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Fattening free correlation algorithms

G. Blanchet ∗ A. Buades † B. Coll ‡ J.M Morel §

B. Rouge ¶

March 23, 2010

Abstract

Block matching along epipolar lines is the core of most stereovision
algorithms in geographic information systems. The usual distances be-
tween blocks are the sum of squared distances in the block (SSD) or the
correlation. These distances suffer the adhesion (or fattening) effect, a
defect by which the center of the block inherits the disparity of the more
contrasted pixels in the block. This report shows that there is a simple
and universal solution to this problem. It is enough to use an adaptive
weight in the SSD. This weight is nothing but the square of the gradient
of the first image in the epipolar direction. This magic adaptive weight
yields a computed disparity which is the result of a convolution of the
real disparity with a fixed kernel. The choice of the kernel is left to the
user. Experiments on simulated and real pairs prove that the formula
applies really, and eliminates surface bumps clearly due to the adhesion
phenomenon. 1

1 Introduction

Stereovision consists in finding the depth of a scene from several views of it.
This is one of the central problems in computer vision, and it has been the
object of research for the last thirty years. Stereovision is based on the fact
that differences of depth in a 3D scene create geometrical disparities between
different views of the same scene if they are taken from different points of view.

The corresponding problem or disparity computation between two stereo
pair images u and v, reduces to the search of a disparity functions ǫ such that
u(x) = v(x + ǫ(x)). As in motion estimation, the above equation presents
the aperture problem, namely the ambiguity of the solution, even when some
regularity is demanded for the disparity. For this reason, many stereovision
algorithms do not look for the function ǫ matching the grey level intensity of
each pixel but match the grey level of an entire block around each pixel. The
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resulting algorithm is known as block matching, SSD (sum of squared distances)
or correlation.

The most important drawback of correlation is the well known ”fattening
effect”. According to Kanade et Okutomi [6], ”A central problem in stereo
matching by computing correlation or sum of squared differences (SSD) lies in
selecting an appropriate window size. The window size must be large enough
to include enough intensity variation for reliable matching, but small enough to
avoid the effects of projective distortion. If the window is too small and does
not cover enough intensity variation, it gives a poor disparity estimate, because
the signal (intensity variation) to noise ratio is low. If, on the other hand, the
window is too large and covers a region in which the depth of scene points (i.e.
disparity) varies, then the position of maximum correlation or minimum SSD
may not represent correct matching due to different projective distortion in the
left and right images. The fattening effect occurs when the selected window
contains pixels at different depth. In that case we cannot find exactly the same
window and the obtained disparity depends on the different disparities of the
window and not only the central pixel itself.”

The usual way to cope with the fattening effect is to use adaptive win-
dows that avoid image discontinuities as was first proposed by Kanade et al [6].
Similar works pre-computing edge points and recursively growing a comparison
window avoiding them were proposed by Lotti et al. [7] and recently by Wang
et al. [16]. Patricio et al. [10] and Yoon et al. [18] select an adaptive win-
dow containing only pixels with a grey level similar to the reference one, like in
neighborhood and bilateral filters [14, 17].

Other approaches do not try to avoid the discontinuities of the image. They
select an adaptive window with a minimum distance criterium. The subjacent
idea is that windows which do not contain discontinuities will be matched with
a small window distance. Fusiello et al. [4] choose among all the windows
containing the reference pixel the one which has a minimal distance with its
corresponding one in the second image. Veksler [15] applied the same strategy
but including square windows of different sizes. A more elaborated version by
Hirschmuller et al [5] adapts the shape of the window by dividing the correla-
tion window into small sub-windows and taking those which attain the minimum
distance. The Delon et al. [3] paper proposes a different strategy, the barycen-
tric correction attributing the disparity of a window to the window barycenter
pondered by the image gradients.

Point feature matching methods overcome the fattening problem at the cost
of a drastic reduction of the match density. Matched features can also be curvi-
linear, which also circumvents the fattening problem to some extent. For in-
stance, Schmid [13] describes a set of algorithms for automatically matching
individual line segments and curves. Robert [11] presents an edge-based stere-
ovision algorithm, where the primitives to be matched are cubic B-splines ap-
proximations of the 2-D edges. Muse et al. [9] and Cao et al. [2] discuss how
to automatically match pieces of level lines and extract coherent groups of such
matches. Matas et al. [8] solves the problem by matching stable and homo-
geneous image regions, but their match set is again sparse. Even if features
may seem more local, they depend anyway on a broad neighborhood. It is true
that the fine scale Laplacian extrema used (e.g.) in the SIFT method are very
local, but their descriptor around involves anyway a 8× 8 window. Thus, if this
window contains some edge, the fattening problem can occur anyway.
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The fattening effect is not the sole obstacle to a correct disparity compu-
tation. Occlusions and moving objects make it a very difficult and sometimes
ill-posed problem. Taking simultaneous snapshots with a low baseline avoids
partially these drawbacks. However, when using a low baseline a larger preci-
sion in the disparity computation is needed to get the same depth precision. The
use of a low B/H (where B is the baseline and H is the altitude) was proposed
in satellite imaging by Delon and Rouge [3].

2 Mathematical analysis of correlation algorithm

Let us denote by x = (x, y) an image point in the continuous image domain,
and by u1(x) = u1(x, y) and u2(x) the images of an ortho-rectified stereo pair.
Assume that the epipolar direction is the x axis. The underlying depth map
can be deduced from the disparity function ε(x) giving the shift of an observed
physical point x from the left image u1 in the right image u2. The physical dis-
parity ε(x) is not well-sampled. Therefore, it cannot be recovered at all points,
but only essentially at points x around which the depth map is continuous. Fol-
lowing the formulation by Delon and Rouge [3] and Sabater [12], around such
points, a deformation model holds:

u1(x) = u(x+ ε(x), y) + n1(x)

u2(x) = u(x) + n2(x). (1)

Block matching amounts to finding the disparity at x0 minimizing

ex0
(µ) =

∫

[0,N ]2
ϕ(x − x0)

(

u1(x) − u2(x+ (µ, 0))
)2
dx. (2)

where ϕ(x−x0) is a soft window function centered at x0. For a sake of compact-
ness in notation, ϕx0

(x) stands for ϕ(x−x0),
∫

ϕx0

u(x)dx will be an abbreviation

for
∫

ϕ(x − x0)u(x)dx; we will write u(x+ µ) for u(x + (µ, 0)) and ε for ε(x).
The minimization problem (2) rewrites

min
µ

∫

ϕx0

(

u(x+ ε(x)) + n1(x) − u(x+ µ)− n2(x + µ)
)2
dx.

Differentiating this energy with respect to µ implies that any local minimum
µ = µ(x0) satisfies

∫

ϕx0

(

u(x+ε(x))+n1(x)−u(x+µ)−n2(x+µ)
)

×
(

ux(x+µ)+(n2)x(x+µ)
)

dx = 0.

(3)
One has by Taylor-Lagrange formula ux(x+µ) = (ux(x+ ε)) +O1(µ− ε), with

O1(µ− ε) ≤ |µ− ε|max |uxx(x+ ε)| (4)

and u(x+ ε(x)) − u(x+ µ) = ux(x+ ε)(ε− µ) +O2((ε− µ)2), where

|O2((ε− µ)2)| ≤
1

2
max |(uxx(x + ε))|(ε− µ)2 .
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Thus equation (3) yields

∫

ϕx0

(

ux(x+ ε)(ε− µ) +O2((ε− µ)2) + n1(x) − n2(x+ µ)
)

×

(

ux(x+ ε) +O1(µ− ε) + (n2)x(x+ µ)
)

dx = 0. (5)

and therefore

µ

∫

ϕx0

(ux(x+ ε))2dx =

∫

ϕx0

(ux(x + ε))2 ε(x) dx + Ã+ B̃ +O1 +O2, (6)

where

Ã =

∫

ϕx0

ux(x + ε)
(

n1(x)− n2(x+ µ)
)

dx; (7)

B̃ =

∫

ϕx0

(

n1(x) − n2(x+ µ)
)

(n2)x(x+ µ)dx; (8)

O1 =

∫

ϕx0

ux(x + ε)(ε− µ)(n2)x(x+ µ)dx

+

∫

ϕx0

O1(µ− ε)
(

n1(x)− n2(x+ µ)
)

dx; (9)

O2 =

∫

ϕx0

O2(ε− µ)2(ux(x+ ε))dx

+

∫

ϕx0

O2(ε− µ)2[O1(µ− ε) + (n2)x(x + µ)]dx

+

∫

ϕx0

O1(µ− ε)(ux(x+ ε))(ε− µ)dx. (10)

Denote by ε the average of ε on the support of ϕ(x − x0), denoted by Bx0
. By

the Taylor-Lagrange theorem we have

Ã = A+OA

where

A =

∫

ϕx0

ux(x+ ε)
(

n1(x)− n2(x+ ε)
)

dx (11)

and

OA = (ε− µ)

∫

ϕx0

(ux(x + ε))(n2)x(x+ ε̃(x))dx, (12)

where ε̃(x) satisfies ε̃(x) ∈ [min(µ, ε),max(µ, ε)]. In the same way,

B̃ =

∫

ϕx0

(

n1(x)− n2(x+ µ)
)

(n2)x(x+ µ)dx

so that B̃ = B +OB, where
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B =

∫

ϕx0

(

n1(x)− n2(x + ε)
)

(n2)x(x+ ε)dx (13)

and

OB = (µ− ε)

∫

ϕx0

n1(x)(n2)xx(x + ε̃(x)) − (n2(n2)x)x(x+ ε̃(x))dx. (14)

The terms A and B are stochastic and we must estimate their expectation and
variance. The terms O1, O2, OA, OB are higher order terms with respect to
ε− µ and are negligible if ε− µ is small, and the noise samples bounded.

Lemma 1 Consider the main error terms

A =

∫

ϕx0

ux(x+ ε(x))
(

n1(x)− n2(x+ ε)
)

dx

and

B =

∫

ϕx0

(

n1(x)− n2(x + ε)
)

(n2)x(x+ ε)dx

as defined above. One has EA = EB = 0 and

Var(A) = 2σ2

∫

[ϕ(x − x0)ux(x+ ε)]
2
N dx

≤ 2σ2

∫

ϕ(x − x0)
2ux(x+ ε)2;

Var(B) ≤
2π2σ4

3

∫

ϕ(x− x0)
2dx+ σ4

∫

ϕx(x− x0)
2dx.

Proof: Notice that n1(x) and n2(x+ ε) are independent Gaussian noises with
variance σ2. Thus their difference is again a Gaussian noise with variance 2σ2.
It therefore follows that

Var(A) = 2σ2

∫

[ϕ(x− x0)ux(x+ ε))]
2
N dx ≤ 2σ2

∫

ϕ(x− x0)
2(ux(x+ ε))2dx.

Var(B) ≤ 2

[

Var(

∫

ϕx0

n1(x)(n2)x(x+ ε) + Var(

∫

ϕx0

n2(x + ε)(n2)x(x+ ε))

]

≤ 2

[

σ2 ×
π2σ2

3

∫

ϕ2(x− x0) +
σ4

2

∫

ϕx(x− x0)
2

]

=
2π2σ4

3

∫

ϕ(x− x0)
2 + σ4

∫

ϕx(x− x0)
2.

Theorem 1 (Main disparity formula and exact noise error estimate)
Consider an optimal disparity µ(x0) obtained as any absolute minimizer of
ex0

(µ) (defined by (2)). Then

µ(x0) =

∫

ϕx0

[ux(x+ ε(x))]2ε(x)dx
∫

ϕx0

[ux(x+ ε(x))]2dx
+ Ex0

+ Fx0
+Ox0

(15)
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where

Ex0
=

∫

ϕx0

(ux(x+ ε(x))
(

n1(x) − n2(x+ ε)
)

dx
∫

ϕx0

[ux(x+ ε(x))]2dx

is the dominant noise term,

Fx0
=

∫

ϕx0

(

n1(x)− n2(x+ ε)
)

(n2)x(x+ ε)dx
∫

ϕx0

[ux(x+ ε(x))]2dx

and Ox0
is made of smaller terms. In addition the variances of the main error

terms due to noise satisfy

Var(Ex0
) = 2σ2

∫

[ϕ(x− x0)ux(x+ ε)]
2
N dx

(

∫

ϕ(x− x0)ux(x+ ε)2dx
)2 ; (16)

Var(Fx0
) ≤

2π2

3 σ4
∫

ϕ(x − x0)
2dx+ σ4

∫

ϕx(x− x0)
2dx

(

∫

ϕ(x− x0)ux(x+ ε)2dx
)2 . (17)

Finally,

Ox0
=

O1 +O2 +OA +OB
∫

ϕx0

[ux(x+ ε(x))]2dx
,

and
EOx0

= O( max
x∈Bx0

|ε(x)− µ|),

Var(Ox0
) = O( max

x∈Bx0

|ε(x)− µ|2).

Proof: This result is an immediate consequence of (6) completed with the
variance estimates in Lemma 1. The estimates for the higher order terms O are
a straightforward application of Cauchy-Schwartz inequality.

Remark Theorem 1 makes sense only when the optimal disparity µ(x0) is
consistent, namely satisfies for x in the support Bx0

of ϕ(x− x0),

|ε(x) − µ(x0)| << 1. (18)

Thus, one of the main steps of block matching must be to eliminate inconsistent
matches.

Remark In all treated examples, it will be observed that Var(B) ≪ Var(A),
which by Lemma 1 directly follows from

σ2

[

2π2

3

∫

ϕ(x− x0)
2 +

∫

ϕx(x− x0)
2

]

≪ 2

∫

[ϕ(x− x0)ux(x + ε)]2N . (19)
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3 Proposed strategy: avoiding the fattening prob-

lem

The previous mathematical formulation tells us that the obtained minimizer for
the correlation problem satisfies

µ(x0) =

∫

ϕx0

[ux(x+ ε(x))]2ε(x)dx
∫

ϕx0

[ux(x+ ε(x))]2dx
(20)

up to the noise terms. That is, the obtained minimizer will be an barycenter of
the disparities at each point in the correlation window weighted by its square
gradient.

Therefore, whenever a pixel or a cluster of pixels have a large gradient with
respect to their neighboring ones, the estimated disparity for these neighboring
pixels will be obtained by combining mainly the disparities of these few very
contrasted pixels. It can even happen that a single pixel dominates the esti-
mated disparity for all of its neighboring ones. This effect is mainly noticeable
near image edges, where a line of pixels dominates the correlation of all their
neighboring ones. Yet, the fattening effect happens everywhere in some degree,
because the gradient barycenter is never exactly the center of the correlation
window. Even if this is not very noticeable when looking at the disparity image,
this effect becomes conspicuous when looking at the 3D reconstruction of the
estimated depth, (Fig. 4).

There are not many ways to avoid this: to remove the disparity imbalance in
the window, we shall compensate the effect of the squared gradients in the above
integral by directly modifying the values of the window function ϕ, making it

adaptive. By taking ϕx0
(x) =

ρx0
(x)

ux(x+ε(x))2 in equation (20) we obtain

µ(x0) =

∫

ρx0

ε(x)dx
∫

ρx0

dx
, (21)

which is equivalent to

µ(x0) =

∫

ρ(x− x0)ε(x)dx,

since the function ρ is normalized to have the integral equal to one. Thus, we
obtain a weighted average of all disparities in the correlation neighborhood, but
not weighted by the image gradient. Therefore, the computed disparity is the
convolution of the ground truth disparity ε with an isotropic kernel which can
be fixed at will. By using this weighted correlation window, the dominant noise
term in Theorem 1 rewrites

Var(Ex0
) = 2σ2

∫

ρ(x− x0)
2

ux(x+ ε(x))2
dx. (22)

The discrete implementation of such an algorithm faces the problem of com-
puting the true derivatives ux(x + ε(x)) from the two available images u1 and
u2. We actually compute the derivative on the first image obtaining

u′
1(x)

2 = (u′(x+ ε(x))(1 + ε′(x)) + n′
1(x))

2.
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Figure 1: Reference image warped by a known disparity to obtain an image
pair.

Figure 2: Ground truth disparities applied to images in Fig. 1

As this is a stochastic term, the right choice must be indicated by its mean

Eu′
1(x)

2 = u′(x+ ε(x))2(1 + ε′(x))2 + 2σ2.

This identity shows that, because of the noise term, we will be only able to com-
pute the actual derivatives if and when ε′(x) is small. Making this assumption,
which means that either the relief is smooth, and in order to avoid too small
gradients due mainly to noise, we shall use the following weighting function

ϕx0
(x) =

ρx0
(x)

max(ux(x+ ε(x))2, 6σ2)
,

being σ the noise standard deviation.

4 Experiments

In order to illustrate and compare the performance of the classical correlation
strategy and the proposed adaptive algorithm, several tests were performed on
synthetic and real stereo pairs.

The first experiments simulated pairs with a smooth disparity function. The
disparity ε in Fig. 2 was applied to the reference texture images u of Fig. 1.
Each image was warped by ε to obtain the image pair. Gaussian white noise was
added to both images of the pair. Texture images were used to make sure that
around each pixel there was enough information to permit its correct matching.
The first ground truth disparity varies slowly and smoothly while the other two
are more oscillatory.

Fig. 3 presents the disparity maps obtained by both strategies for the first
image of the data base. In this case, a noise with standard deviation 1 has been
added, yielding a signal to noise ratio of about one hundred. The results with
correlation and with the proposed strategy are shown with prolate functions
supported by 7×7 and 11×11 pixels. Observe that the disparity obtained with
the proposed strategy is more similar to the ground truth than the classical
correlation algorithm. This improvement is conspicuous when the 11×11 prolate
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Figure 3: Obtained disparities for the first image in Fig. 1 and the three ground
truth disparities in Fig. 2. The left column shows the disparities obtained
with a classical correlation algorithm with an isotropic weighting window of size
7×7 and 11×11. In the right column, same experiments but with the proposed
algorithm.

is used or when the disparity map is more oscillatory. This experimental fact is
in agreement with the mathematical arguments and formulas developed in the
previous section. The obtained disparity for the classical correlation strategy
depends on the true disparity on the 7×7 or 11×11 neighborhood and is weighted
by the square of the gradient. Thus, with a larger window the probability of
having large gradients on the window is increased and the favored disparity by
these large gradient points can be more different than the one of the reference
pixel.

In Fig. 4 are displayed the three-dimensional representations of the central
raw in Fig. 3 with a 7×7 prolate function. One better appreciates, with this rep-
resentation, the differences between the classical and the adaptive correlation.
The surface obtained by the adaptive correlation is smooth and very similar
to the ground truth. However, the surface by the classical correlation strategy
presents many irregularities due to its dependence on the image gradients.

Table 1 shows the average Euclidean distance between the obtained dispar-
ity and the ground truth for the six images in Fig. 1. The error values are
very similar when the prolate is small or when the disparity varies slowly, while
it increases for the classical correlation algorithm when a larger prolate or an
oscillating ground truth is applied. Table 2 shows the error committed by com-
paring the true normals to the surface of the ground truth with the normals to
the surfaces of the obtained disparities. Are shown the ratio of points of the
surface for which the normal has an error of more than 10 degrees with respect
to the original normal. These results are absolutely impressive, since the accu-
racy gain has a factor as large as 50! Notice that the distance of normals is the
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Figure 4: Three dimensional representation of the estimated disparity from the
middle row of Fig. 3. Top: estimated disparity by correlation with a 7×7
correlation window. Bottom: proposed adaptive correlation with the same 7×7
correlation window. The fattening effect creates evident irregularities in the
reconstructed surface.
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7×7 σ = 0.0 σ = 1.0 (SNR=100) σ = 2.0 (SNR=50)
Correlation 0.118 0.121 0.138
Proposed 0.108 0.113 0.139

11×11 σ = 0.0 σ = 1.0 (SNR=100) σ = 2.0 (SNR=50)
Correlation 0.135 0.136 0.139
Proposed 0.107 0.109 0.116

Table 1: Average error on the disparity computation on the six images of Fig. 1
and the middle ground truth of Fig. 2. For the proposed method the distance is
computed to the convolved ground truth as predicted by the formulas. The first
table is obtained by using a correlation window of 7×7 pixels while the second
table is obtained by using a correlation prolate of size 11×11. We observe that
the correlation error increases when using a larger window. By using a larger
window the ground truth disparity varies more and the possibility of having a
large gradient increases, therefore making correlation more sensitive to adhesion.
The obtained errors are quite similar for both algorithms, showing that the use
of an adaptive correlation does not diminish the precision of correlation.

Figure 5: Synthetic image pair. Left: the disparity ground truth, the back-
ground has uniform disparity while the building simulates the slope of a roof.
Center and right: image pair.

right measure to estimate how two renderings of the same object differ visually.
Indeed, most 3D visualizations are done by a Lambertian model. The grey level
of the rendered image is the scalar product of the surface normal with the solar
direction. Thus the above error measure is the right one to estimate the visual
gain.

The next experiment is with a synthetic disparity map applied to a building
image. The background has uniform disparity while the building simulates the
slope of a roof. Since the background has uniform disparity, we can only ob-
serve the fattening effect in and near the building. We show the ground truth
disparity and the simulated image pair in Fig. 5. Fig. 6 shows the estimated
disparities with the classical correlation algorithm and with the proposed adap-
tive correlation, using again a prolate window of 7×7 and 11×11 pixels. The
same figure shows the error image difference between the estimated disparities
and the ground truth. With the proposed strategy the obtained image differ-
ence stands between the estimated disparities and the convolved ground truth
by the same prolate. This is consistent with the formulation in previous section,
where we showed that the adaptive correlation estimates a convolved disparity,
independent of the gradient of the image. For the correlation algorithm, we
observe a prominent error near the boundaries of the building, while for the
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7×7 σ = 0.0 σ = 1.0 (SNR=100) σ = 2.0 (SNR=50)
Correlation 0.35 0.54 1.27
Proposed 0.04 0.20 1.26

11×11 σ = 0.0 σ = 1.0 (SNR=100) σ = 2.0 (SNR=50)
Correlation 0.48 0.50 0.64
Proposed 0.01 0.01 0.11

Table 2: Average on the six images of Fig. 1 and the middle ground truth
of Fig. 2 of the percentage of points with an angular difference of the surface
normal to the ground truth normal larger than 10 degrees. For the proposed
method the distance is computed to the convolved ground truth as predicted by
the formulas. The first table is obtained by using a correlation window of 7×7
pixels while the second table is obtained by using a correlation prolate of size
11×11. Observe that with a larger correlation window a surface more similar to
the original one is obtained. This result is particularly impressive: the obtained
percentage of points with a very different normal to the surface is much higher
for the classical correlation than the proposed algorithm.

Figure 6: Obtained disparities for the synthetic image pair in Fig. 5. The
top left columns displays the disparities obtained with a classical correlation
algorithm with an isotropic weighting window of size 7×7 and 11×11. The top
right columns show the same experiments but with the proposed algorithm.
Bottom: image difference between the estimated disparities and the ground
truth. For the proposed strategy the displayed image difference stands between
the estimated disparities and the convolved ground truth by the same prolate.

12



Figure 7: Synthetic image pair. Left: the disparity ground truth. The back-
ground has uniform disparity while the building simulates the slope of a roof.
Center and right: image pair.

proposed strategy this error passed unnoticed.
The last experience displays a more complicated case with occlusion and

shadows containing nearly no information. Fig. 7 shows the image pair and its
ground truth. In Fig. 8 are displayed the estimated disparities and the error
image difference between the estimated disparities and the ground truth. For
the proposed strategy the image difference stands again between the estimated
disparities and the convolved ground truth by the same prolate. We observe
that the committed error is mainly concentrated near the edges of the building
where the fattening effect is more severe. Although in the synthetic case of Fig
6 we were able to nearly eliminate the error near the edges with the proposed
strategy, this is not the case for this pair. The error committed by the correlation
algorithm is reduced but not eliminated. This is due to the occlusions which
make ε discontinuous, and to the fact that near most of the building boundaries
the shadow has removed all possible information that could by used to correct
the match. It is curious to observe, however, that the error is much smaller at
non shadowed edges, even if occlusions and discontinuities of the disparity are
still present.

5 Conclusion

We presented a novel approach to adaptive correlation for image matching and
depth reconstruction. The presented approach naturally avoids one of the main
drawbacks in correlation namely the fattening effect. The proposed experimen-
tation illustrates how mathematical arguments are soundly reflected in practice.

The weak point of the proposed approach is the requirement of a smooth
ground truth disparity function. Thus, the method brings no miracle on occlu-
sions. Dealing with occlusions in the same spirit is the current object of research
and will be the natural continuation of the current work.
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