
HAL Id: hal-00466238
https://hal.science/hal-00466238

Submitted on 23 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Merit: an Interpolating Model-Checker
Nicolas Caniart

To cite this version:
Nicolas Caniart. Merit: an Interpolating Model-Checker. 22nd International Conference on Computer
Aided Verification, CAV 2010, Jul 2010, Edinburgh, United Kingdom. pp.XX-XX. �hal-00466238�

https://hal.science/hal-00466238
https://hal.archives-ouvertes.fr

MERIT: an Interpolating Model-Checker

Nicolas Caniart

LaBRI, Université de Bordeaux - CNRS UMR 5800,

caniart@labri.fr

Abstract. We present the tool MERIT, a CEGAR model-checker for safety prop-

erties of counter-systems, which sits in the Lazy Abstraction with Interpolants

(LAWI) framework. LAWI is parametric with respect to the interpolation tech-

nique and so is MERIT. Thanks to its open architecture, MERIT makes it possi-

ble to experiment new refinement techniques without having to re-implement the

generic, technical part of the framework. In this paper, we first recall the basics of

the LAWI algorithm. We then explain two heuristics in order to help termination

of the CEGAR loop: the first one presents different approaches to symbolically

compute interpolants. The second one focuses on how to improve the unwinding

strategy. We finally report our experimental results, obtained using those heuris-

tics, on a large amount of classical models.

1 Motivations

Lazy Abstraction with interpolants (LAWI) [8] is a generic technique to verify the

safety of a system. It builds a tree by unwinding the control structure of the system.

Each edge of this tree represents a transition between two control points, and each node

is labeled by an over-approximation of the actual reachable configuration at that node.

LAWI follows the CEGAR [3] paradigm. It loops over three steps: explore, check, and

refine. The explore step expands the reachability tree by unwinding the control structure.

At first, one starts from a very coarse abstraction of the system, ignoring the transition

effect, just checking the reachability of control locations marked as bad. For that reason,

reaching a bad location does not necessarily mean that the system is unsafe. The check

step looks at a branch leading to a bad location, and tries to prove that it is spurious, that

is, not feasible in the actual system. If it fails, then the system is unsafe and an error trace

is reported. If it succeeds, then the unwinding must be refined to eliminate this spurious

path. The refine step consists in labeling each node on the branch by an interpolant that

over-approximates more closely the actual configurations. This explains the term lazy

[5]: the refinement occurs only on a branch, not on the whole tree.

Since the unwinding is in general infinite, the algorithm might not terminate. To

help termination, LAWI uses a covering relation between nodes. Under some conditions

one can guarantee that any configuration reachable from a node s is also reachable from

a node t in the tree. Node t then covers node s, which prevents from having to explore

the subtree rooted at s, thus limiting the tree growth. LAWI terminates when all leaves

in the unwinding tree are covered. However, since nodes are relabeled during the refine

step, a covered node may be uncovered, so that termination can still not be guaranteed.

Interpolation with Symbolic Computation. Let us explain more precisely how to

refine a spurious path s0
τ1−→ s1

τ2−→ · · ·
τn−→ sn, where each si is a node of the

unwinding and each τi a transition of the system. An interpolant for this path [8] is given

by sets I0, I1, . . . , In such that I0 over-approximates the initial set of states, τk(Ik) ⊆
Ik+1 for any k and In = ∅. Such a path interpolant witnesses that the path is spurious.

In general, there are several path interpolants. The choice of the interpolant affects the

algorithm behavior (and termination), since the covering relation depends on it.

In [8] theorem proving and Craig interpolation is used to compute interpolants.

Our work focuses on model-checking counter-systems [9] with unbounded variables.

The transition relations are encoded in the Presburger logic. So far, Craig interpolation

algorithms are known only for fragments of this logic [6]. In [4] it is showed how

to compute interpolants symbolically. We have chosen to first experiment symbolic

computation techniques in our model-checker, using the TaPAS tools [7]: an interface

to various automata- or formula-based symbolic set representations.

2 The MERIT model-checker

MERIT is a model-checker for counter-systems based on the LAWI framework. We dis-

cuss its architecture, and present two improvements to the generic algorithm that we

both implemented in MERIT.

Open architecture An interesting feature of the LAWI algorithm is that it offers a clear

split between operations that work only on the control graph of the transition system,

and those that compute interpolants. Thanks to this, we were able to use virtually any

kind of techniques to compute interpolants: theorem proving, SMT-solvers, or symbolic

computation. All operations or queries made on interpolants are implemented behind

the interface of a single module, called a refinery. Changing the way interpolants are

computed is just a matter of changing the refinery. We currently have one fully func-

tional refinery based on the TAPAS framework [7] and we are working on an SMT-

solver based refinery.

Optimizing the interpolants. MERIT implements the classical symbolic weakest pre-

and strongest post-conditions computations, which provide path interpolants [4]. They

are named weakest (resp. strongest) since they are the maximal (resp. minimal) sets

of configurations that can appear on a path interpolant. MERIT also implements two

original, and in practice more efficient techniques, that we both experimented.

– The first uses post- symbolic computation to find the closest node from the root of the

refined branch where the reachability set becomes empty. From that node, it replays

the trace backwards, computing the weakest path interpolant. This way, we obtain

shorter branches than when using a weak-pre computation, but weaker interpolants

on the higher part of the branch than when using a post computation. The idea of the

heuristic is to make it easier to cover nodes by producing large interpolants high in

the tree.

– The second one is the dual of the first: it starts with a backward symbolic computa-

tion, and it then tightens interpolants on the lower part of the branch using strongest

interpolants.

Experimental results for the later technique, called cut-post, are given in Table 1.

Tuning the unwinding strategy: BFS vs. DFS. Our experiments also show that the

strategy used to expand the tree has an impact on the algorithm termination. In [8] it is

2

suggested to use a DFS strategy to expand the tree. Indeed a DFS strategy seems more

adequate than a BFS one: suppose that the algorithem has to visit nodes at depth d.

With systems having control locations of out-degree k, it is then necessary to compute

and store at least kd nodes. In practice models with few control locations and high

out-degree emerge naturally1.

The problem comes from the fact that a naive implementation of the DFS expansion

strategy can behaves like a BFS. Indeed, in [8] a node is expanded by adding all its

children at once: e.g. a node t gets 3 children u, v, w. Because those nodes have not

been refined, they are labeled by the full variable domain. Thus each of them can cover

any node added after itself (provided they correspond to the same control location). The

DFS proceeds by expanding u. Suppose now that children of u are all covered by either

v or w. The DFS is therefore stopped and we have to explore a new branch (in v sub-

tree). Again, the children of v may become covered by w. We see how a “BFS-like”

behavior arises. This phenomenon does occur in practice and a combinatorial blowup

indeed impairs the algorithm termination.

To fix this problem, we add only one child at a time. This way we add less nodes

labeled by the full variable domain, which prevents from covering uselessly. The ter-

mination condition becomes more complicated. We also have to check that we did not

forget to fully expand all internal nodes. Nonetheless our experiments show that, using

this strategy, our tool can cope with models where the original strategy fails. The impact

on the tool performance can be drastic, as showed in Table 1.

3 Experimental results

MERIT has been tested with a pool of about 50 infinite-state systems, ranging from

broadcast protocols to programs with dynamic data-structures. The benchmark suite we

use is available on the tool webpage (cf. Availability section, p. 4). The verification was

successful in about 80% of the tests and MERIT detected 100% of the unsafe models.

The use of the “append one child at a time” unwinding strategy and the cut-pre

or cut-post refinement techniques presented in Sec. 2 allowed MERIT to almost double

the number of models it can tackle. Table 1 presents the results obtained (1) with the

original algorithm, the weakest pre-conditions refinement (column Original Pre), the

one child at a time algorithm with the same refinement technique (column 1 child Pre),

as well as the one child algorithm with the cut-post refinement method (column 1 child

cut-post). This shows how much we improved from the original algorithm. We also

compare our tool to the tools FAST
2 and ASPIC

3 because they make use of acceleration

[1] techniques which are particularly efficient on the models we use to test MERIT.

However MERIT is more efficient than FAST and ASPIC on many models.

4 Conclusion & Development perspectives

In this paper we presented MERIT, a model-checker tool that use symbolic interpolant

computation techniques. It implements the Lazy Abstraction with Interpolants algo-

1 Like for distributed system models, where the global control structure encoded by variables.
2 Available at http://www.lsv.ens-cachan.fr/Software/fast/
3 Available at http://laure.gonnord.org/pro/aspic/aspic.html

3

http://www.lsv.ens-cachan.fr/Software/fast/
http://laure.gonnord.org/pro/aspic/aspic.html

Original Pre 1 child Pre 1 child cut-post FAST ASPIC

MODEL V T O N R TIME N R TIME N R TIME TIME TIME

ILLINOIS 5 9 S 4152 415 2.12 777 388 1.72 - - TOUT 1.75 ?

insert 48 51 S 74 11 1.28 70 11 1.35 70 11 1.25 3.97 0.14

MESI 5 4 S 287 57 1.42 107 53 1.05 35 17 1.13 1.71 ?

merge 847 1347 S 6661 944 27.77 5413 952 40.34 189 30 3.79 TOUT 2.27

MOESI 6 4 S 27 5 1.23 11 5 1.14 35 17 1.16 1.36 ?

train 7 12 S 20878 4302 268.64 205 101 1.51 1531 765 13.55 2.29 ?

deleteAll 18 19 U 13 2 1.10 13 2 0.98 13 2 1.18 1.0 0.11

Legend: V = # of variables; T: # of transitions; O: outcome, S means safe, U unsafe, ? tool does

not know ; N: # tree nodes, R: # refinements. TOUT means time-out, MOUT memory outage.

Table 1. Benchmark results

rithm [8]. The models we experimented are particularly suited for acceleration tech-

niques. However MERIT was able to tackle many models without using acceleration.

Short-term goals: One of our short term goals is to get a fully functionnal SMT-Solver

based refinery, to see how such a technique can compete with symbolic ones.

Mid-term goals: We noticed that some refinement techniques are complementary: they

succeed on different sets of models and the union of those sets almost covers the whole

set of models. We tried hybrid refinement techniques that combine them. This allowed

MERIT tackle more models. However the problem of choosing, on the fly, the proper

interpolation technique for a branch is still an open problem.

Finally, our experiments showed that some difficult examples would benefit from

acceleration [2] techniques like the train model in Tab. 1. However combining LAWI

and acceleration is still an open question. Acceleration is costly and the trade-off be-

tween that cost and the benefit for the cover relation has to be investigated.

Availability MERIT is available under free software license at http://www.labri.

fr/~caniart/merit.html.

References
[1] B. Boigelot. On Iterating Linear Transformations Over Recognizable Sets of Integers. The-

oretical Computer Science, 309(1-3):413–468, 2003.
[2] N. Caniart, E. Fleury, J. Leroux, and M. Zeitoun. Accelerating interpolation-based model-

checking. In Proc. of TACAS’08, vol. 4963 of LNCS, pages 428–443. 2008.
[3] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. In Proc. of CAV’00, vol. 1855 of LNCS, pages 154–169. 2000.
[4] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with Craig interpolation and

symbolic pushdown systems. In Proc. of TACAS’06, LNCS, pages 489–503. 2006.
[5] T. A. Henzinger, R. Jhala, R. Majumbar, and G. Sutre. Lazy Abstraction. In Proc. of

POPL’02, pages 58–70. 2002.
[6] H. Jain, E. M. Clarke, and O. Grumberg. Efficient Craig interpolation for linear diophantine

(dis)equations and linear modular equations. In Proc. of CAV’08, vol. 5123 of LNCS, pages

254–267. 2008.
[7] J. Leroux and G. Point. Tapas : The Talence Presburger Arithmetic Suite. In Proc. of

TACAS’09, vol. 5505 of LNCS, pages 182–185. 2009.
[8] K. L. McMillan. Lazy Abstraction with Interpolants. In Proc. of CAV’06, vol. 4144 of LNCS,

pages 123–136. 2006.
[9] M. L. Minsky. Computation : Finite and Infinite Machines. Prentice Hall, June 1967.

4

http://www.labri.fr/~caniart/merit.html
http://www.labri.fr/~caniart/merit.html

The presentation of the tool will be conducted around the model we use in the

example section below.

A Availability

MERIT is available under free software license and can be downloaded from http://

www.labri.fr/~caniart/merit.html. The software is built on top of many

libraries. For this reason we also provide pre-built binaries for the Linux platform.

Benchmarks The results for the complete benchmarks suite we use is provided at

http://www.labri.fr/~caniart/benchmark-cav10.html.

B Merit input

Merit input format is the same as the one of the tool Fast4. Briefly, this format consists

of two parts: a description of the model through the declaration of a set of variables,

control locations and transitions; a strategy in which a little script language allows to

define sets of states (regions), test for set intersection, and parametrize Fast behaviour.

It will ignore anything else. Fast syntax only allows for linear constraints in guards,

actions (updates) and region definitions. The sample below sums up the fragment of

the FAST format syntax that MERIT understands, as well as the formal grammar for the

linear constraints that can be used in FAST guards, updates and regions definitions.

1 model ModelName {

2 var ID0, ID1, ID2, ... ;

3 states LOC0, LOC1, ... ;

4
5 transition t0 := {

6 from := <state> ;

7 to := <state> ;

8 guard := <expr> ;

9 action := <updatelist> ;

10 } ;

11
12 ...

13 }

14
15 strategy StrategyName {

16 Region ID := { <region> } ;

17 }

region := region ‖ expr | region && expr |

region ‖ statepred |

region && statepred |

statepred | expr

expr := pred | expr && pred | expr ‖ pred |

(expr)

statepred := state = LOC

pred := lsum # lsum

updatelist := update | updatelist , update

update := VAR
′

= lsum

lsum := term | lsum + term | lsum − term

term := VAR | NUMBER | NUMBER × VAR

Names between < > in the input sample refer to the corresponding rule in the gram-

mar. In the grammar, # ∈ {≤, <,=, >,≥}, VAR refers to a variable declared in the

var statement (l. 2) and LOC to a location name declared in the state statement

(l. 3). The complete reference of the Fast input format syntax is provided in the Fast

User Manual2. Figure 1 provides the complete description of a model in FAST syntax.

4 Available at http://www.lsv.ens-cachan.fr/Software/fast/

5

http://www.labri.fr/~caniart/merit.html
http://www.labri.fr/~caniart/merit.html
http://www.labri.fr/~caniart/benchmark-cav10.html
http://www.lsv.ens-cachan.fr/Software/fast/

Input processing The input is parsed by MERIT to build the transition system aug-

mented with one initial and one error location (resp. denoted ‘.’ and ‘!’). Those loca-

tions are connected to the transition system according the INIT and ERROR regions.

MERIT looks for those two regions in the strategy; they respectively define the sets of

initial and bad states. The INIT set is used as a guard on the edge that leaves the ‘.’ lo-

cation and connects it to the original transition system. This transition is denoted INIT?.

Similary the ERROR region is used on the ERROR? transition that connects the original

transition system to the ‘!’ location5.

C Interesting points on a running example

model MESI {
// m: modified, e: exclusive, s: shared, i: invalid.
var m, e, s, i ;
states s ;

transition ReadInv := { transition WriteShared := {
from := s ; from := s ;
to := s ; to := s ;
guard := i >= 1 ; guard := s >= 1 ;
action := m’= 0, e’= 0, action := m’ = 0, e’ = 1,

s’= m+e+s+1 ; s’ = 1,
i’= 0 ; i’ = m+e+s+i-1 ;

} ; } ;

transition Share := { transition Load := {
from := s ; from := s ;
to := s ; to := s ;
guard := e >= 1 ; guard := i >= 1 ;
action := m’ = m + 1, action := m’ = 0, e’ = 1,

e’ = e - 1 ; s’ = 0,
i’ = m+e+s+i-1 ;

} ; } ;
}

strategy MESIStrategy {
Region INIT := { m=0 && e=0 && s=0 && i>0 } ;
Region ERROR := { m>=2 || (m>=1 && s>=1) } ;

}

Fig. 1. Model of the MESI Cache Coherence Protocol in Fast language

We now present, on a simple model, how the tuning in the exploration and refine-

ment processes improves the original algorithm. We will look at a model of the MESI

cache coherence protocol. Its description in FAST language is given on fig. 1. The cor-

responding transition system, augmented with the ‘.’ and ‘!’ locations, is depicted on

fig. 2(b).

First, to give an intuition of how LAWI works, we will go through a few iterations of

the three algorithm steps: explore, check, and refine. Then we explain in more details

the issue in the original unwinding strategy we talked about in sec. 2. Finally we will

discuss the influence of the interpolant computation techniques.

5 More than one transition may actually leave locations ‘.’ and ‘!’. So MERIT appends an index

to those transitions names. This will not be the case in the forthcoming example, and we ignore

those indices here.

6

C.1 How LAWI works

LAWI first step, explore is responsible for unwinding the transition system. Explore

proceeds as follows: it picks a node in the unwinding tree. It first tries to cover that

node. If it cannot, it will then expand it, i.e. add some childs to it. Again this may fail

if the control location this node is mapped to in the transition system has no out-going

transitions. Finally the explore step ensures that the node is not an error node. If it is the

case then we jump to the check step. If not, a new node is chosen and the exploration

goes on. Nodes to explore are chosen using a DFS traversal of the tree.

Initially the unwinding consists of a single node 1 mapped to the initial location ‘.’.

As we said we first try to cover it, but cannot since it is the only node in the tree. So the

node is expanded: only the INIT? transition can be fired from ‘.’. A single child is then

added to 1, leading to a new node 2 mapped to location ‘s’ (cf. fig. 2(a)). Exploration

goes on from 2. Again this node cannot be covered: it is not mapped to the same location

as the only other one in the tree, so it is expanded. This adds five new nodes to the

tree: 3 to 7, mapped respectively to ‘!’, and the last four to ‘s’. Since the unwinding

is expanded through a DFS traversal, node 3 is picked for expansion. Node 3 has no

outgoing transition so it cannot be expanded. But it is mapped to the error location: we

then stop the exploration to check the spuriousness of the path from 1 to 3: 1
INIT?
−−−→

2
ERROR?
−−−−→ 3.

Assume we use the strongest post-condition interpolant computation method. Recall

that all nodes are initially labeled by the full variable domain, denoted Z
d where d is

the number of variables in the system. We then check the trace spuriousness computing

I0 = Z
d (node 1 label), I1 = postINIT?(Z

d), and I2 = postERROR?(I1) = ∅ since clearly

INIT ∩ ERROR = ∅. Then I0 = Z
d, I1 = INIT, I2 = ∅ is an interpolant for the path

and the path is spurious. We then go to the refinement step.

Refinement consists in updating labels of each node on the path. We intersect its

current label with the corresponding set in the interpolant: node 1 is relabeled by Z
d ∩

I0 = Z
d, node 2 by Z

d ∩ INIT, and node 3 by ∅. After labels have been updated, the

algorithm tries to cover the nodes on the path. None can be covered for now. Refinement

is terminated, we go back to the system exploration.

The DFS continues on its traversal of the tree. The next node to be visited is 4. It is

expanded and nodes 8 to 12 are added to the tree. The DFS then visits node 8 and first

tries to cover it. The only other node mapped to location ‘!’ in the tree is 4 which is now

labeled by ∅. Obviously 4 cannot cover 8. It cannot be expanded either but it is an error

node. We then need to check that the path from 1 to 8 is not an actual error path in the

system. We again jump to the check step.

The path 1
INIT?
−−−→ 2

SHARE
−−−−→ 4

ERROR?
−−−−→ 8 is again spurious since we can compute an

interpolant for it: I0 = Z
d, I1 = INIT, I2 = ∅, I3 = ∅ because INIT does not satisfy

the guard of transition SHARE. Nodes labels are updated and we try to cover nodes on

the path. This time we can cover 8 by 3, 4 by 2. We then go back to exploration.

The same happens with node 5 because INIT does not satisfy the guard of transtion

WRITESHARED. Node 5 is covered by node 2 and node 13 by node 3.

7

C.2 How the DFS may degenerate

We have reached the point where we can explain why we claim that the unwinding strat-

egy that consist in adding all children of node at once can be harmful for the algorithm

termination. The exploration DFS will now visit node 6. This node is mapped to loca-

tion ‘s’ in the system and is labeled by Z
d. Candidates to cover 6 are nodes 4 and 5. Both

have been refined and their labels no longer entails Zd. Node 6 is then expanded. Nodes

18 to 22 are thus added to the unwinding. The branch 1
INIT?
−−−→ 2

LOAD
−−−→ 6

ERROR?
−−−−→ 18

is refined, and then we visit node 19. The problem here is that node 19 can be covered

by node 7 which has not been refined yet. Thus we will not visit 19 subtree yet. For

the same reason, neither will we visit nodes 20 to 22 sub-trees. So no nodes below 6
will be expanded for now. We then have to visit node 7. Again we first refine the branch

1
INIT?
−−−→ 2

READINV
−−−−−→ 7

ERROR?
−−−−→ 23. This refinement uncovers nodes 19 to 22. But when

we visit nodes 24 to 27 we can then cover them by any of the nodes we just uncovered.

So, again, none of the nodes below 7 are expanded. Because each time we try to expand

a node mapped to location ‘s’, we can find a node to cover it, the unwinding tree cannot

grow in depth. Instead it grows in width and the more it grows the more nodes labeled

with Z
d we have. The number of nodes grows exponentially, but we gain very little

information on the actual system behaviour, since very few refinements are made. This

phenomenon slows down the algorithm convergence terribly, eventually preventing its

termination.

1

2

3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32

INIT?

ERROR?

SHARE

WRITESHARED
LOAD READINVSHARE

(a) Original unwinding method

. s !
INIT? ERROR?

READINVSHARE

LOAD WRITESHARED

(b) The Transition-system

1

2

3 4

5

6

7

8

9

10

1112

13

INIT?

ERROR?

SHARE

WRITESHARED LOAD READINV

(c) Unwinding “à la MERIT”

Fig. 2. Verification of the MESI model

8

C.3 MERIT unwinding strategy

We now describe how MERIT unwinds the control-structure and how it helps prevent-

ing the DFS traversal from degenerating into a BFS. The unwinding tree built by the

algorithm is (partially) depicted on fig. 2(c).

Like in the previous case we start with a single node in the tree: 1 mapped to the ‘.’

location. Node 1 is expanded which adds node 2 mapped to ‘s’. In turn 2 is expanded,

but this time we only add a single child. Assuming children are added in the same order

as before, the new node 3, is mapped to location ‘!’. Like before, 3 cannot be covered

and since no transition leaves the ‘!’ location, it cannot be expanded either. But it is an

error node and a first refinement is made on the branch 1
INIT?
−−−→ 2

ERROR?
−−−−→ 3.

Assume we use weakest pre-conditions interpolant computation method this time.

The branch labels are updated as follows: node 3 is relabeled with I2 = ∅, 2 with

I1 = p̃reERROR?(∅) = ERROR and 1 with I0 = Z
d.

Note another difference with the previous strategy: the DFS traversal responsible

for expanding and visiting all nodes in the tree has now ran out of node. And there is no

uncovered leaf. But obviously the tree labels do not provide an invariant for the safety

of the system. An additional condition to the safe termination of the algorithm is that

all nodes not labeled by ∅ nor covered must have as many children as the location they

are mapped to have outgoing transitions.

According to these conditions, the algorithm has not finished yet. We have to choose

a node to start a new DFS to further explore the system. MERIT implements different

heuristics for that. We will present here the one that gives the best experimental results.

The node is selected by a BFS traversal of the tree, that selects the highest possible node

in the tree. The idea behind this heuristic is to explore a completely different sub-tree in

the system. Following this heuristic, node 2 is selected to be the root of the new DFS.

So 2 is expanded a second time and it is added a second child: 4, mapped to location

‘s’. Then 4 is expanded with its first child 5 which is mapped to the error location. The

branch 1
INIT?
−−−→ 2

SHARE
−−−−→ 4

ERROR?
−−−−→ 5 is then refined. Node 5 is labeled by ∅, node 4 by

ERROR, node 2 is further refined so that it does not entails ERROR and 2 cannot cover

4, and finally 1 remains the same.

Then 2 is expanded a third time and we add node 6 and 7 to the unwinding tree.

Visiting 7 triggers the refinement of the branch 1
INIT?
−−−→ 2

WRITESHARED
−−−−−−−−→ 6

ERROR?
−−−−→ 7.

Node 7 is labeled by ∅, node 6 by ERROR and can thus be covered by 4. Similarly

nodes 8 and 10 are covered by 4.

Finally, nodes 4 get expanded a second time and nodes 11 and 12 are added to the

tree and the branch 1
INIT?
−−−→ 2

SHARE
−−−−→ 4

SHARE
−−−−→ 12

ERROR?
−−−−→ 13 has to be refined. This

time node 12 and 13 labels will be refined as well as node 4. Update of this later label

will uncover nodes 6, 8, and 8. This is not a surprise: we may have eliminated covers

by nodes that have not been refined, but we cannot prevent uncovers when a node is

further refined.

Transitions firing order An interesting fact one can note here, is that if we had chosen

to fire transitions in an alternate order, for instance READINV, LOAD, WRITESHARED,

SHARE, we may have made different cover/uncover. The impact of the order in which

transitions are fired can be important: with the MESI model, using the above order

9

and the weakest pre-conditions interpolant computation technique, MERIT requires 85

refinements to conclude to the system safety. With the order we used to explain the

unwinding process, only 25 refinements are required ! If tools like FAST allow the user

to specify an order in which fire the transition, MERIT does not. It fires them in the

reverse order they are read in the input model file. So far, we did not make any attempt

to find ways to compute a “best order” in which fire the transitions. Moreover, since we

have fully automatic techniques in mind, the benchmark results we present do not use

any experimentally chosen “best order”.

C.4 Influence of the interpolant computation technique

We now look at the influence of the interpolant computation technique. On the same

example, we compare the weakest pre-condition and the so called cut-post computation

techniques. With this later technique, when an interpolant for a branch π = s0, . . . , sn
is computed, we first search for the node sk where π becomes unsatisfiable. It proceeds

by computing the weakest pre-conditions for each nodes starting from the error node

sn up towards s0 (cf. fig. 3). Once sk is found, the interpolant for π is the sequence of

sets Ii = Z
d for i = 0, . . . , k; Ii = postτi(Ii−1) for i > k.

π : s0 s1 · · · sk sk+1 · · · sn−2 sn−1 sn
τ1 τk+1 τn−1 τn

Search for ∅

p̃reτk+1
(Sk+1) p̃reτn

(Sn−1) p̃reτn
(Zd)

Z
dSn−1Sn−2Sk+1∅

Interpolant computation

Z
d

Z
d

Z
d Ik+1 In−2 In−1 ∅

postτk+1
(Zd) postτn−1

(In−2) postτn
(Zd)

Fig. 3. Computation of a cut-post interpolant for a path s0, . . . , sn

As one can see, with this interpolant computation method we obtain very precise

information on the system on nodes in the bottom of the unwinding tree, while retain-

ing a very coarse abstraction on nodes near the unwinding tree root. It is then easier to

cover nodes deep in the tree with nodes that are near the root. Note however that the

interpolant computed with the cut-post technique are not as precise as the ones com-

puted with the post technique, even on the lower part of the tree. This is because we

start our computation from Z
d, not the actual set of configurations of the system: we

use postτk+1
(Zd) instead of postτk+1

(Ck) where Ck is the exact set of configurations

reachable after transitions τ1 . . . τk have been fired. In practice, this interpolant compu-

tation technique proved to be the most efficient. But there are still some cases where

these interpolant are not precise enough, as shown by the last line in the Table 1: on the

ILLINOIS cache coherence protocol, this technique fails.

10

