
HAL Id: hal-00466411
https://hal.science/hal-00466411v1

Preprint submitted on 23 Mar 2010 (v1), last revised 6 Aug 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast solution of NP-hard coloring problems on large
random graphs

Andrea Bedini, Jesper Jacobsen

To cite this version:
Andrea Bedini, Jesper Jacobsen. Fast solution of NP-hard coloring problems on large random graphs.
2010. �hal-00466411v1�

https://hal.science/hal-00466411v1
https://hal.archives-ouvertes.fr

Fast solution of NP-hard coloring problems on large random graphs

Andrea Bedini1 and Jesper Lykke Jacobsen2
1Dipartimento di Fisica dell’Università degli Studi di Milano and INFN,

Sezione di Milano, via Celoria 16, I-20133 Milano, Italy and
2LPTENS, 24 rue Lhomond, F-75231 Paris, France

(Dated: March 23, 2010)

Combining tree decomposition and transfer matrix techniques provides a highly efficient and very
general algorithm for computing exact partition functions of statistical models defined on large
graphs. We illustrate this by considering the hard problem of computing the exact number of vertex
colorings for randomly generated planar graphs with up to N = 100 vertices.

PACS numbers: 02.70.-c, 05.50+q, 89.70.Eg

Perhaps the most important outstanding question in
theoretical computer science is whether the class P of
decision problems that can be solved in polynomial time
coincides with the class NP of problems for which a pro-
posed solution can be verified in polynomial time. NP-
complete problems are those to which any problem in
NP can be reduced in polynomial time. At present,
no polynomial-time algorithm has been found for any
of the thousands of known NP-complete problems and
it is hence widely believed that P 6= NP. Likewise, one
can define a counting analogue of NP, denoted by #P,
as the class of enumeration problems in which the struc-
tures being counted are recognizable in polynomial time.
Clearly, #P problems are as hard as problems in NP.

In parallel, in theoretical physics, there is a steady in-
terest for problems related to graph theory and network
design. In particular, the approach of statistical physics
is to enclose the properties of a physical system in a par-
tition function, which is a weighted sum over the states.
Many interesting problems can therefore be restated as
counting problems on graphs. Not surprisingly, these
problems turn out to be themselves interesting problems
in mathematics and theoretical computer science (for a
review see, for example, [1]).

The Potts model is a central instance of this connec-
tion between statistical mechanics and enumerative com-
binatorics. Its partition function counts, for the zero-
temperature antiferromagnet, the number of vertex col-

orings, which are assignations of any of Q different colors
to each vertex, so that neighboring vertices are colored
differently. This counting problem is in the #P class.

Finding efficient algorithms for solving those problems
has therefore a two-fold interest: to study the models
in their own right, and to explore the effective compu-
tational hardness of NP problems. Although it is very
unlikely to find an efficient (with polynomial time re-
quirements) algorithm, lowering the coefficient of the ex-
ponent can still make a huge difference.

Algorithmic progress has been made by several, usually
widely separated, communities.

On one hand, statistical physicists have shown that
the relevant partition functions can be constructed in

analogy with the path integral formulation of quantum
mechanics. To this end, the configuration of a partially
elaborated graph are encoded as suitable quantum states,
and the constant-time surface is swept over the graph by
means of a time evolution operator known as the trans-
fer matrix. Although rarely stated, this approach is valid
not only for regular lattices but also for arbitrary graphs.
On the other hand, graph theorists have used that

graphs can be divided into “weakly interacting” sub-
graphs through a so-called tree decomposition [2], and
solutions obtained for the subgraphs can be recursively
combined into a complete solution.
In this Letter we show how the tree decomposition and

transfer matrix methods can be combined in a very nat-
ural way. The main idea is that the tree decomposition
is compatible with a recursive generalization of the time
evolution concept. Borrowing ideas from string theory,
the combination of partial solutions is obtained by the fu-
sion of suitable quantum spaces. The resulting algorithm
works on any graph, and can readily be adapted to many
other problems of statistical physics, by suitable modifi-
cations of the state spaces and the fusion procedure.
In particular, we will apply this technique to the

problem of computing the chromatic polynomial on pla-
nar graphs, obtaining exact solutions, for graphs with
N ≃ 100 vertices, in only a few seconds.
The Potts model and vertex coloring. We first recall

the relation between the vertex coloring problem and the
Potts model. Consider a graph G = (V,E) with vertices
V and edges E, and let σi = 1, 2, . . . , Q be the color of
vertex i ∈ V . Then

ZG =
∑

σ

∏

(ij)∈E

eKδ(σi,σj) (1)

is the partition function of the Potts model on G. The
Kronecker delta δ(σi, σj) = 1 if σi = σj , and 0 otherwise.
Inserting the obvious identity eKδ(σi,σj) = 1+ vδ(σi, σj),
with v = eK − 1, and expanding out the product we
obtain the Fortuin-Kasteleyn expansion [3]

ZG(Q, v) =
∑

A⊆E

v|A|Qk(A) , (2)

2

where k(A) is the number of connected components in the
subgraph G′ = (V,A). Obviously, in the antiferromag-
netic limit K → −∞ (or equivalently v → −1) the only
surviving configurations are proper Q-colorings of the
graph G. Indeed, the special case χG(Q) = ZG(Q,−1) is
a polynomial in Q, known as the chromatic polynomial,
and equals the number of vertex colorings.
Transfer matrix. We first describe how to compute

the partition function ZG(Q, v) in (2) by a traditional
transfer matrix method. In short, the combined action
of linear operators builds a superposition of all configura-
tions appearing in the partition funciton with their cor-
rect Boltzmann weight entering as coefficients. To better
illustrate this procedure, consider the following example
graph G

1

2

3

4

5

6

7

8

9

(3)

We first have to define the order {vt} in which vertices
will be processed. This order is the basis for the construc-
tion of a “time slicing” of the graph. With each time step

is associated a bag (a vertex subset) of active vertices. A
vertex becomes active as soon as one of its neighbors is
processed and it stays active until it is processed itself.
Taking the vertices in lexicographic order we obtain the
following decomposition:

1 2 3 2 3 4 3 4 5 6 4 5 6 8

5 6 7 8 96 7 8 97 8 98 99

(4)

where we wrote in bold face the vertex being processed
at each time step.
Each bag has its own set of basis states consisting of

the partitions of the currently active vertices. For in-
stance, in the first time step, the basis states are the five
partitions of the three-element set {1, 2, 3}:
∣

∣

1 2 3

〉

,
∣

∣

1 2 3

〉

,
∣

∣

1 2 3

〉

,
∣

∣

1 2 3

〉

,
∣

∣

1 2 3

〉

These partitions describe how the active vertices are in-
terconnected through A∩Et, where Et ⊆ E is the subset
of edges having been processed at time t. A state is a
linear superposition of basis states.
Processing a vertex consists in processing edges con-

necting it to unprocessed vertices and then deleting it.
Since each edge e ∈ E may or may not be present in
A we process an edge (i, j) by acting on the state with
an operator of the form 1 + vJij where 1 is the identity
operator and Jij a join operator. A join operator acts

on a basis state by amalgamating the blocks containing
vertices i and j.

Jij

∣

∣

i j

〉

=
∣

∣

i j

〉

, J
2
ij = Jij (5)

Vertex deletion is defined in terms of a deletion operator

Di that removes i from the partiton and applies a factor
Q (resp. 1) if i was (resp. was not) a singleton.

Di

∣

∣

i j
· · ·
〉

= Q
∣

∣

j
· · ·
〉

(6a)

Di

∣

∣

i j
· · ·
〉

=
∣

∣

j
· · ·
〉

(6b)

For example, in (4), processing the first bag means
computing the following composition D1 (1 + vJ12) (1 +

vJ13)
∣

∣

1 2 3

〉

which gives (Q+2v)
∣

∣

2 3

〉

+ v2
∣

∣

2 3

〉

,

concluding the first time step.
When a new active vertex is encountered it is inserted,

as a singleton, in each partition composing the current
state. After processing the last bag, the complete par-
tition function (2) is obtained as the coefficient of the
empty partition resulting from the deletion of the last
active vertex.
At each step, the time and memory requirements are

determined by the bag size n which is the number of
vertices simultaneously active. If the graph is planar,
the number of partitions to be considered is at most the
Catalan number Cn, whose generating function is C(z) =
∑∞

n=0 Cnz
n = (1−

√
1− 4z)/(2z). If the graph is not pla-

nar, the number of partitions is at most the Bell num-
ber Bn, with generating function B(z) =

∑∞
n=0 Bn

zn

n! =

exp(ez − 1). We have Cn = 4nn−3/2π−1/2[1 + O(1/n)],
whereas Bn grows super-exponentially.
Tree decomposition. It turns out that the decomposi-

tion (4) of G is a special case of a more general construc-
tion. By definition, a tree decomposition [2] of a graph
G = (V,E) is a collection of bags, organized as a tree
(a connected graph with no cycles), and satisfying the
following requirements: i) For each i ∈ V , there exists a
bag containing i; ii) For each (ij) ∈ E, there exists a bag
containing both i and j; iii) For any i ∈ V , the set of
bags containing i is connected in the tree. The previous
decomposition (4) is just a special case of a tree decom-
position (a path decomposition). As an example of the
general construction, applied to (3), consider

1 2 3 2 3 4 3 4 5

3 5 6 5 6 7

4 5 8 5 8 9

(7)

where the arrows form the unique path that connects
each bag to the central one (the root of the tree).
The transfer matrix approach can be adapted naturally

to this new general setting: Properties i)–ii) guarantee
that each edge and vertex are processed within a definite

3

bag. Property iii) implies that each vertex has a definite
life time in the recursion, its insertion and deletion being
separated by the processing of all edges incident on it.
In this new version the algorithm starts from the root

of the tree, which can be chosen arbitrarily, and runs
through the tree recursively. Going up from one daughter
bag D to its parent P implies deleting vertices D \ P ,
inserting vertices P \ D and finally processing edges in
P . A tree decomposition does not specify when an edge
e = (ij) must be processed. A simple recipe would be to
process e as soon as one encounters a bag containing both
i and j. However we note that this freedom of choice can
be exploited to optimize the algorithm (see below).
The advantage of working with tree instead of path

decompositions relies on the fact that in the former case
a decomposition with smaller bags can be obtained (the
latter being just a special case). Therefore, the number
of states one has to keep track of is exponentially smaller,
and the gain is significant.
Fusion. We now discuss the case when a parent bag

P has several daughters Dℓ with ℓ = 1, 2, . . . , d. In this
case, vertex deletions and insertions are followed by a
special fusion procedure. Suppose first d = 2, and let
P1 be a partition of D1 ∩ P with weight w1, and P2 a
partition of D2 ∩ P with weight w2. We can define the
set E1 by writing P1 =

(
∏

e∈E1
Je

)

S1, where S1 is the
all-singleton partition of D1 ∩ P . Since JeJe′ = Je′Je the
order in the above product is irrelevant. Similarly define
E2 from P2. The fused state is therefore

P1 ⊗ P2 =

(

∏

e∈E1∪E2

Je

)

S12 ,

and it occurs with weight w1w2, where S12 is the all-
singleton partition of (D1∪D2)∩P . For d > 2 daughters,
the complete fusion can be accomplished by fusing D1

with D2, then fusing the result with D3, and so on.
Let us illustrate the fusion procedure for G with the

tree decomposition (7). After processing the two left-
most bags and deleting vertex 2, the propagating state is

ω1

∣

∣

3 4

〉

+ ω2

∣

∣

3 4

〉

= (ω1 + ω2J34)
∣

∣

3 4

〉

, (8)

where ω1 = Q2+3v(Q+v) and ω2 = Q2v+3Qv2+4v3+
v4. By symmetry, the same result is obtained for the two
top right bags (replacing 4 by 5) and for the two bottom
right bags (replacing 3 by 5). The fused state arriving in
the central bag is then

(ω1 + ω2J34)(ω1 + ω2J35)(ω1 + ω2J45)
∣

∣

3 4 5

〉

= ω3
1

∣

∣

3 4 5

〉

+ (3ω1ω
2
2 + ω3

2)
∣

∣

3 4 5

〉

+ ω2
1ω2

(∣

∣

3 4 5

〉

+
∣

∣

3 4 5

〉

+
∣

∣

3 4 5

〉)

, (9)

from which the result ZG(Q, v) follows upon deleting ver-
tices 3,4,5.

Pruning. Problem specific features can be exploited
to reduce further the number of basis states to be con-
sidered. As an example of this, note that in the coloring
case (v = −1) the operator Oij = 1+vJij associated with
an edge (ij) is a projector, O2

ij = Oij , and it annihilates
the subspace of partitions where i and j are connected. It
follows that one can discard basis states in which two ver-
tices are connected, as soon as one discovers that an edge
between them is going to be processed in the following.
Especially before fusions this simple trick reduces sub-
stantially the number of basis states and thus leads to a
big speed up.

Performance. For a planar graph, the state of a bag
of size n is spanned by Cn basis states. (For a non-planar
graph, replace Cn by Bn.) The memory needed by the
algorithm is therefore proportional to Cnmax

, where nmax

is the size of the largest bag. The time needed to process
one edge in a bag of size n is proportional to Cn.

However, most of the time is spent fusing states. For a
parent P with d daughters Dℓ, the number of basis state
pairs to be fused is

d
∑

ℓ=1

C|Dℓ−1∩P |C|Dℓ∩P | , (10)

where we have set Dk = ∪k
ℓ=1Dℓ. Each of these elemen-

tary fusions can be done in time linear in the number of
participating vertices. Note that we can choose the order
of successive fusions so as to minimize the quantity (10).

It is therefore essential for the algorithm that one
knows how to obtain a good tree decomposition. The
minimum of nmax − 1 over all tree decompositions is
known as the tree width k, but obtaining this is an-
other NP-hard problem. However, the simple algorithm
GreedyFillIn [4] gives an upper bound k0 on k and a
tree decomposition of width k0 in time linear in the num-
ber of vertices N . For uniformly generated planar graphs
we find that for N = 40—a value enabling comparison
with algorithms that determine k exactly—that k0 = k
nearly always (k0 = k + 1 with probability ≃ 10−3).
When k0 is small enough that all the partitions can fit
into the computer’s memory, the algorithm has proven to
be very fast with execution time in the order of seconds.

We choose to test our algorithm against the one pre-
sented by Haggard et al. in [5]. We first generated a uni-
form sample of 100 planar graphs for each size N = |V |
between 20 and 100 using Fusy’s algorithm [6]. We then
ran four different algorithms over this sample: the al-
gorithm of [5], our first path-based transfer matrix al-
gorithm, the new tree-based version algorithm and a
tree-based version using the above pruning optimization.
Path decompositions were obtained with a variant of the
GreedyFillIn algorithm in which the resulting tree de-
composition was forced not to branch. Average running
times are presented in Fig. 1.

4

FIG. 1: Average running time in seconds on a random planar
graph of fixed size. Each point is averaged over 100 graphs.

Technical aspects. For completeness we give a few im-
plementational details. Partitions relevant to the prop-
agating state are kept in a hash table for fast (amor-
tized constant) time access. The corresponding weights
are polynomials in Q whose coefficients rapidly exceed
the machine integer size M = 232 when running on big
graphs. To solve this issue without requiring additional
memory we used modular arithmetics: the algorithm
was run many times with coefficients computed modulo
primes p < M , and the original coefficients were recon-
structed by the Chinese remainder theorem.

Results. As a simple application of our algorithm
we obtained the distribution of the chromatic roots
{Q |χG(Q) = 0} for large graphs in the complex plane
(Fig. 2) and on the real axis (Fig. 3). This problem is
interesting both in statistical mechanics and in graph the-
ory [7]. As known from Lee-Yang theory, the roots signal
phase transitions.

The absense of roots on the negative real axis, and the
intervals (0, 1) and (1, 32/27] follow from a theorem [8].
It has been observed [7] that for regular planar graphs the

Beraha numbers Bk =
(

2 cos(π/k)
)2
, with k ≥ 2 integer,

are accumulation points of chromatic roots. While Fig. 3
shows clear peaks at Q = Bk with k = 2, 3, 4, 5, 6 (we
have B5 ≃ 2.61803) these occur on top of a non-zero
background density of roots. It seems likely that for N →
∞ this background will extend to the interval (32/27, 4)
and peaks will occur at all Beraha numbers. We will
discuss this further elsewhere [9].

Conclusion. We have presented an efficient algorithm
for solving NP-hard enumeration problems on large
graphs and illustrated it for vertex colorings. The algo-
rithm can be extended to the counting versions of many
other NP-hard problems: Hamiltonian walks and cycles,
vertex cover, dominating set, feedback vertex set, mini-
mum maximal independent set, etc. [9].

FIG. 2: Frequency histogram of 2.5 · 105 complex chromatic
roots, obtained for a sample of 2500 planar graphs of size 100.

FIG. 3: Frequency histogram of the subset of chromatic roots
in Fig. 2 that lie on the real axis.

Acknowledgments. This work was supported by the
European Community Network ENRAGE (grant MRTN-
CT-2004-005616) and by the Agence Nationale de la
Recherche (grant ANR-06-BLAN-0124-03).

[1] D.J.A. Welsh, The computational complexity of some clas-

sical problems from statistical physics, in G.R. Grimmett
and D.J.A. Welsh (eds.), Disorder in physical systems,
Clarendon Press, Oxford, 1990, pp. 307–321.

[2] N. Robertson and P.D. Seymour, J. Comb. Theory B 36,
49-64 (1984).

[3] C.M. Fortuin and P.W. Kasteleyn, Physica 57, 536–564
(1972).

[4] A.M.C.A. Koster, H.L. Bodlaender and S.P.M. van Hoesel,
Elec. Notes in Disc. Math 8, 54–57 (2001).

[5] G. Haggard, D.J. Pearce and G. Royle, Computing Tutte

polynomials. Technical report NI09024-CSM, Isaac New-

5

ton Institute for Mathematical Sciences, 2009.
[6] E. Fusy, Random Struct. Alg. 35, 464–522 (2009).
[7] J. Salas J and A.D. Sokal, J. Stat. Phys. 104, 609–699

(2001).

[8] C. Thomassen, Comb. Prob. Comp. 6, 497–506 (1997).
[9] A. Bedini and J.L. Jacobsen, in preparation.

