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Twisting the Stern sequence

Roland Bacher

April 7, 2010

Abstract

We describe a few features of the Stern sequence and of a closely
related sequence obtained by adding a sign-twist in the recursive defi-
nition of the Stern sequence.1

1 Main results

In this paper, we identify a complex sequence (an)n∈N with the correspond-
ing function a : N 7−→ C. We write thus always a(n) instead of an.

The Stern sequence or Stern-Brocot sequence with first terms given by

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, . . .

(cf. sequence A2487 of [9]) is the integral sequence s : N −→ N recursively
defined by s(0) = 0, s(1) = 1 and s(2n) = s(n), s(2n + 1) = s(n) + s(n + 1)
for n ≥ 1. It is closely related to the Farey tree and induces a one-to-one
map n 7−→ s(n)/s(n+ 1) between N and non-negative rational numbers, cf.
[5] or Chapter 16 of [1]. It is also an example of a 2−regular sequence, see
Chapter 16 of [2].

The following result gives a different, perhaps not very well-known, de-
scription of the Stern sequence.

Proposition 1.1 s(n) equals the number of distinct subsequences of the
form 1, 101, 10101, . . . = {1(01)∗} in the binary expansion ǫl . . . ǫ1ǫ0 of n =
∑l

k=0 ǫl2
k (where ǫ0, . . . , ǫl ∈ {0, 1}).

Proposition 1.1 is in fact a particular case of Proposition 2.3, an easy
result concerning rational series in non-commuting variables.

Example The binary expansion 1011 of 11 = 23 + 21 + 20 contains the
following five subsequences (highlighted by bold letters)

1011 , 1011 , 1011,1011 ,1011

1Keywords: Stern sequence, automatic sequence, regular sequence. Math. class: 11B85
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of the form 1(01)∗. We have s(11) = s(5) + s(6) = s(2) + s(3) + s(3) =
s(1) + 2(s(1) + s(2)) = 5s(1) = 5.

Proposition 1.1 allows to parametrize Stern sequences by counting a
subsequence of the form 1(01)k with weight wk, see Proposition 2.1 for
formulae. For n = 11 we get for instance 3 + 2w.

In this paper we introduce a related sequence which will be called the
twisted Stern sequence since it is obtained by twisting the recursive definition
of the Stern sequence with a sign. More precisely, we define the twisted
Stern sequence t(0), t(1), . . . recursively by t(0) = 0, t(1) = 1 and t(2n) =
−t(n), t(2n + 1) = −t(n)− t(n+ 1) for n ≥ 1. It starts as

0, 1,−1, 0, 1, 1, 0,−1,−1,−2,−1,−1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 2, 1, 1, 0,−1, . . . .

An inspection of these first few terms shows already some striking similarities
between the Stern sequence and its twisted relative. The aim of this paper
is to describe a few properties of the Stern sequence and its twist.

The following result (the identity for s(n) in assertion (i) is probably well-
known to the experts) is an illustration of the similarities between these two
sequences:

Theorem 1.2 (i) We have

s(2e + n) = s(2e − n) + s(n)

t(2e + n) = (−1)e (s(2e − n)− s(n))

for all e ≥ 0 and for all n such that 0 ≤ n ≤ 2e.
(ii) We have

t(3 · 2e + n) = t(6 · 2e − n) = (−1)es(n)

for all e ≥ 0 and for all n such that 0 ≤ n ≤ 2e+1.

The failure for n > 2e+1 of the formula

t(3 · 2e + n) = (−1)es(n)

given by assertion (ii) can perhaps be mended by the following conjectural
identity based on experimental observations.

Conjecture 1.3 There exists an integral sequence u(0), u(1), u(2), . . . such
that we have

∞
∑

n=0

t(3 · 2e + n)zn = (−1)e

(

∞
∑

n=0

u(n)zn·2
e

)(

∞
∑

m=0

s(m)zm

)

for all e ∈ N.
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If the conjecture holds, the ordinary generating function of the sequence
u(0), u(1), . . . is given by

∞
∑

n=0

u(n)zn =

∑

∞

n=0 t(3 + n)zn
∑

∞

n=0 s(n)z
n

and it starts as

1− 2z2 − 2z5 + 4z6 + 2z7 − 6z8 + 4z9 + 2z10 − 6z11 + 8z12 + . . .

The first equality in assertion (ii) of Theorem 1.2 shows that the finite
sequences (−1)et(3 · 2e), (−1)et(3 · 2e + 1, . . . , (−1)et(6 · 2e) of length 3e + 1
are palindromic sequences of natural integers. The first few such sequences
are

0 1 1 0
0 1 1 2 1 1 0
0 1 1 2 1 3 2 3 1 2 1 1 0
0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 3 2 3 1 2 1 1 0

with boldfaced 1’s at one third and two thirds highlighting the underlying
partial self-similarity structure. The subsequence lying between the two
boldfaced 1′s appears also at the beginning of [8]. One notices that all
sequences start and end with zero and that all existing central elements are
equal to 2.

The polynomials defined by these palindromic sequences are described
by the following result:

Theorem 1.4 The polynomials

ψe = (−1)e
3·2e
∑

n=0

t(3 · 2e + n)zn

have the factorisations

ψe = z(1 + z2
e

)(1 + z + z2)e
e−2
∏

n=0

(1− z2
n

+ z2
n+1

)e−1−n (1)

= z(1 + z2
e

)
e−1
∏

n=0

(1 + z2
n

+ z2
n+1

) . (2)

Remark 1.5 Theorem 1.4 implies the identity

∞
∑

n=0

t(n)zn = z − z2 +

∞
∑

e=0

(−1)ez3·2
e+1(1 + z2

e

)

e−1
∏

n=0

(1 + z2
n

+ z2
n+1

) .
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Assertion (ii) of Theorem 1.2 yields lime→∞ ψe =
∑

∞

n=0 s(n)t
n. The

factorisation (2) of Theorem 1.4 gives a new proof of the following result
due to Carlitz (see [6]):

Corollary 1.6 We have
∑

∞

n=0 s(n)z
n = z

∏

∞

n=0(1 + z2
n

+ z2
n+1

).

(A direct proof of Corollary 1.6 is straightforward: The series U(z) de-
fined by the right-hand-side starts as z+ . . . = s(0)+s(1)z+ . . . and its even,
respectively odd, subseries are given by U(z2), respectively

(

1
z
+ z
)

U(z2).
Its coefficients satisfy thus the same recursion relations as the elements of
the Stern sequence.)

The Carlitz factorisation of Corollary 1.6 implies that
∑

∞

n=0 s(n)z
n has

no non-zero roots in the open unit disc. This is not true for the ordinary
generating series

∑

∞

n=0 t(n)z
n of the twisted Stern sequence which has (in-

finitely?) many non-zero roots in the open unit disc.
Given a natural integer k ≥ 2 and a natural integer i, we consider the

endomorphism ρ(i) of the vector-space (or module) of formal power series
defined by

ρ(i)

(

∞
∑

n=0

a(n)zn

)

=
∞
∑

n=0

a(i+ nk)zn .

The k−kernel of a formal power series A is the smallest vector space (or mod-
ule when working over a ring) V containing A such that ρ(0)V, . . . , ρ(k −
1)V ⊂ V. A formal power series is k−regular if its k−kernel is finitely gen-
erated. Easy examples of k−regular series are polynomials and ordinary
generating series of periodic sequences. k−regular power series form a vec-
tor space (or module) which is preserved by many natural operations such
as derivation, product, Hadamard product, shuffle product, ..., see [2] for
details. The set of k−regular sequences with coefficients contained in a fi-
nite set (eg. in a finite field) coincides with the set of so-called k−automatic
sequences, see Theorem 16.1.5 of [2].

A sequence a(0), a(1), . . . is called k−regular if its ordinary generating
series

∑

∞

n=0 a(n)z
n is a k−regular formal power series.

The following result is also a consequence of the Carlitz factorisation:

Theorem 1.7 The logarithmic derivative

H(z) =
d

dz
log

(

∞
∑

n=0

s(n+ 1)zn

)

=

∑

∞

n=1 ns(n+ 1)zn−1

∑

∞

n=0 s(n+ 1)zn

of
∑

∞

n=0 s(n + 1)zn is 2−regular. More precisely, H(z) is defined by the
functional equation

H(z) =
1 + 2z

1 + z + z2
+ 2zH(z2) .

4



Coefficients of H(z) appear as sequence A163659 in [9].
2−regularity of the logarithmic derivation H(z) is a special case of the

following result, perhaps already known to Schützenberger:

Theorem 1.8 Given d k−regular series A1(z), . . . , Ad(z) over some com-
mutative ring R, d linear forms L1(x1, . . . , xd), . . . , Ld(x1, . . . , xd) in d un-
knowns with coefficients in R[z] and d constants α1, . . . , αd ∈ R such that
αi = Ai(0) + Li(α1, . . . , αd) (mod z) for i = 1, . . . , d, the system of equa-
tions

U1(z) = A1(z) + L1(U1(z
k), . . . , Ud(z

k)),
...

Ud(z) = An(z) + Ln(U1(z
k), . . . , Ud(z

k))

determines a unique set of d k−regular sequences U1(z), . . . , Ud(z) with con-
stant coefficients αi = Ui(0) for i = 1, . . . , d.

Remark 1.9 We have αi = Ai(0) if the linear form Li has all its coeffi-
cients in zR[z].

The series

A(z) =

∞
∏

n=0

1

1− z2n

satisfying A(z) = (
∑

∞

n=0 z
n)A(z2) is not 2−regular (see Remark 1.11 be-

low). This shows that Theorem 1.8 can not be extended to equations with
linear forms having k−regular series as coefficients.

Theorem 1.7 can be generalised as follows:

Theorem 1.10 Let P (z) be a polynomial with constant coefficient 1. Then
the series

A =

∞
∏

n=0

P (zk
n

)

is k−regular.
Moreover, if all roots of P (z) are complex roots of 1 having finite order,

then the logarithmic derivative B = A′/A of A is also k−regular.

Remark 1.11 Given a k−regular series A(z) with constant coefficient 1,
the product

∏

∞

n=0A(z
kn) is generally not k−regular. Indeed, starting with

the 2−regular series A(z) = 1 + z + z2 + . . . = 1
1−z

, the coefficient b(n) in
the series

B =

∞
∑

n=0

b(n)zn =

∞
∏

n=0

1

1− z2n

counts the number of partitions of n into powers of 2, see sequence A123 in

[9], and log(b(2n)) is asymptotically equal to 1
2 log 2

(

log n
log n

)2
(see equation

1.3 in [4]) which is incompatible with k−regularity of B by Theorem 16.3.1
in [2].

5



Remark 1.12 Another famous sequence illustrating Theorem 1.10 is the
sequence

∞
∏

n=0

(1− z2
n

) =
∞
∑

n=0

(−1)tm(n)zn

related to the Thue-Morse sequence n 7−→ tm(n) defined by digit-sums mod-
ulo 2 for binary expansions of natural integers.

Another link between the two sequences s and t is given by determinants
of 2× 2−matrices. For n ≥ 1 we consider the matrix

M(n) =

(

s(n) s(n+ 1)
t(n) t(n+ 1)

)

with first row two consecutive terms of s and and second row the two corre-
sponding consecutive terms of t. The first matrices are 2 × 2−submatrices
defined by two consecutive rows of

1 1 2 1 3 2 3 1 4 3 5 2 5 3 5 1 5 4 7
1 −1 0 1 1 0 −1 −1 −2 −1 −1 0 1 1 2 1 3 2 3

Injectivity of the map n 7−→ s(n + 1)/s(n) shows that the matrices
M(n) are all different. Their determinants are characterised by the following
result.

Theorem 1.13 We have |det(M(n))| = 2 for all n ≥ 1. More precisely,

det(M(n)) = −2(−1)k if 2k ≤ n < 2k+1 .

In particular, all matrices M(n) are invertible for n ≥ 1.

Since the recursive definitions of the integral sequences s and t differ
only by signs (and since they satisfy the same initial conditions) they have
the same reduction modulo 2 characterised by the following (easy) result,
already contained in [10]:

Proposition 1.14 The integers s(n) and t(n) are even if and only if n is
divisible by 3.

The determinants of the non-singular matrices M(n) are thus in some
sense as small as possible: Indeed, since the sequences s and t coincide
modulo 2, a matrix M(n) involves either a column consisting of even in-
tegers or all its four entries are odd integers and such matrices have even
determinants.

We end this paper with a last result, going back to Stern (see [10]) for
the first part of assertion (i):
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Theorem 1.15 (i) The integer s(n) divides s(n − 1) + s(n + 1) for every
n ≥ 1. More precisely, we have

s(n− 1) + s(n+ 1)

s(n)
= 1 + 2v2(n)

where the 2−valuation v2(n) is defined as the exponent of the highest power
of 2 dividing n.

The function

C(z) =

∞
∑

n=1

s(n− 1) + s(n+ 1)

s(n)
zn

satisfies C(0) = 0 and

C(z) = z
1 + 2z

1− z2
+ C(z2)

and is 2−regular.
(ii) The integers t(n) and t(n− 1)+ t(n+1) are both zero if n = 3 · 2k.

They are both non-zero otherwise and t(n) divides t(n− 1)+ t(n+1). More
precisely, we have

t(n− 1) + t(n+ 1)

t(n)
= 1 + 2v2(n)

if n 6∈ {2N, 3 · 2N}, (t(0) + t(2))/t(1) = −1 and

t(2e − 1) + t(2e + 1)

t(2e)
= 1 + 2(e− 2)

for all e such that e ≥ 1.

The rest of this paper is organized as follows: The next section contains
a proof of Proposition 1.1 and a few complements.

Section 3 is devoted to the (easy) proofs of Theorem 1.2 and to a few
more formulae and conjectures involving the Stern sequence and its twist.

Section 4 contains the proofs of Theorems 1.4, 1.7, 1.8, 1.10 and Corollary
1.6.

Section 5 contains the easy proof of Theorem 1.13 and a few related
results.

Section 6 consists of the short proof of Theorem 1.15.

2 Proof of Proposition 1.1 and a few comments

We give first a bijective proof of Proposition 1.1. We describe then briefly
a weighted version of the Stern sequence counting subsequences of the form

7



1(01)∗ with weights encoding their length. We give also a generalisation of
Proposition 1.1 therefore providing a (sketch of a) second proof for Propo-
sition 1.1.

Proof of Proposition 1.1 We call a subsequence of a binary expansion
B(n) admissible if it is of the form 1(01)∗. For example, B(11) = 1011 =
ǫ3ǫ2ǫ1ǫ0 has five admissible subsequences given by the set

{ǫ3, ǫ1, ǫ0, ǫ3ǫ2ǫ1, ǫ3ǫ2ǫ0} .

Since the number b(n) of such subsequences satisfies clearly b(2n) = b(n),
the equality s(2n) = s(n) shows that we can restrict our attention to n odd.
We consider the two cases n = 4n+ 1 and n = 4n− 1.

If w is an admissible subsequence of B(4n + 1), then the digit ǫ1 = 0
of the binary expansion of 4n + 1 is either contained in w or not. In the
first case, admissibility of w shows that w contains also the last digit ǫ0
of B(4n + 1) and removal of ǫ1ǫ0 = 01 from w yields a bijection between
such admissible subsequences and admissible subsequences of B(2n). In
the second case where ǫ1 is not involved in w, we get a bijection between
such admissible subsequences and admissible subsequences of the binary
expansion B(2n + 1) = . . . ǫ3ǫ2ǫ0 of the integer 2n + 1. This shows the
identity b(4n+ 1) = b(2n) + b(2n + 1).

We consider finally the case of an admissible subsequence w of B(4n−1).
If ǫ0 is not contained in w, then w can be associated with an admissible sub-
sequence of B(4n−2) or equivalenty of B(2n−1). Denoting by l the least in-
teger such that B(4n−1) = α01l, we consider now an admissible subsequence
w of B(4n− 1) which contains ǫ0. If the admissible subsequence w is not of
the form βǫlǫ0, we transform it into the admissible subsequence βǫ̃l = β1 of
B(4n) = αǫ̃l ǫ̃l−1 . . . ǫ̃0 = α10l or equivalently of B(2n) = α10l−1 (obtained
from B(4n) by erasing the last digit 0 never involved in an admissible sub-
sequence). If w = βǫlǫ0 we transform it into the admissible subsequence β
of B(4n) or equivalently of B(2n). This shows b(4n− 1) = b(2n− 1)+ b(2n)
and ends the proof. 2

2.1 A weighted variation of the Stern sequence

We denote by S(n) ∈ N[w] the weighted number of subsequences of the
form 1(01)∗ in the binary expansion B(n) of n, giving the weigth wk to a
subsequence of the form 1(01)k. Similarly, we introduce Se(n) ∈ N[w] as the
weighted number of subsequences of the form (10)∗ in the binary expansion
B(n) of n, with weigth wk for a subsequence of the form (10)k.

Proposition 2.1 (i) Evaluating the polynomial S(n) ∈ N[w] at w = 1 yields
the Stern sequence.

8



(ii) The sequences S(n) and Se(n) are uniquely determined by the initial
conditions S(0) = 0, S(1) = Se(0) = Se(1) = 1 and the recursive formulae

S(2n) = S(n)

S(2n + 1) = S(n) + Se(n)

Se(2n) = wS(n) + Se(n)

Se(2n + 1) = Se(n) .

(iii) The sequence S(n) is also uniquely determined by the initial con-
ditions S(0) = 0, S(1) = 1 and by the recursive formulae

S(2n) = S(n)

S(4n+ 1) = wS(2n) + S(2n + 1)

S(4n− 1) = S(2n− 1) + S(2m+ 1) + (w − 1)S(2m)

where n = 2a(2m+ 1).

Remark 2.2 Klavzar, Milutinovic and Petri have studied a different family
of polynomials closely related to the Stern sequence by considering B0 =
0, B1 = 1, B2n = tB(n) and B2n+1 = Bn +Bn+1, see [7] for details.

Proof of Proposition 2.1 Assertion (i) is obvious.
In the sequel, we use the notation introduced above during the proof of

Proposition 1.1.
The initial values for S(n) and Se(n) in assertion (ii) are easy to check.

The identity S(2n) = S(n) is obvious since admissible subsequences of B(2n)
never involve the last digit ǫ0 = 0 in the binary expansion B(2n) of 2n.

Admissible subsequences of B(2n+1) not containing the last digit ǫ0 of
B(2n + 1) are in weight-preserving bijection with admissible subsequences
of B(2n) or of B(n). Removal of ǫ0 induces a weight-preserving bijection
between admissible subsequences of B(2n+ 1) involving the last digit ǫ0 of
B(2n + 1) and monomial contributions to Se(n). This proves S(2n + 1) =
S(n) + Se(n).

Monomial contributions to Se(2n) not involving the last digit ǫ0 of B(2n)
are in (weight-preserving) bijection with monomial contributions to Se(n).
Removing the last digit of monomial contributions to Se(2n) involving the
last digit ǫ0 of B(2n) yields admissible subsequences of B(n) with weight
reduced by 1. This shows Se(2n) = Se(n) + wSe(n).

The identity Se(2n + 1) = Se(n) is due to the fact that monomial con-
tributions to Se(2n+ 1) never involve the last digit ǫ0 = 1 of B(2n+ 1).

Assertion (iii) follows from the bijections used in the proof of Proposition
1.1. We leave the details to the reader. 2

9



2.2 Counting weighted subsequences and subfactors

A famous result by Schützenberger implies essentially an identification of
k−regular sequences with the set of rational formal power series in k non-
commuting variables. (One has to be a little careful with leading zeros. A
way of dealing with them is to consider only formal power series involving
no monomials starting with the variable x0 associated to the digit 0.)

Proposition 1.1 is then a particular case of the following well-known
result which we give without proof. (A proof of stronger statements can be
found in [3].)

Proposition 2.3 Let A be a rational formal power series in k non-commuting
variables. Then the shuffle product of A with 1

1−(x0+...+xk)
and the ordinary

non-commutative product 1
1−(x0+...+xk)

A 1
1−(x0+...+xk)

are both rational.

The shuffle-product counts subsequences encoded and weighted by A in
k−ary expansions of natural integers and the ordinary product in Proposi-
tion 2.3 counts subfactors (encoded by A) in k−ary expansions.

Proposition 1.1 corresponds to the case where

A = x1
1

1− x0x1
= x1 + x1x0x1 + x1x0x1x0x1 + x1x0x1x0x1 + . . .

respectively

A = x1
w

1− x0x1
= x1 + wx1x0x1 + w2x1x0x1x0x1 + . . .

in the weighted case with x0, x1 non-commuting variables and w a central
variable.

A famous example counting subsequences or subfactors (reduced to 1)
is given by the Thue-Morse sequence corresponding to A = x1.

Another famous example counting subfactors is given by the Rudin-
Shapiro sequence associated to A = x21.

3 Proof of Theorem 1.2 and more formulae

3.1 Proof of Theorem 1.2

Proof of assertion (i) For n = 0 we have

s(1 + 0) = s(1) + s(0) = 1 + 0 = 1, s(1 + 1) = s(0) + s(1) = 0 + 1 = 1

and

t(1 + 0) = s(1)− s(0) = 1− 0 = 1, t(1 + 1) = s(0)− s(1) = 0− 1 = −1 .

10



The proof is now by induction on e. If n is even we have

s(2e + n) = s(2e−1 +
n

2
) = s(2e−1 −

n

2
) + s(

n

2
) = s(2e − n) + s(n)

and

t(2e + n) = −t(2e−1 +
n

2
)

= −(−1)e−1
(

s(2e−1 −
n

2
)− s(

n

2
)
)

= (−1)e(s(2e − n)− s(n))

If n is odd, we have

s(2e + n) = s(2e−1 +
n− 1

2
) + s(2e−1 +

n+ 1

2
)

= s(2e−1 −
n− 1

2
) + s(

n− 1

2
) + s(2e−1 −

n+ 1

2
) + s(

n+ 1

2
)

= s(2e − n) + s(n)

and

t(2e + n)

= −t(2e−1 +
n− 1

2
)− t(2e−1 +

n+ 1

2
)

= (−1)e
(

s(2e−1 −
n− 1

2
)− s(

n− 1

2
) + s(2e−1 −

n+ 1

2
)− s(

n+ 1

2
)

)

= (−1)e (s(2e − n)− s(n))

Proof of assertion (ii) These formulae are easy to establish for e = 0.
For even n we have

t(3 · 2e + n) = −t(3 · 2e−1 +
n

2
) = −(−1)e−1s(

n

2
) = (−1)es(n)

and

t(6 · 2e − n) = −t(6 · 2e−1 −
n

2
) = −(−1)e−1s(

n

2
) = (−1)es(n)

and for odd n we get

t(3 · 2e + n) = −t(3 · 2e−1 +
n+ 1

2
)− t(3 · 2e−1 +

n− 1

2
)

= −(−1)e−1(s(
n+ 1

2
) + s(

n− 1

2
)) = (−1)es(n)

and

t(6 · 2e − n) = −t(6 · 2e−1 −
n+ 1

2
)− t(6 · 2e−1 −

n− 1

2
)

= −(−1)e−1(s(
n+ 1

2
) + s(

n− 1

2
)) = (−1)es(n) .

This completes the proof. 2
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3.2 A few other formulae

Proposition 3.1 (i) We have

s(2e+1 + n) = s(2e + n) + s(n)

for 0 ≤ n ≤ 2e, (see the remark by T. Tokita concerning the Stern-sequence
A2487 in [9]).

(ii) We have

t(2e+1 + n) + t(2e + n) = (−1)e+1s(n)

for 0 ≤ n ≤ 2e.

The formulae of Proposition 3.1 have the following conjectural generali-
sation, analogous to Conjecture 1.3:

Conjecture 3.2 (i) The series

A(z) =

∑

∞

n=0(s(2 + n)− s(1 + n))zn
∑

∞

n=0 s(n)z
n

= 1− 2z+2z2 − 4z4 +4z5 +2z6 + . . .

satisfies

∞
∑

n=0

(s(2e+1 + n)− s(2e + n))zn = A(z2
e

)

∞
∑

n=0

s(n)zn

for all e ∈ N.
Similarly, the series

B(z) = −

∑

∞

n=0(t(2 + n) + t(1 + n))zn
∑

∞

n=0 s(n)z
n

= 1−2z−2z2+4z3+6z6−6z7+ . . .

satisfies

(−1)e+1
∞
∑

n=0

(t(2e+1 + n) + t(2e + n))zn = B(z2
e

)
∞
∑

n=0

s(n)zn

for all e ∈ N.

Proof of Proposition 3.1 The formulae hold for n = 0 and a ∈ {0, 1}.
The induction step is an easy computation for odd a and obvious for even
a. 2

Proposition 3.3 (i) We have

s(n) = −s(n− 2e) + s(n− 2 · 2e) + 2s(n− 3 · 2e), 2e+2 ≤ n ≤ 2e+3 − 2e

for e ≥ 0.
(ii) We have

t(n) = t(n− 2e)− t(n− 2e+1)

for 2e+2 ≤ n ≤ 2e+3.

12



Proof The case e = 0 implies n ∈ {4, 5, 6, 7} in assertion (i) and we have

s(4) = 1 = −2 + 1 + 2 · 1 = −s(3) + s(2) + 2s(1)
s(5) = 3 = −1 + 2 + 2 · 1 = −s(4) + s(3) + 2s(2)
s(6) = 2 = −3 + 1 + 2 · 2 = −s(5) + s(4) + 2s(3)
s(7) = 3 = −2 + 3 + 2 · 1 = −s(6) + s(5) + 2s(4)

The induction step for e > 0 is easy if n is even and involves the usual
identity s(n) = s((n− 1)/2) + s((n+ 1)/2) if n is odd.

The proof of assertion (ii) is similar. 2

The following result gives a few partial sums associated to the Stern
sequence and its twist:

Proposition 3.4 We have

2e
∑

n=1

s(n) =
3e + 1

2
, e ≥ 0

2e
∑

n=1

(−1)ns(n) =
1− 3e−1

2
, e ≥ 1

2e
∑

n=1

t(n) =
(−1)e + 1

2
, e ≥ 0

2e
∑

n=1

(−1)nt(n) =
−3 + (−1)e

2
, e ≥ 0 .

Proof The first equality holds for e = 0 and

2e+1

∑

n=0

s(n) =

2e
∑

n=0

s(2n) +

2e
∑

n=1

s(2n− 1)

=

2e
∑

n=0

s(n) +

2e
∑

n=1

(s(n− 1) + s(n))

= −s(2e) + 3

2e
∑

n=0

s(n) = −1 + 3
3e + 1

2
=

3e+1 + 1

2

by induction.
For the next identity one finds similarly

2e+1

∑

n=1

(−1)ns(n) = 1−

2e
∑

n=1

s(n) = 1−
3e + 1

2
=

1− 3e

2
.

The computations for the partial sums involving t(n) and (−1)nt(n) are
analogous. 2

We end this section with a list of a few more identities.
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Proposition 3.5 We have

s(3 · 2e + n) = s(3 · 2e − n) (3)

for all e, n such that 0 ≤ e ≤ 2n,

s(3 · 2e + n) = s(3 · 2e−1 + n) + 2s(n) (4)

for all e, n such that 0 ≤ n ≤ 2e−1,

t(2e + n) = t(2e + n− 2e−2)− t(2e + n− 2e−1) (5)

for all e, n such that e ≥ 2 and 1 ≤ n ≤ 2e,

s(2e + n) = (−1)et(2e + n) + 2s(n) (6)

for all e, n such that 0 ≤ n ≤ 2e+1,

s(2e + n) = (−1)et(2e − n)− 3s(n) (7)

for all e, n such that 0 ≤ n ≤ 2e−1,

s(2e − n) = (−1)et(2e − n) + 2s(n) (8)

for all e, n such that 0 ≤ n ≤ 2e−1,

s(2e − n) = (−1)et(2e + n) + s(n) (9)

for all e, n such that 0 ≤ n ≤ 2e.

Proofs are easy and left to the reader.

4 Proofs related to factorisations

Proof of Theorem 1.4 We set ψe = z(1+ z2
e

)(1+ z+ z2)
∏e−2

n=0(1− z2
n

+

z2
n+1

)e−1−n. Iterating the trivial identity

(1 + zn + z2n)(1− zn + z2n) = (1 + z2n + z4n)

we get the equivalent expression

ψe = z(1 + z2
e

)
e−1
∏

n=0

(1 + z2
n

+ z2
n+1

) .

The proof of the identity ψe = (−1)e
∑3·2e

n=0 t(3 · 2e + n)zn is by induction
on e. It holds for e = 0. The induction step follows from the recursive
definition of the sequence t(0), t(1), . . . and from the equality ψe+1(z) =
(

1
z
+ 1 + z

)

ψe(z
2). 2
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Proof of Theorem 1.7: Using the Carlitz factorisation

S̃(z) =

∞
∏

n=0

(

1 + z2
n

+ z2
n+1
)

of S̃(z) =
∑

∞

n=0 s(n+ 1)zn we have

H(z) =
d

dz
log(S̃(z)) =

∞
∑

n=0

2nz2
n
−1 + 2n+1z2

n+1
−1

1 + z2n + z2n+1
.

The summand of index n = 0 yields 1+2z
1+z+z2

and the sum
∑

∞

n=1 · · · can be

rewritten as 2zH(z2).
The proof of 2−regularity of H(z) is an easy consequence of the func-

tional equation for H, see Theorem 1.8 below.
Uniqueness of H defined by the functional equation H(z) = 1+2z

1+z+z2
+

2zH(z2) follows from the fact that the map

A(z) 7−→
1 + 2z

1 + z + z2
+ 2zA(z2)

has a unique attracting fixpoint for formal power series (with respect to the
obvious topology given by coefficent-wise convergency). 2

Proof of Theorem 1.8 We assume first that no linear form L1, . . . , Ld

involves coefficients of degree ≥ k. For i = 0, . . . , k − 1, we denote as before
by ρ(i) the linear map

ρ(i)

(

∞
∑

n=0

a(n)zn

)

=

∞
∑

n=0

a(i+ nk)zn .

Given solutions U1, . . . , Ud, we consider a finitely generated vector space or
module V containing U1, . . . , Ud and the k−kernel of A1, . . . , Ad. We have
then

ρ(i)Uj = ρ(i)Aj + ([xi]Lj)(U1, . . . , Ud)

where [xi]Lj ∈ R[x1, . . . , xd] is the linear form obtained from Lj by consid-
ering the coefficients of zj . The power series ρ(i)Uj ∈ V is thus a linear
combination of U1, . . . , U1 and of the k−kernel of Aj. The set V contains
thus the k−kernel of Uj and U1, . . . , Ud are all k−regular.

If there are linear forms among L1, . . . , Ld which are of degree ≥ k,
we introduce the k−regular series Ad+1 = zA1, . . . , A2d = zAd, the series
Ud+1 = zU1, . . . , U2d = zUd, the linear forms Ld+1 = zL1, . . . , L2d = zLd ∈
zR[z][x1, . . . , xd] and set αd+1 = . . . = α2d = 0. We have then the equations

Ui(z) = Ai(z) + zLi(U1(z
k), . . . , Un(z

k))

and the identities αi = Ui(0) for i = 1, . . . , 2d. Modifying a linear form Lj

of degree ≥ k by substituting all occurences of zk+iUj(z
k) with ziUd+j(z

k)
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we construct an equivalent system with strictly smaller maximal degree for
the linear forms L1, . . . , L2d. Iteration of this construction leads eventually
to a system containing only linear forms of degree strictly smaller than k.

Existence and unicity of the solution follow from unicity of the attracting
fixpoint of the dynamical system defined by the map

Ui(z) 7−→ Ai(z) + Li(U1(z
k), . . . , Ud(z

k)), i = 1, . . . , d

starting from the point (α1, . . . , αd). 2

Proof of Theorem 1.10 The first part follows from Theorem 1.8 ap-
plied to the identity A(z) = P (z)A(zk). We present here however a second,
independent proof.

Working over the field of complex numbers and using the fact that prod-
ucts of two k−regular series are k−regular (cf. Theorem 16.4.1 in [2]), it is
enough to prove the result for polynomials of degree 1. We can thus assume
that P (z) = 1+λz. The coefficient of zn in A(z) =

∏

∞

m=0(1+λz
km) is then

given by zero if the k−ary expansion of n involves digits greater than 1 and
it is given by λα otherwise, where α equals the number of ones in the k−ary
expansion of n. This implies k−regularity of A(z).

We have

B(z) =
d

dz
log(A(z)) =

∑

n=0

P ′(zk
n

)knzk
n
−1

P (zk
n

)
.

The summand of index n = 0 yields P ′(z)
P (z) and the remaining summation

∑

∞

n=1 · · · can be rewritten as kzk−1B(zk). This shows that B(z) satisfies
the functional equation

B(z) =
P ′(z)

P (z)
+ kzk−1B(zk) .

Using Theorem 16.4.3 of [2] we see that the rational fraction P ′(z)
P (z) is k−regular

if and only if all zeroes of P (z) are roots of unity (ie. if P (z) divides (zN−1)N

for some integer N). Theorem 1.8 implies then k−regularity of B(z). 2

5 Proof of Theorem 1.13 and other results involv-

ing matrices

Proof of Theorem 1.13 The trivial identities

det(M(2n)) = det

(

s(2n) s(2n+ 1)
t(2n) t(2n+ 1)

)

= det

(

s(n) s(n) + s(n+ 1)
−t(n) −t(n)− t(n+ 1)

)
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= − det

(

s(n) s(n+ 1)
t(n) t(n+ 1)

)

= − det(M(n))

and

det(M(2n − 1)) = det

(

s(2n− 1) s(2n)
t(2n− 1) t(2n)

)

= det

(

s(n− 1) + s(n) s(n)
−t(n− 1)− t(n) −t(n)

)

= − det

(

s(n− 1) s(n)
t(n− 1) t(n)

)

= − det(M(n − 1))

imply the result. 2

Proof of Proposition 1.14 The reduction modulo 2 of the Stern se-
quence s(0), s(1), . . . is the 3−periodic sequence 0, 1, 1, 0, 1, 1, . . .. Indeed,
this holds for s0 = 0, s1 = s2 = 1 and the recursive formulae

s(6n) = s(3n)

s(6n+ 1) = s(3n) + s(3n+ 1)

s(6n+ 2) = s(3n+ 1)

s(6n+ 3) = s(3n+ 1) + s(3n+ 2)

s(6n+ 4) = s(3n+ 2)

s(6n+ 5) = s(3n+ 2) + s(3n+ 3)

imply the 3−periodicity of s(n) (mod 2) by induction. The reduction mod-
ulo 2 of twisted Stern sequence t(0), t(1), . . . coincides with the reduction
modulo 2 of the Stern sequence. 2

5.1 Other results involving matrices

The proofs of the following results are easy and omitted.

Proposition 5.1 (i) The matrices

(

s(n) s(n+ 1)
s(2e + n) s(2e + n+ 1)

)

have determinant −1 for n such that 0 ≤ n < 2e and determinant 1 for n
such that 2e ≤ n < 2e+1.

(ii) The matrices

(

s(n) s(n+ 1)
t(2e + n) t(2e + n+ 1)

)
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have determinant (−1)e+1 for n such that 0 ≤ n < 2e and determinant (−1)e

for n such that 2e ≤ n < 2e+2.
(iii) The matrices

(

t(n) t(n+ 1)
s(2e + n) s(2e + n+ 1)

)

have determinant (−1)e+1 for n such that 2e+1 < n < 5 · 2e.
(iv) The matrices

(

t(n) t(n+ 1)
t(2e + n) t(2e + n+ 1)

)

have determinant 1 for n such that 2e−2 ≤ n < 2e or 7 · 2e ≤ n < 2e+3 and
determinant −1 for n such that 2e ≤ n < 7 · 2e.

6 Proof for Theorem 1.15

For odd n we have

s(n) = s((n− 1)/2) + s((n+ 1)/2) = s(n− 1) + s(n+ 1) .

We have thus s(n−1)+s(n+1)
s(n) = 1 = 1 + 2v2(n) since v2(n) = 0 if n is odd.

For n even we have by induction

s(n− 1) + s(n+ 1)

s(n)

=
s((n− 2)/2) + s(n/2) + s(n/2) + s((n+ 2)/2)

s(n/2)

=
s(n/2− 1) + s(n/2 + 1)

s(n/2)
+ 2

= 1 + 2v2(n/2) + 2 = 1 + 2v2(n) .

This ends the proof of assertion (i).
For the twisted Stern sequence we use the analogous identities

t(n− 1) + t(n+ 1) = t(n), n odd,

t(n− 1) + t(n+ 1) = −(t(n/2− 1) + t(n/2 + 1) + 2t(n)), n even, n ≥ 4.

This implies assertion (ii) by checking the initial cases and the case of n ∈
3 · 2N. 2
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