assume
that f = aδ0 + bδx with x /∈ H. Up to multiplication by a character we can
assume that its Fourier transform vanishes at 0. So a+ b = 0. It remains to
see that it does not vanish at another point. This is only possible if xy = 0
in Zp2 for some y 6= 0, which is excluded by the condition that x /∈ H. �
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We have been able to conclude for the theorem when 1 ≤ k ≤ p. It is
easy to conclude for k = pr, with 1 ≤ r ≤ p. Indeed, pr = θ(l, G), so that
θ(pr,G) = l and equality cases are given by Fourier transforms of equality
cases for l. We consider now values k such that pr < k ≤ pr+p−1. Assume
that f is a nonzero equality case for k. We claim that we are lead to a

contradiction if we can say that the number of nonzero gy, with g = f̂ , is 1
or l. Indeed, we have seen that if it is 1 then the support of f is a multiple
of p, which is excluded. If it is l, we use Lemma 15 to conclude.

So let us prove that the number of nonzero gy is 1 or l. Coming back
to Meshulam’s proof for g, if we define s and t as before, we know that
k = | supp(f)| ≥ (p+ 1− s)(p+ 1− t) and st ≤ l. It is easy to see that the
two inequalities p(p− l+1) + p− 1 ≥ p+1− s)(p+1− t) and st ≤ 1 imply
that (s, t) = (1, l) or (s, t) = (l, 1). Recall that t is the number of nonzero
gy’s.

This allows to conclude for the proof of the theorem. �

6. extracted matrices of rank one

Let us prove Theorem 5. Remark first that the conclusion is easily seen
for Zp, with p prime. Indeed, the matrix under consideration has k columns
and k−1 lines. So one decomposes it into the k−1 line matrices, which have
rank one. In general, the number of lines is much larger than the number of
columns. It has rank less than k only if there exists some equality case in
E(A,B). Recall that this space is at most of dimension 1 by Lemma 7. So
the rank of the matrix is at least k−1. It remains to look at each particular
case, corresponding to one of the equality cases that we have described. It
is possible to use a construction of Delvaux and Van Barel (see [3] Theorem
14) to conclude from this point. We choose to give a complete proof for the
reader.

We do it for Zp2, the proof being analogous, but simpler, in the other
cases. Assume first that 1 ≤ k ≤ p. After translation (which gives the same
multiplication on each line of the Fourier matrix, and, so, does not change
ranks of extracted matrices), an equality case has support A of size k in the
subgroup H, which gives k columns. Its spectrum is of the form C+H, with

C of size p− k+1. Moreover, for x ∈ H the character e
2iπxy

p2 is constant on
each coset c+H. So, in the matrix M under consideration, there are only
k − 1 different lines, each of them being repeated p times, which allows to
conclude.

Let us now show the construction for Zp2 with k = rp and θ(k,G) =
p − r + 1. By eventually performing a translation on the Fourier side, we
can assume that the character is trivial. So A can be written as C + H,

with C of size r and the support of f̂ , say B, is contained in H, and of size
p− r+ 1. Recall that the matrix M is defined as a matrix with coefficients
in G\B×A. We decompose this set as follows: we first consider the r(p−1)
sets (a+H)×(c+H), for a 6= 0 and c ∈ C, then the r−1 sets {b}×(C+H).
It is elementary to see that the corresponding rp − 1 matrices are of rank
one.

The exceptional case gives directly a matrix of rank one.
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The construction given for 1 ≤ k ≤ p works for the other groups under
consideration when there is a Dirac mass in the expression of the equality
case. For Z2

p, transformations A(m) do not change ranks of extracted matri-
ces, which allows also to conclude when the decomposition of f into a tensor
product can only be done after having used some transformation A(m). The
second construction is used when there is a character in the expression of
the equality case.
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