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A Morse complex on manifolds with boundary

FRANÇOIS LAUDENBACH

Abstract. Given a compact smooth manifoldM with non-empty boundary and a Morse func-
tion, a pseudo-gradient Morse-Smale vector field adapted to the boundary allows one to build
a Morse complex whose homology is isomorphic to the (absolute or relative to the boundary)
homology of M with integer coefficients.

1. Introduction

We consider a smooth compact manifoldM of dimension n with a non-empty boundary ∂M .
A smooth function is said to be Morse when its critical points lie in the interior of M , are not
degenerate, and when its resriction to the boundary is Morse. The property of being Morse
in this sense, with distinct critical values, is generic among the smooth functions on M . Let
f :M → R be a Morse function. There are two types of critical points of f |∂M , called type N
and D (we shall see later that N (resp. D) is like Neumann (resp. Dirichlet)): a critical point
p ∈ ∂M is of type N (resp. D) when < df(p), n(p) > is negative (resp. positive), where n(p)
denotes the outward normal to the boundary at p. Looking at the change of homotopy type of
the sub-level set Ma := {x ∈M | f(x) ≤ a} when a is increasing, it is well known that change
happens when a crosses a critical value of f |int(M) or of f |∂M only when they are of type N ;
no change happens when crossing a critical value of type D.

Thirty years ago, I tried to find Morse inequalities in this setting. Of course, f gives rise to
a Morse function Df on the double manifold DM :=M ∪

∂M
M . But Morse inequalities for Df

are not sharp. At that time I did not succeed in finding a geometrical Morse complex in the
case of manifolds with boundary. I had even kept in mind the idea that such a complex should
not exist. Apparently, the problem seems to be still open.

In a seminal paper [17], E. Witten introduced a deformed Laplacian (now called the Witten

Laplacian) on a closed Riemannian manifold equipped with a Morse function and deduced in
particular an analytic proof of the Morse inequalities. Recently, Francis Nier explained to me
various works concerning the case of manifolds with non-empty boundary. K. Chang & J. Liu
[4] introduced two Witten complexes of differential forms constrained to satisfy some boundary
conditions. Two types of boundary conditions can be distinguished: Dirichlet conditions which
cancel tangential components or Neumann conditions which cancel normal components. These
authors made the analysis easier by considering only flat metrics near the critical points. These
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boundary problems with general metrics have been recently studied in [8] (Helffer-Nier) for
the Dirichlet problem, in [9] (Kolan-Prokhorenkov-Shubin) for Dirichlet and Neumann, and in
[11] (Le Peutrec) for the Neumann problem, with additional developments concerned with the
asymptotic analysis.

In case of the Dirichlet conditions [4] [8], when the deformation parameter ~ is small enough,
the De Rham complex Ω∗ contains a finite dimensional sub-complex F ∗ (of R-vector spaces)
whose cohomology (whenM is orientable) is isomorphic to the relative cohomologyH∗(M, ∂M ;R).
In that case, a basis of F ∗ is in a bijective correspondence with the critical points of f in int(M)
and those of type D on the boundary (up to a shift of their grading). In case of the Neumann
boundary conditions [4] [11], a similar result holds: F ∗ is generated by the critical points of f
in the interior and by those of type N on the boundary; the cohomology of F ∗ is isomorphic to
the singular cohomology of M with real coefficients. Hence, Morse inequalities follow. Let us
also mention work by M. Braverman and V. Silantyev ([1]) which is in the same spirit and deals
with the Morse-Novikov theory. But they introduce some extra condition which obliges them
to exclude for instance the standard annulus in the plane equipped with the height function.

After such results coming from analysis, it became “necessary” to prove the existence of
a geometric Morse complex in the setting of manifolds with boundary. In the sequel we are
going to perform this program, working in homology with Z-coefficients rather than in real
cohomology. We use the following notation:

- Ck denotes the set of critical points of f : int(M) → R of index k;
- Nk denotes the set of critical points of f : ∂M → R of type N and index k;
- Dk denotes the set of critical points of f : ∂M → R of type D and index k − 1 (notice
that such a point has index k in the double manifold DM).

- | · | stands for the cardinality of the mentioned finite set.

Theorem A. Let FN
∗

be the free graded Z-module generated by C∗ ∪N∗.
1) There is a differential ∂ : FN

∗
→ FN

∗−1 making (FN
∗
, ∂) a chain complex.

2) The homology of (FN
∗
, ∂) is isomorphic to the singular homology H∗(M,Z).

As usual, Morse inequalities follow (see J. Milnor [13], p. 28, or R. Bott [2], p. 338). They
are contained in a polynomial identity. Let MN

f (T ) be the Morse polynomial of type N , where
T is the variable:

MN
f (T ) =

∑

k

|Ck ∪Nk| T
k .

Let PM(T ) be the Poincaré polynomial of M

PM(T ) =
∑

k

rankHk(M ;Z) T k .

Corollary A. We have MN
f (T )−PM(T ) = (1+ T )QN(T ), where QN(T ) is a polynomial with

non-negative coefficients.
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Making now the critical points of type D play the main role yields the following statement.

Theorem B. Let FD
∗

be the graded Z-module generated by C∗ ∪D∗.

1) There is a co-differential d : FD
∗

→ FD
∗+1 making (FD

∗
, d) a cochain complex.

2) The cohomology of (FD
∗
, d) is isomorphic to the relative cohomology H∗(M, ∂M ;Zor) with

coefficients twisted by the orientation of M .

From this, we deduce another family of Morse inequalities. Let MD
f (T ) be the Morse poly-

nomial

MD
f (T ) =

∑

k

|Ck ∪Nk| T
k.

Let Por
(M,∂M) be the relative Poincaré polynomial

Por
(M,∂M)(T ) =

∑

k

rankHk(M, ∂M ;Zor) T k,

which is nothing but the symmetric polynomial of PM(T ):

Por
(M,∂M)(T ) = T n PM(1/T ).

Corollary B. We have MD
f (T )−Por

(M,∂M)(T ) = (1 + T )QD(T ), where QD(T ) is a polynomial

with non-negative coefficients.

I am very indebted to Francis Nier for encouraging me to return to this question and for his
careful reading of a first version. I also thank Claude Viterbo for useful comments.

2. Proof of Theorem A

2.1. An adapted pseudo-gradient. We introduce a pseudo-gradient vector field X for the
Morse function f adapted to the boundary in the following sense (in case of closed manifolds it
is a reformulation of [12] by K. Meyer; a slightly restrictive, but still generic, definition is given
in [7]).

1) X.f < 0 except at the critical points in int(M) and at the critical points of type N on
the boundary;

2) X points inwards along the boundary except near the critical points of type N where
it is tangent to ∂M :

3) if p ∈ int(M) is a critical point, X is hyperbolic at p and the quadratic form
q̃ := X lin . d2pf is negative definite; here X lin denotes the linear part of X at p (that is,

X lin = DX(p)) and the second derivative d2pf at p is thought of as a quadratic function

defined near p which is derived by X lin;
4) let p ∈ ∂M be a critical point of type N ; there are coordinates x = (y, z) ∈ R

n−1×R of
M near p, such thatM = {z ≥ 0} and f(x) = f(p)+z+q(y), where q is a non-degenerate
quadratic form; it is required that X is a vector field tangent to the boundary, vanishing
and hyperbolic at p, such that X lin . (q(y) + z2) is negative definite;
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5) X is Morse-Smale in the sense that the global unstable manifolds and the local stable
manifolds are mutually transverse.

Proposition. Given the Morse function f , there exists an adapted pseudo-gradient X.

Proof. Look first at condition 4). The existence of coordinates where f reads as f(x) =
f(p) + z + q(y) mainly follows from the Morse lemma with parameters (or local stability of
Morse functions), up to the addition of a function depending on z only. If c(z) denotes the

critical value of y 7→ f(y, z), the type N assumption implies dc(z)
dz

(0) > 0, hence the normal
form holds after changing z by the inverse function theorem. Moreover, an easy calculation
shows that, out p, X lin.

(

q(y) + z2)
)

< 0 implies X lin.
(

q(y) + z)
)

< 0. Therefore, X is a
pseudo-gradient for f : X.f < 0 near p (except at p).

Now the local existence of X is clear and local pseudo-gradients can be glued together by
a partition of unity. By construction, X is positively complete. Let X t denote its flow; it is
defined on an open set ofM ×R containing M × [0,+∞). The global unstable manifold W u(p)
of a critical point p of index k is the image of a non-proper embedding of Rk into M .

There is also a local stable manifold W s
loc(p) which is diffeomophic to R

n−k when p ∈ int(M),
or to R

n−k ∩ {z ≥ 0} when p is a type N critical point in the boundary (here R
n−k is a space

on which q(y) + z2 is positive definite). It is properly embedded when it is truncated to the
sub-level setMf(p)+ε. Following Smale [16], condition 5) is generically fulfilled among the vector
fields meeting conditions 1)-4). �

The frontier of W u(p), the set of points in the closure which are not in W u(p), is contained
in the union of the unstable manifolds of critical points of index less than k. An orientation of
W u(p) is chosen arbitrarily. Then W s

loc(p) is co-oriented by the orientation of W u(p).

Given a pair of critical points (p, q) respectively of index k and k − 1, there are only finitely
many flow lines (up to translation in time) X t(x), t ∈ R, such that X t(x) → p as t→ −∞ and
X t(x) → q as t → +∞. Each such line has a sign according to the co-orientation of W s

loc(q)
with respect to the orientation ofW u(p). Let mpq be the algebraic sum of these signs, summing
up over all connecting orbits from p to q.

2.2. The boundary morphism. We are going to define ∂ : Fk → Fk−1 à la Witten-Floer (see
[17, 6]). Let p ∈ Ck ∪Nk be a generator. The boundary morphism is defined by:

∂ < p >=
∑

q

mpq < q >,

where q runs in Ck−1 ∪Nk−1.

Proposition. We have ∂ ◦ ∂ = 0.

Proof. Consider p, a critical point of index k, and q, a critical point of index k−2. We have to
prove that < ∂ ◦∂(p), q >= 0. In [10] it is given a complete description of the closure of W u(p);
only the effect of critical points of index k−1 is useful for yielding the following description. In
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a level set L := {f(x) = f(q)+ ε}, we look at the trace A of W s
loc(q), a (n− k+1)-dimensional

sphere or proper disk, and the trace B of the closure of W u(p). The intersection A ∩ B lies
in the interior of L since W u(p) lies in int(M) except near p when p ∈ ∂M . It is made of
simple closed curves and arcs having end points in common and whose interior are mutually
disjoint. The closed curves and the open arcs correspond to connecting orbits from p to q;
the end points correspond to broken connecting orbits going through some critical points of
index k − 1. Notice that the sign of mpzmzq does not depend on the chosen orientation of the
unstable manifold of z, an index (k−1) point connected to p and to q. Each open arc in A∩B
is oriented. Then one of his end points is equipped with +, the other with −, and the sum of
all these signs is < ∂ ◦ ∂(p), q >. Hence, it is zero. �

2.3. Invariance. (This property is not needed in the proof of theorems A and B, but it is
interesting in itself). Of course, the complex (FN , ∂) depends on the Morse function f and on
its adapted pseudo-gradient X . Given two pairs (f0, X0) and (f1, X1) where, for i = 0, 1, fi is
a Morse function and Xi is an adapted pseudo-gradient, they are connected by a path of pairs
(ft, Xt), t ∈ [0, 1], if we allow us to cross “codimension 1 accidents” which arrive at finitely
many times t1, t2, ...tℓ. When t is distinct of those times, (ft, Xt) is a pair of a Morse function
and an adapted pseudo-gradient. The list of the possible accidents is yielded by appropriate
transversality theorems. We list below the “codimension 1 accidents” for a function f ; and
those of pseudo-gradient X . Here, it is convenient to set f∂ := f |∂M .

f1) f has a degenerate critical point at p ∈ int(M) and rank d2f(p) = n− 1;
f2) f∂ has a degenerate critical point at p ∈ ∂M , rank d2f∂(p) = n− 2 and df(p) 6= 0;
f3) df(p) vanishes at some point p ∈ ∂M , d2f(p) and d2f∂(p) are both non-degenerate and

have the same index;
f4) df(p) vanishes at some point p ∈ ∂M , d2f(p) and d2f∂(p) are both non-degenerate and

index d2f(p)= index d2f∂(p) + 1.

When crossing an accident f1), a pair of critical points of consecutive indices is created/cancelled
in int(M). When crossing an accident f2), a pair of critical points of consecutive indices and of
the same type N or D is created/cancelled for f∂ in ∂M . Crossing an accident f3) can be mod-
elled as follows: there are local coordinates near p, x = (y, z) ∈ R

n−1 × R where M = {z ≥ 0}
and f(x) = f(p) + z2 + q(y) where q is a non-degenerate quadratic form (say of index k). For
crossing the accident one leaves this function fixed and translates M by (y, z) 7→ (y, z + t),
t ∈ [−ε,+ε]. For t = ε, we have a point of type N and index k on the boundary; for t = −ε,
we have a point of type D on the boundary and a new point of index k in int(M). The model
for crossing f4) is similar but f(x) = f(p)− z2 + q(y). When moving from t = ε to t = −ε, a
point of type D and index k on the boundary is replaced by a point of type N and index k on
the boundary and a point of index k + 1 in the interior.

We now list the “codimension 1 accidents” for a pseudo-gradient X ; they never happen at
the same time as a “codimension 1 accident” of the function whose X is a pseudo-gradient.

g1) creating/cancelling a pair of connecting orbits from a point of index k to a point of
index k − 1 (the considered critical points may lie in int[M) or in ∂M);
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g2) there is an orbit connecting two points of the same index.

Proposition. Let (F i
∗
, ∂i) be the complex associated to the pair of a Morse function and a

pseudo-gradient (fi, Xi), i = 0, 1. Then they are quasi-isomorphic: there is a chain morphism

from one to the other inducing an isomorphism in homology.

Proof. According to the preceding discussion, we may assume that there exists a path (ft, Xt)
with one accident only. The proposition is proved by examining each accident. When crossing

f1), an acyclic complex of rank 2 (that is, 0 → Z
∼=

−→Z → 0) is added or removed. The same
happens when crossing f2), if the considered points are of type N ; if they are of type D the
complex is unchanged. When crossing f3), the complex remains unchanged. When crossing f4),
again an acyclic complex of rank 2 is added or removed. Concerning the accidents of X , there
are those which are encountered in the analogous discussion for closed manifolds (see [10]). In
each case we get the desired quasi-isomorphism. �

2.4. The homology of (FN
∗
, ∂).

Proposition. The homology of (FN
∗
, ∂) is isomorphic to H∗(M ;Z).

Proof. According to the next lemma, it is allowed to assume that there are no critical points
of type N . Let us achieve the proof under this assumption. In that case the complex does
not “see” the boundary since all connecting orbits lie in int(M). Even, the global unstable
manifolds lie in the interior ofM . So, we can deal with such a function as on a closed manifold.
For instance, an adapted pseudo-gradient being chosen, it is possible to reorder the critical
values so that the function becomes self-indexing (the critical value of a critical point is its
index). Indeed, we recall the following fact in Morse theory (Cerf [3] II 2.3).

Let (f,X) be a Morse function and an adapted pseudo-gradient. Let p and q two critical

points with f(p) > f(q). Assume that the open interval
(

f(q), f(p)
)

contains no critical

value and that there are no connecting orbits from p to q. Then there exists a path of

Morse functions ft, t ∈ [0, 1], with f0 = f , f1(p) < f1(q) = f(q) and X is a pseudo-

gradient for every ft.

Once f is self-indexing, M has the homotopy type of a CW-complex, with one cell of dimension
k for each critical point of index k (see Milnor [15], theorem 7.4, p. 90). In that case, our Morse
chain complex is exactly the so-called cellular chain complex. By the cellular homology theorem
(see Milnor [14], theorem A.4 p. 263), its homology is the homology of M . So the proof will
be finished after the following lemma.

Lemma. Let (f,X) be a pair of a Morse function on M and an adapted pseudo-gradient. Let

p be a critical point of type N in ∂M and U be a neighborhood of p. Then there exist a path

of functions ft and an isotopy ϕt of embeddings M → M , t ∈ [0, 1], with f0 = f, ϕ0 = Id,
satisfying the following properties :

1) the support of both ft − f and ϕt is contained in U ;
2) ft is Morse when t 6= 1/2;
3) f1 has one critical point p1 in U ∩ int(M);
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4) f1|∂M has one critical point in U ∩ ∂M and it is of type D;

5) ϕ1 (W
u(p)) is the unstable manifold of p1 for an adapted pseudo-gradient X1 of f1, whose

other invariant manifolds are those of X. In particular, the Morse complexes associated

to X and X1 are the same.

Of course the accident at time t = 1/2 is f3) in list 2.3.

Proof. We start with a model for f in coordinates x = (y, z) ∈ R
n−1 × R on a small open

neighborhood U of the critical point p: f(x) = f(p) + z + q(y), where q(y) is a non-degenerate
quadratic form andM ∩U ⊂ {z ≥ 0}. We consider f1/2 defined on U by f1/2 = f(p)+q(y)+z2.
Let ρ : [0, δ] → [0, 1] be a smooth bump function: ρ(s) = 1 for s close to 0 and ρ(s) = 0 for s
close to δ; here δ is small enough so that the support of (y, z) 7→

(

ρ(‖y‖), ρ(z)
)

is a compact set
in U . Without loss of generality, we may assume that the support of ρ contains in its interior
the connected domain of ∂M along which X is tangent to the boundary.

For ε > 0 small enough, we look at the restriction of f1/2 to {z ≥ ερ(‖y‖)}. It is conju-
gate to f |M ∩ U because both functions have no critical points in U and have restrictions to
∂M ∩ U which are Morse with one critical point of the same index. Let M0 be the closure
of M \ {0 ≤ z ≤ ερ(‖y‖)} and ψ : M0 → M be a diffeomorphism such that both functions
f0 := ψ∗f and f1/2 have the same germ along {z = ερ(‖y‖)}. For t ∈ [0, 1], introduce the man-
ifold Mt and its function ft obtained from (M0, f0) by gluing {ε(1− 2t)ρ(‖y‖) ≤ z ≤ ερ(‖y‖)}
endowed with f1/2. Up to a diffeomorphism ψt :Mt →M , this path ft is the desired one.

M1 = M0 ∪ the lens

z

y

z = −ερ(‖y‖)

p

M0

p ys

X-orbits

{z = +ερ(‖y‖)} ∩W s

loc
(p)

zs

(ys, zs) stands for coordinates of W s(p)

More precisely, the isotopy ψt, t ∈ [0, 1], can be chosen so that ψ1/2 = Id. Recall that X is
a pseudo-gradient in U for both functions f and f1/2 (see 2.1). At t = 1/2, the deformation of
functions is stopped and a small isotopy χt, is applied for pushing W u(p) \ {p} into int(M); it
is chosen so to be supported in int(M1) and to leave W s

loc(p) fixed. As this isotopy is C∞ small,
X1 := χ1∗X is still a pseudo-gradient of f1/2 and χ1(W

u(p)) is its unstable manifold of p.
Moreover, X1 points toward int(M) along U ∩ {z = 0} except along W s

loc(p). If η > 0 is
small, X1 points inwards along ∂M1/2+η ∩ U . Therefore, if the path of deformation (Mt, ft) is
stopped at time t = 1/2 + η we already get the desired conclusion. �

Remark. (C. Viterbo) Instead of deforming (f,X) as in the preceding lemma, one could invoke
Conley’s theory of isolating blocks [5] which in our setting states as follows (compare [6] section
3 for a similar situation, but our flow is not negatively complete).
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There exists a finite filtration M−1 = ∅ ⊂ M0 ⊂ . . . ⊂ Mk . . . ⊂ Mn = M which is positively

invariant by the flow X t and such that Mk \Mk−1 contains all critical points in Ck∪Nk and ev-

ery positive orbit in Mk which does not go to a critical point enters Mk−1 without getting out of.

Our Fk can be identified to Hk(Mk,Mk−1;Z) and our ∂ is nothing but the connecting mor-
phism Hk(Mk,Mk−1;Z) → Hk−1(Mk−1,Mk−2;Z) in the long exact homology sequence of the
triple (Mk,Mk−1,Mk−2) (as in Milnor [14] A.4).

2.5. Complement. We have statements similar to theorem A for every local system of coef-
ficients (or flat bundle with discrete fiber). Such a bundle is given by a representation of the
fundamental group π := π1(M,x0) (where x0 is a base point) into an Abelian discrete group.
For instance, Zor is defined by the first Stiefel-Whitney class of τM , the tangent bundle of M :
w1 : π → Z. The complex FN,or

∗
has the same graded module. But the differential is changed.

At the beginning some arc is chosen from the base point to each critical point. Therefore a con-
necting orbit γ from p to q defines a loop γ̃ and the contribution of γ to mpq is twisted by w1(γ̃).
So we have a new differential ∂or. The proof that ∂or ◦∂or = 0 is alike. In that case, theorem A
states as the following: The homology of (FN,or

∗
, ∂or) is isomorphic to H∗(M ;Zor). New Morse

inequalities follow. A good example is given by the compact Möbius band in R
3 with a height

function. In that case the Betti numbers of H∗(M ;Zor) are: b0 = 0, b1 = 1, b2 = 0; in relation-
ship to theorem B, we also list the Betti numbers of the relative homology H∗(M, ∂M ;Zor):
b0 = 0, b1 = 1, b2 = 1.

3. Proof of Theorem B and complements

3.1. Upside down. We look at the Morse theory of the Morse function −f . The critical points
are the same but their indices and types are changed. A critical point in int(M) of index k
for f has index n − k for −f . A critical point in ∂M which is of type D and index k − 1 for
f∂ := f |∂M (then it belongs to Dk) is of type N and index n− k for −f∂ . A critical point in
∂M which is of type N and index k for f∂ is of type D and index n− k − 1 for −f∂; then it
belongs to Nn−k(−f).

There is another change to make. Indeed, the vector field −X is not adapted as it points
outwards along the boundary except near the critical points of former type N . So we appeal
another vector field X− which is adapted to −f . With the data (−f,X−) we can form a Morse
complex. But we insist to keep the initial grading, that is: FD

k is freely generated by Ck∪Dk, a
set of critical points of index n− k for −f . The pseudo-gradient X− yields a differential which
is of degree +1 in this grading: it is a co-differential and the complex is a cochain complex.
According to theorem A its (co-)homology is isomorphic to H∗(M,Z), up to the grading which
is changed into the complementary one. Therefore, it is the Poincaré dual of the homology,
hence the cohomology with integer coefficients twisted by the orientation. Thus theorem B is
proved. �

As we did in a variant of theorem A in 2.5, we can twist the codifferential d by the orientation.
We get a cochain complex (FD,or

∗
, dor) whose cohomology is isomorphic to H∗(M, ∂M ;Z). From
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this we get another Morse inequalities involving the same Morse polynomial:

MD
f (T )− P(M,∂M)(T ) = (1 + T )Q′(T ).

We recall here, that homology and cohomology have the same Poincaré polynomial, as the
free factor of Hk(.) is the dual of the free factor of Hk(.), as long as the same system of local
coefficients is used for both.

3.2. Morse inequalities from the double. On the one hand, the set Ck(Df) of critical
points of index k for the “double” Morse function Df defined on the double DM ofM consists
of two copies of Ck, one copy of Nk and one copy of Dk. On the other hand, Hk(DM ;Z) ∼=
Hk(M ;Z)⊕Hk(M, ∂M ;Z). Indeed, the inclusion M →֒ DM gives rise to a long exact sequence

. . .→ Hk(M) → Hk(DM) → Hk(M, ∂M) → Hk−1(M) → . . . ;

but this sequence splits since any relative cycle, glued to its symmetric one, gives a cycle in
DM . Thus the Morse inequalities for Df is just obtained by adding both Morse inequalities
obtained previously, the one for MN

f −PM and the one for MD
f − P(M,∂M):

MDf(T )− PDM(T ) = (1 + T )Q′′(T ).

Thus, it is weaker than its summands.
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[11] D. Le Peutrec, Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian, to

appear in Ann. Fac. Sci. Toulouse Math.
[12] K. Meyer, Energy functions for Morse-Smale systems, Amer. J. Math. 90 (1968), 1031-1040.
[13] J. Milnor, Morse theory, Annals of Math. Studies 51, Princeton univ. press.
[14] J. Milnor, J. Stasheff, Characteristic classes, Annals of Math. Studies 76, Princeton univ. press, 1974.
[15] J. Milnor, Lectures on the h-cobordism theorem, Princeton univ. press, 1965.
[16] S. Smale, On gradient dynamicalsystems, Annals of Math. 74 (1961), 199-206.
[17] E. Witten Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982), 661-692.
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Laboratoire de mathématiques Jean Leray, UMR 6629 du CNRS, Faculté des Sciences et
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