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From finite-gap solutions of KdV in terms of theta functions to solitons and positons

The KdV equation and solutions in terms of theta functions

We consider the Riemann surface Γ of the algebraic curve defined by ω 2 = 2g+1 j=1 (z -E j ), with E j = E k , j = k. Let D be some divisor D = g j=1 P j , P j ∈ Γ. The so-called finite gap solution of the KdV equation

u t = 6uu x -u xxx (1) 
can be expressed in the form [START_REF] Its | Hill's operator with finitely many gaps[END_REF] u(x, t) = -2 d 2 dx 2 ln θ(xg

+ tv + l) + C. (2) 
We recall briefly, the notations. In [START_REF] Beutler | What do solitons, breathers and positons have in common?[END_REF], θ is the Riemann function defined by

θ(z) = k∈Z g exp{πi(Bk|k) + 2πi(k|z)}, (3) 1 
constructed from the matrix of the B-periods of the surface Γ, and the vectors g, v, l are defined by g j = 2ic j1 , (4)

v j = 8i( c j1 2 2g+1 k=1 E k + c j2 ), (5) 
l j = - g k=1 P k ∞ dU j + j 2 - 1 2 g k=1 B kj , (6) 
C = 2g+1 k=1 E k -2 g k=1 a k zdU k , (7) 
the coefficients c jk being relating with abelian differential dU j by

dU j = g k=1 c jk z g-k 2g+1 k=1 (z -E k ) dz, (8) 
and coefficients c jk can be obtained by solving the system of linear equations

a k dU j = δ jk , 1 ≤ j ≤ g, 1 ≤ k ≤ g.

Degeneracy of solutions

We suppose that E j are real, E m < E j if m < j and try to evaluate the limits of all objects in formula ( 2) when E 2m , E 2m+1 tends to -α m , -α m = κ 2 m , κ m > 0, for 1 ≤ m ≤ g, and E 1 tends to 0 (these ideas were first presented by A. Its and V.B. Matveev, exposed for example in [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF]).

Limit of P

(z) = 2g+1 j=1 (z -E j )
The limit of

P (z) = 2g+1 j=1 (z-E j ) is evidently equal to P (z) = z g j=1 (z+α j ) 2 2.0.2 Limit of dU m = g k=1 c mk z g-k 2g+1 k=1 (z-E k ) dz The limit of dU m is equal to dU m = ϕm(z) √ z g j=1 (z+α j ) dz, where ϕ m (z) = g k=1 cmk z g-k .
The normalization condition takes the form in the limit

a k dU j → 2πiϕ j (-α k ) κ k m =k (α m -α k ) = δ kj , (9) 
which proves that the numbers -α m , m = k are the zeros of the polynomials ϕ k (z), and so ϕ k (z) can be written as ϕ k (z) = ck1 m =k (z + α m ). By (9), we get in the limit ck1 = κ k 2πi .

So d Ũk = κ k 2πi √ z(z + α k ) dz 2.0.3 Limit of v k and g k
By identification of the powers of z g-2 in ( 10)

φk = c k1 l =k (z + α l ) = g j=1 c kj z g-j , (10) 
we get in the limit

ck1 g l=1 -α l + ck2 = κ 3 k 2πi .
So we have the limit values of v k and g k :

ṽk = 4 π κ 3 k and gk = 1 π κ k .
2.0.4 Limit of U j (P ) and B mk

For

λ 0 = -α m = κ 2 m , I = 0 λ 0 dU k → 1 2
Bmk . The integral I can be easily evaluate along the real axis on the upper sheet of surface Γ and we get

I → i 2π ln κ m + κ k κ m -κ k .
So we have the limit values of matrix B :

Bmk = i π ln κ m + κ k κ m -κ k .
So iB kk tends to -∞. As previously, we have

P ∞ dU j → - i 2π ln κ j - √ z P κ j + √ z P . (11) 

Limit of argument of exponential in θ(p)

Let us denote A the argument of θ(p) = k∈Z g exp{πi(Bk|k) + 2πi(k|p)}.

A can be rewritten in the form

A = πi g j=1 B jj k j (k j -1) + 2πi j>m B mj k m k j + g j=1 πi(2p j + B jj )k j . ( 12 
)
Using the inequality k j (k j -1) ≥ 0 for all k ∈ Z g and the fact that iB kk tends to -∞, we can reduce the limit θ of θ(p) to a finite sum taken over vectors k ∈ Z g such that each k j must be equal to 0 or 1. So, A can be rewritten in the form

A = πi g j=1 B jj k j (k j -1) + 2πi j>m B mj k m k j + g j=1 k j [2πi(g j x + v j t) -πi(-j + 2 g k=1 P k ∞ dU j + m =j B mj )].
In other words

A = πi g j=1 B jj k j (k j -1) + 2πi j>m B mj k m k j + g j=1 k j Q j ,
with Q j = 2πi(g j x + v j t) + β j and

β j = -πi(-j + 2 g k=1 P k ∞ dU j + m =j B mj ).
The quantity β j has a finite limit value βj independent from x and t.

Limit of θ(p)

By means of the inequality K j (K j -1) ≥ 0 for all K ∈ Z g and the previous relation iB kk tends to -∞, it turns out that the limit θ of θ(xg + tv + l) reduce to a finite sum taken over vectors k ∈ Z g with the property that each k j must be equal to 0 or 1.

θ = k∈Z g , k j =0 or 1 exp{ m>j 2 ln κ m -κ j κ m + κ j k m k j + i( g j=1 2κ j x + 8κ 3 j t + 2κ j x j + πj - m =j i ln κ m + κ j κ m -κ j )k j }, with x j = x j (κ j ) = 1 2iκ j g k=1 ln κ j - √ z k κ j + √ z k .
It can be rewritten as θ = J⊂{1,...,g} j∈J j,k∈J j<k

κ j -κ k κ j + κ k 2 exp 2i j∈J (κ j x + 4κ 3 j t + κ j x j ). j∈J k =j κ j + κ k κ j -κ k .( 13 
)
Using the equality j,k∈J j<k

κ j -κ k κ j + κ k 2 j∈J k =j κ j + κ k κ j -κ k = j∈J k / ∈J κ j + κ k κ j -κ k , it can be reduced to θ = J⊂{1,...,g} j∈J j∈J k / ∈J κ j + κ k κ j -κ k exp 2i j∈J (κ j x + 4κ 3 j t + κ j x j ). ( 14 
)
3 1-positon of order 1

A 1-positon of order 1 is given by (see [START_REF] Matveev | Asymptotics of the multipositon-soliton τ function of the Korteweg-de Vries equation and the supertransparency[END_REF]),

u = -2∂ 2 x log W (φ, ∂ K φ),
where W is the classical wronskian, and φ the function

φ = φ(x, K) = sin(K(x + x 1 (K) + 4K 2 t))
In this case

W = 1 2 (sin 2Θ -2Kγ), where Θ = K(x + x 1 (K) + 4K 2 t) and γ = ∂ K Θ.
We consider here a Riemann surface of genus 2.

Using the previous section, when we take the limit as E j tend to K 2 j the function θ tends to θ which takes the form

θ = 1 -K 2 +K 1 K 2 -K 1 exp 2i(K 1 + 4K 3 1 t + K 1 x 1 (K 1 )) + K 2 +K 1 K 2 -K 1 exp 2i(K 2 + 4K 3 2 t + K 2 x 2 (K 2 )) -exp 2i((K 1 + K 2 ) + 4(K 3 1 + K 3 2 )t + K 1 x 1 (K 1 ) + K 2 x 2 (K 2 )).
It can be rewritten as θ

= 1 + (K 2 + K 1 ) exp 2i(K 2 +4K 3 2 t+K 2 x 2 (K 2 ))-exp 2i(K 1 +4K 3 1 t+K 1 x 1 (K 1 )) K 2 -K 1 -exp 2i((K 1 + K 2 ) + 4(K 3 1 + K 3 2 )t + K 1 x 1 (K 1 ) + K 2 x 2 (K 2 )). (15) 
Now, it is clear that when K 2 tends to

K 1 = K, we get θ = 1 + 2Ki exp(2iΘ)2i∂ K Θ -exp(4iΘ). ( 16 
)
It can be reduced to

θ = -2i exp(2iΘ)(sin 2Θ -2Kγ) = -4i exp(2iΘ) × W. ( 17 
)
Since Θ is a linear function of x, we recover exactly the 1-positon

u(x, t) = -2∂ 2 x ln θ = -2∂ 2 x W (φ, , ∂ K φ) = 16K 2 sin Θ(sin Θ -Kγ cos Θ) (sin 2Θ -2Kγ) 2 .
4 1-positon of order 2

We define a 1-positon of order 2 by (see [START_REF] Matveev | Asymptotics of the multipositon-soliton τ function of the Korteweg-de Vries equation and the supertransparency[END_REF]),

u = -2∂ 2 x log W (φ, ∂ K φ, ∂ 2 K φ)
, where W is the classical wronskian, and φ the function

φ = φ(x, K) = sin(K(x + x 1 (K) + 4K 2 t))
In this case

W = 4γ 2 K 2 cos Θ -2Kγ sin Θ -48K 3 t sin Θ -sin 2Θ sin Θ, where Θ = K(x + x 1 (K) + 4K 2 t) and γ = ∂ K Θ.
Here we consider a Riemann surface of genus 3. We can write the function θ using the previous section. When we take the limit as E j tend to K 2 j the function θ tends to θ which takes the form θ

= 1 -K 1 +K 2 K 1 -K 2 K 1 +K 3 K 1 -K 3 exp 2i(K 1 + 4K 3 1 t + K 1 x 1 (K)) + K 2 +K 1 K 2 -K 1 K 2 +K 3 K 2 -K 3 exp 2i(K 2 + 4K 3 2 t + K 2 x 2 (K)) -K 3 +K 1 K 3 -K 1 K 3 +K 2 K 3 -K 2 exp 2i(K 3 + 4K 3 3 t + K 3 x 3 (K)) -K 1 +K 3 K 1 -K 3 K 2 +K 3 K 2 -K 3 exp 2i(K 1 + 4K 3 1 t + K 1 x 1 (K) + K 2 + 4K 3 2 t + K 2 x 2 (K)) + K 1 +K 2 K 1 -K 2 K 3 +K 2 K 3 -K 2 exp 2i(K 1 + 4K 3 1 t + K 1 x 1 (K) + K 3 + 4K 3 3 t + K 3 x 3 (K)) -K 2 +K 1 K 2 -K 1 K 3 +K 1 K 3 -K 1 exp 2i(K 2 + 4K 3 2 t + K 2 x 2 (K) + K 3 + 4K 3 3 t + K 3 x 3 (K)) + exp 2i(K 1 + 4K 3 1 t + K 1 x 1 (K) + K 2 + 4K 3 2 t + K 2 x 21 (K) + K 3 + 4K 3 3 t + K 3 x 3 (K)) 6 
Now, it is clear that when K 2 and K 3 tends to

K 1 = K, we get θ = 1 -exp(2iΘ) -2K 2 (-4γ 2 + 48iKγt) exp(2iΘ) -4iKγ exp(2iΘ) + 16K 2 γ 2 exp(4iΘ) -exp(4iΘ) + exp(6iΘ) + 4iKγ exp(4iΘ) + 2K 2 (-4γ 2 + 48iγKt) exp(4iΘ).
It can be reduced to

θ = -4 exp(3iΘ)(4γ 2 K 2 cos Θ -2Kγ sin Θ -48K 3 t sin Θ -sin 2Θ sin Θ).( 18 
)
As Θ is linear in x, we recover exactly the 1-positon of order 2

u(x, t) = -2∂ 2 x ln θ = -2∂ 2 x W (φ, ∂ K φ, ∂ 2 K φ).
5 From Theta to Wronskian

From Theta to Fredholm

We consider the following matrix A = (a jk ) 1≤j,k≤N defined by

a jk = l =k K l + K j K l -K k exp(i(K j x + 8K 3 j t + 2K j x j ), (19) 
where x j is an arbitrary parameter. Then det(I + A) has the following form

det(I + A) = J⊂{1,...,N } j∈J j∈J k / ∈J K j + K k K j -K k exp(2i j∈J (K j x + 4K 3 j t + K j x j ).( 20 
)
By the previous section, θ = J⊂{1,...,g} j∈J j∈J k / ∈J

κ j + κ k κ j -κ k exp 2i j∈J (κ j x + 4κ 3 j t + κ j x j ). ( 21 
)
If we compare the expression [START_REF] Van Diejen | Formulas for q-Spherical functions using inverse scattering theory of reflectionless Jacobi operators[END_REF] to [START_REF] Van Diejen | Integrabilty of difference Calogero-Moser systems[END_REF], we have clearly the equality θ = det(I + A).

It remains to find the link between this Fredholm determinant and a certain wronskian.

From Fredholm to Wronskians

In this section, we consider the following functions

φ j (x) = sin(K j x + 4K 3 j t + K j x j ), (23) 
where K j are real numbers such that K 1 ≤ . . . ≤ K N , and x j an arbitrary constant independent of x.

We use the following notations :

θ j = K j x + 4K 3 j t + K j x j . W = W (φ j , . . . , φ N ) is the classical Wronskian W = det[(∂ j-1 x φ i ) i, j∈[1,...,N ]
]. We consider the matrix A = (a jk ) j, k∈[1,...,N ] defined by

a jk = l =k K l + K j K l -K k exp(i(K j x + 8K 3 j t + 2K j x j ). ( 24 
)
Then we have the following statement Theorem 5.1

det(I + A) = 2 N i N (N +5) 2 exp(i N j=1 θ j ) N j=2 j-1 i=1 (K j -K i ) W (φ 1 , . . . , φ N ) (25) 
Proof : We start to remove the factor (2i) -1 e iθ j in each row j in the Wronskian W for 1 ≤  ≤ N . Then

W = N j=1 e iθ j (2i) -N × W 1 , (26) 
with

W 1 = (1 -e -2iθ 1 ) iK 1 (1 + e -2iθ 1 ) . . . (iK 1 ) N -1 (1 + (-1) N e -2iθ 1 ) (1 -e -2iθ 2 ) iK 2 (1 + e -2iθ 2 ) . . . (iK 2 ) N -1 (1 + (-1) N e -2iθ 2 ) . . . . . . . . . . . . (1 -e -2iθ N ) iK N (1 + e -2iθ N ) . . . (iK N ) N -1 (1 + (-1) N e -2iθ 2N )
The determinant W 1 can be written as

W 1 = det(α jk e j + β jk ),
where α jk = (-1) k (iK j ) k-1 , e j = e -2iθ j , and

β jk = (iK j ) k-1 . Denoting U = (α ij ) i, j∈[1,...,N ] , V = (β ij ) i, j∈[1,...,N ] , the determinant of U is clearly equal to det(U ) = (-1) N (N +1) 2 (i) N (N -1) 2 N ≥l>m≥1 (K l -K m ). ( 27 
)
Then we use the following Lemma

Lemma 5.1 Let A = (a ij ) i, j∈[1,...,N ] , B = (b ij ) i, j∈[1,...,N ] , (H ij ) i, j∈[1,...,N ]
, the matrix formed by replacing the jth row of A by the ith row of B Then

det(a ij x i + b ij ) = det(a ij ) × det(δ ij x i + det(H ij ) det(a ij ) ) ( 28 
)
Proof : For à = (ã ij ) i, j∈[1,...,N ] the matrix of cofactors of A, we have the well known formula

A × t à = det A × I. So it is clear that det( Ã) = (det(A)) N -1 . The general term of the product (c ij ) i,j∈[1,..,N ] = (a ij x i + b ij ) i,j∈[1,..,N ] ×(ã ij ) i,j∈[1,..,N ]
can be written as

c ij = N s=1 (a is x i + b is ) × ãjs = x i N s=1 a is ãjs + N s=1 b is ãjs = δ ij det(A)x i + det(H ij ). We get det(c ij ) = det(a ij x i + b ij ) × (det(A)) N -1 = (det(A)) N × det(δ ij x i + det(H ij ) det(A) ). Thus det(a ij x i + b ij ) = det(A) × det(δ ij x i + det(H ij ) det(A) ). 2 
Using the previous lemma (28), we get :

det(α ij e i + β ij ) = det(α ij ) × det(δ ij e i + det(H ij ) det(α ij ) ),
where (H ij ) i, j∈[1,...,N ] is the matrix formed by replacing the jth row of U by the ith row of V defined previously. We compute det(H ij ) and we get det(H ij ) = (-1)

N (N +1) 2 +1 (i) N (N -1) 2 N ≥l>m≥1, l =j, m =j (K l -K m ) l<j (K k -K l ) l>j (K k -K l ).( 29 
)
We can simplify the quotient q = det(H ij ) det(α ij ) :

q = l =k (K l + K k ) l =k (K l -K k ) . ( 30 
)
So det(δ jk e j + det(H jk ) det(α jk ) ) can be expressed as

det(δ jk e j + det(H jk ) det(α jk ) ) = N j=1 e -2iθ j det(δ jk + l =k K l + K k K l -K k e 2iθ j ),
and therefore

det(δ jk e j + det(H jk ) det(α jk ) ) = N j=1
e -2iθ j det(I + A).

The Wronskian can be written as

W (φ 1 , . . . , φ N ) = N j=1 e iθ j (2i) -N (-1) N (N +1) 2 (i) N (N -1) 2 N j=2 j-1 i=1 (K j -K i ) N j=1 e -2iθ j det(I+A) It follows that det(I + A) = e i N j=1 θ j (2) N (i) N (N +5) 2 N j=2 j-1 i=1 (K j -K i ) W (φ 1 , . . . , φ N ) (31) 2 6 

Positons of arbitrary order

Now it is clear how to get multi-positons. It is the same strategy used for the preceding examples.

If we want to get the following general positon

u = -2∂ 2 x ln W (φ 1 , . . . , φ (k 1 ) 1 , φ 2 , . . . , φ (k 2 )
2 , . . . , φ l , , . . . , φ

(k l ) l ), (32) 
we consider a Riemann surface of genus g = l j=1 k j + l. As defined in the first section, we suppose that E j are real, E m ≤ E j if m < j and we evaluate the limits of all objects in formula (2). We consider

K i > 0, for 1 ≤ m ≤ g such that K m ≤ K j if m < j.
First, we choose the following limits :

E 1 tends to 0. for 1 ≤ i ≤ k 1 + 1, E 2i , E 2i+1 tends to K 2 i ; for 1 ≤ i ≤ k 2 + 1, E 2(k 1 +1)+2i , E 2(k 1 +1)+2i+1 tends to K 2 k 1 +1+i ; we continue until; for 1 ≤ i ≤ k l +1, E 2(k 1 +...k l-1 +l-1)+2i , E 2(k 1 +...k l-1 +l-1)+2i+1 tends to K 2 k 1 +.
..+k l-1 +l-1+i . Then from the results (20), ( 22) and (25), we get θ = det(I+A) = J⊂{1,...,g} j∈J

(-1) j j∈J k / ∈J K j + K k K j -K k exp j∈J (i(2K j x+8K 3 j t+2K j x j ). = 2 g i g(g+5) 2 exp(i g j=1 θ j ) g j=2 j-1 i=1 (K j -K i )
W (ϕ 1 , . . . , ϕ l ), with θ j = K j x + 4K 3 j + K j x j , and ϕ j = sin(θ j ).

We use the following notations :

for 1 ≤ i ≤ k 1 + 1, ϕ i = ϕ(K i ); for 1 ≤ i ≤ k 2 + 1, ϕ k 1 +1+i = ϕ(K k 1 +1+i
); and so on until; for 1 ≤ i ≤ k l + 1, ϕ k 1 +...+k l-1 +l-1+i = ϕ(K k 1 +...+k l-1 +l-1+i ).

We make here the following choice for K j , 1 ≤ j ≤ g : for 1

≤ i ≤ k 1 + 1, K i = κ 1 + (i -1)h; for 1 ≤ i ≤ k 2 + 1, K k 1 +1+i = κ 2 + (i -1)h);
and so on until; for 1

≤ i ≤ k l + 1, K k 1 +...+k l-1 +l-1+i = κ l + (i -1)h.
Then we consider the the classical difference derivative operator ∆ h defined by the formula :

∆ h f (x) = f (x + h) -f (x) h .
It is easy to prove that

∆ j h f (x) = 1 h j j k=0 (-1) k C k j f (x + (j -k)h), (33) 
and it is obvious that for any function f (x) ∈ C j , (i.e. having j continuous derivatives), lim h→0

∆ j h f (x) = f (j) (x). ( 34 
)
We consider W := W (ϕ 1 , . . . , ϕ 2 , . . . , ϕ l ).

Combining the columns, W can be written as

W = l i=1 h k i (k i +1) 2
×W (ϕ(κ 1 ), ∆ϕ(κ 1 ), . . . , ∆ k1 ϕ(κ 1 ), ϕ(κ 2 ), ∆ϕ(κ 2 ), . . . , ∆ k2 ϕ(κ 2 ), . . . , ϕ(κ l ), ∆ϕ(κ l ), . . . , ∆ k l ϕ(κ l )).

Then θ can be expressed as θ = c×W (ϕ(κ 1 ), ∆ϕ(κ 1 ), . . . , ∆ k1 ϕ(κ 1 ), ϕ(κ 2 ), ∆ϕ(κ 2 ), . . . , ∆ ϕ(κ 2 ), . . . , ϕ(κ l ), ∆ϕ(κ l ), . . . , ∆ k1 ϕ(κ l )),

with c = c 1 × c 2 .
The coefficient c 1 defined by

c 1 = 2 g i g(g+5) 2 exp(i g j=1 θ j )
is such that θ j is linear in x, and so verify 2∂ 2

x ln c 1 = 0. The coefficient c 2 is defined by

c 2 = 1 l j=1 2! . . . k i ! k 2 +1 m=1 k 1 +1 i=1 (K k 1 +1+m -K i ) . . . k l +1 m=1 k 1 +...+k l-1 +l-1 i=1 (K k 1 +k l-1 +l-1+m -K i )
.

By definition of the terms K j , the coefficient c 2 tends to a finite value independent of x when h tends to 0, and so verify 2∂ 2 x ln c 2 = 0. If we denote φ j = ϕ(κ j ), then when h tends to 0 W (ϕ(κ 1 ), ∆ϕ(κ 1 ), . . . , ∆ k 1 ϕ(κ 1 ), ϕ(κ 2 ), ∆ϕ(κ 2 ), . . . , ∆ k 2 ϕ(κ 2 ), . . . , ϕ(κ l ), ∆ϕ(κ l ), . . . , ∆ k 1 ϕ(κ l )) tends to W (φ 1 , . . . , φ

(k 1 ) 1 , φ 2 , . . . , φ (k 2 ) 2 . . . , φ l , , . . . , φ (k l ) l ). So we get when h tends to 0 u(x, t) = -2∂ 2 x ln( θ) = -2∂ 2 x ln(W ) = -2∂ 2 x ln W (φ 1 , . . . , φ (k 1 ) 1 , φ 2 , . . . , φ (k 2 ) 2 . . . . , φ l , , . . . , φ (k l ) l ).
We get clearly in the limit the positon defined by (32).

Conclusion

• This work takes its origin in the seminal paper of A. Its and V.B. Matveev in 1975 [START_REF] Its | Hill's operator with finitely many gaps[END_REF], in the study of V.B. Matveev in 1976 of abelian functions and solitons [START_REF] Matveev | Abelian functions and solitons[END_REF] and other papers like [START_REF] Matveev | Asymptotics of mulpositon-solution τ function of the Korteweg-de Vries equation and the supertransparency[END_REF], [START_REF] Matveev | Theory of positons[END_REF], [START_REF] Matveev | Multi positons solutions of the KdV equation. Positonpositon and soliton-positon interactions[END_REF], [START_REF] Matveev | Positon-positon and soliton-positon collisions : KdV case[END_REF], [START_REF] Matveev | Positon : slowly decreasing analogues of solitons[END_REF]. This result is based on two remarks. First, it was essential to express the degenerate θ function into an explicit Fredholm determinant; this remark was initiated by the works of Kirillov and Van Diejen [START_REF] Van Diejen | Kirillov Determinantal formulas for zonal spherical functions on hyperboloids[END_REF]. The second step was to get the transformation of the Fredholm determinant into a Wronskian.

• As a byproduct, we get the result for the case of a soliton; it is more simple.

If we want to get the following soliton u = 2∂ 2 x ln W (φ 1 , . . . , φ l ),

we consider a Riemann surface of genus g = l.

We choose E j real such that E m < E j if m < j.

We consider K i > 0, for 1 ≤ m ≤ g. We choose the following limits : E 1 tends to 0. for 1 ≤ i ≤ l, E 2i , E 2i+1 tends to -α i = K 2 i ; Then we get clearly in the limit the soliton defined by (35).

• We can also mentioned that we can get the famous DPT potential.

Let n and d be some non negative integers, m = n + d, If we choose the coefficients K j defined by

K p = p, if d = 0 , 1 ≤ p ≤ m -n, K j = n -m + 2j, if n = 0 , m -n + 1 ≤ j ≤ m,
Taking t = 0 and x j = 0, then u = 2∂ 2 x ln W (φ 1 , . . . , φ m ), is exactly the DPT potential m(m + 1) sin 2 (x) + n(n + 1) cos 2 (x) .

Its a consequence of a previous work. We refer the reader to the paper [START_REF] Gaillard | Wronskian addition formula and its applications[END_REF] for the details or to an another forthcoming publication containing a different approach.