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Abstract
We degenerate the finite gap solutions of the KdV equation from
the general formulation in terms of abelian functions when the gaps
tends to points, to recover solutions of KdV equations given a few
years ago in terms of wronskians called solitons or positons. For this
we establish a link between Fredholm determinants and Wronskians.

1 The KdV equation and solutions in terms
of theta functions

We consider the Riemann surface I' represented by UJ_ azbra; b, " of the
algebraic curve defined by w? = H?f{l(z — Ej), with E; # Ey, j # k. Let D
be some divisor D = >39_, P;, P; € I'. The so-called finite gap solution of
the KAV equation

can be expressed in the form

d2
u(z,t) = —2@ Inf(zg+tv+1)+C. (2)
We recall briefly, the notations. In (2), 6 is the Riemann function defined by
0(z) = > exp{mi(Bkl|k) + 2mi(k|z)}, (3)
keZ9



constructed from the matrix of the B-periods of the surface I', and the vectors
g, v, | are defined by

gj = 2icj, (4)
ci 2g+1
v; = 82(% Z Ey + cja), (5)
k=1
g P ] 1 g
lj:—Z/ dUj+5 = 5 > Bus (6)
k=1"° k=1
2g+1 g

C= 3 Be-2) [ zduy, (7)
k=1 k=1

the coefficients cj;, being relating with abelian differential dU; by

g —k
Zk:1 Cjkzg

2g+1 dz, (8>
v (2 — Eg)

dU; =

and coefficients c;j;, can be obtained by solving the system of linear equations

/dezjk, 1<j<g 1<k<g
ag

2 Degeneracy of solutions

We suppose that E; are real, F, < E; if m < j and try to evaluate the limits
of all objects in formula (2) when Es,,, Foy,y1 tends to —a,, —a, = K2,

km > 0, for 1 <m < g, and E; tends to 0.

2.0.1 Limit of P(z) = [[721'(z — E})

j=1

The limit of P(z) = H?f{l(z—Ej) is evidently equal to P(z) = z [ (240ay)?

2.0.2 Limit of dU,, — 2=t tm:= " g

iiﬁl(z—Ek)
.. . T pm(z) _ g ~ —k
The limit of dU,, is equal to dU,, = NG ) (e dz, where @, (2) = >0 _1 Crz?™".

The normalization condition takes the form in the limit

/ aU; — 2mip;(—ay)
ax Kt e (Qm — i)

= Oy, (9)
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which proves that the numbers —a,,, m # k are the zeros of the polynomials

¢r(2), and so px(2) can be written as wi(2) = 1 [Lnze(2 +am). By (9), we

get in the limit
- R
Cpp = ——.
w 211

So
Rk

dU, =
" omi/z(z + ap)

dz

2.0.3 Limit of v, and g,

By identification of the powers of 2972 in (10)

g .
Gr=cn [[(z+ ) => 2?7, (10)
I#k j=1

we get in the limit
g
Cr1 Y~y + Cpp = o
=1
So we have the limit values of vy and gy :

4
~ 3
Vi —K
ok
and
5 1
gk = —K
ok

2.0.4 Limit of U;(P) and B,

For \g = —a,, = —k2,, [ = ffo dU, — %Bmk The integral I can be easily
evaluate along the real axis on the upper sheet of surface I' and we get

Km + K

Rm — Kk '

[—>Lln
2T

So we have the limit values of matrix B :
Km + Kk
K — Kk |

Bmk = i111

T

So 1By, tends to —oo. As previously, we have

v = V3|

dU ——1
- n Kj+ /2P
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2.0.5 Limit of argument of exponential in 0(p)

Let us denote A the argument of 0(p) = Y jczs exp{mi(Bkl|k) + 2mi(k|p)}.
A can be rewritten in the form

—mZBj]k 1) +2mi > Bijkmk; +Zm 2p; + Bjj)k;.  (12)
Jj=1 i>m j=1
Using the inequality k;j(k; — 1) > 0 for all k € Z9 and the fact that By
tends to —oo, we can reduce the limit 6 of 6(p) to a finite sum taken over
vectors k € Z9 such that each k; must be equal to 0 or 1.
So, A can be rewritten in the form

—mZB]Jk 1) +2mi > Bpjkmk; +Zk 2mi(gjx + v;t)
7j=1 j>m 7j=1
g
i ]+22/ dU; + 3 By)l.
k=1 m#j

In other words

—mZBJJk 1)+ 270 > Bpjkmk; +Zk Q;,
7j=1 j>m J=1
with
Qj = 2mi(g;x + vit) + 5;
and

B = —mi( j—I—QZ/ dU—i—ZBmJ

m#j
The quantity 3; has a finite limit value ﬂj independent from z and ¢.

2.0.6 Limit of 6(p)

By means of the inequality K;(K; — 1) > 0 for all K € Z8 and the previous
relation 1By, tends to —oo, it turns out that the limit 6 of O(xg + tv + 1)
reduce to a finite sum taken over vectors k € Z# with the property that each
k; must be equal to 0 or 1.

0 = > exp{Zan -

k€Z9,k;j=00r1 m>j

k’ kj+1 2253x+8/£t+2f§]x]+7r]
7j=1




m#j Fom = Ry
with ,
1 Kj — 2k
= 1. — N n |
% = (1) 2ir, ,; e+ vE
It can be reduced to
0= > ] iy ¥ Fo > exp 2i(kx + 4k3t + k). (13)
Je{l,...g} jeJ jed kgs 115 T Bkl jeg

3 1-positon of order 1
A 1-positon of order 1 is given by (see [11]),
— 202 log W (6, 90,
where W is the classical wronskian, and ¢ the function
¢ = ¢(z, K) = sin(K(z + 7, (K) + 4K*t))

In this case 1
W = 5(sin2@ —2K7),

where © = K(z + z1(K) + 4K?t) and v = 9x©.
We consider here a Riemann surface of genus 2.
Using the previous section, when we take the limit as F; tend to KJ2 the

function 6 tends to § which takes the form

0 =1 — L2580 oxp 20K + 4Kt + K2y (K))) + 52550 exp 2i( Ky + 4K3t + Koa(K))

— exp 22((K1 + Kg) + 4(K3 + Kg)t + lel(Kl) -+ KziCQ(KQ)).

It can be rewritten as

9 =14+ (K2 + K )eXPQZ(K2+4K3t+K2z2(K2)) —exp 2i( K1 +4Kt+ Kz (K1))

14

—eXpQZ((Kl—|—K2)—|—4(K3—|—K3)t+K1I1(K1)—|—K2I2(K2)) ( )
Now, it is clear that when K5 tends to K7 = K, we get

0 =1+ 2Kiexp(2i0)2i0x0 — exp(4iO). (15)
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It can be reduced to
0 = —2i exp(2i0)(sin 20 — 2K~) = —4iexp(2i0©) x W. (16)
Since O is a linear function of x, we recover exactly the 1-positon

16K?sin O(sin © — K cos ©)

. _ 99210 — _992 =
u(z,t) = =207In6 = —202W (¢, , 0 0) (51020 — 2K~)2

4 1-positon of order 2

We define a 1-positon of order 2 by (see [11]),
w = =202 log W (6, O, 05:0),
where W is the classical wronskian, and ¢ the function
¢ = ¢(x, K) = sin(K(z + 2, (K) + 4K*t))
In this case
W = 4v*K?cos © — 2Kvsin © — 48 K>3t sin © — sin 20 sin O,

where © = K(z + 21(K) + 4K?t) and v = 9k ©.

Here we consider a Riemann surface of genus 3.

We can write the function 6 using the previous section. When we take the
limit as £ tend to KJ2 the function # tends to § which takes the form

= 1 Bt |\ Kbl | oy 9K + AKE + K21 (K))

0

+ % % exp 2i( Ky + 4Kt + Kozo(K))
( (
( (
( (

— | 1T | exp 20( K3 + 4K3t + Kyrs(K))
— || KR exp 20 (K + 4Kt + K (K) + Ko + 4K3t + FKows(K))

R | | FEH  exp 20(Ky + 4Kt + Ky (K) + Ky + 4K5t + Kaag(K)

— | R | exp 20Ky + 4K3t + Kowo(K) + Ky + 4K3t + Kars(K))

+exp 2i(K; + 4Kt + K21 (K) + Ky + 4K3t + Kozg (K) + K3 + 4Kt + Kzx3(K))

Now, it is clear that when K, and K3 tends to K| = K, we get

0 =1 — exp(2i0) — 2K?(—4~% + 48i K~t) exp(2i0) — 4i K~y exp(2i0) + 16 K272 exp(4i0O)
— exp(4i0) + exp(6:0) + 4i Ky exp(4i0) + 2K?(—472 + 48ivKt) exp(4i0).
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It can be reduced to
0 = —4exp(3i0) (472 K% cos © — 2K ysin © — 48 K>t sin © — sin 20sin ©).(17)
As © is linear in z, we recover exactly the 1-positon of order 2

u(w,t) = =207 0 = =20 W (9, 0, 05:9).

5 From Theta to Wronskian

5.1 From Theta to Fredholm

In a recent paper, Kirillov and Van Diejen [19] have given determinantal
formulas for zonal spherical functions on hyperboloids. In particular, they
compute det(/ + A), where [ is the unit matrix and A = (a;r)1<jr<m the
matrix defined as :

QEjKj

:Kj+Kkg

Kj+Kl
Kj—Kl

Qjk exp(—2K;x), (18)

where €; € {—1;+1}.
Then det(/ + A) has the following form

det(I+A)= > Jle¢ 11

JC{l,..,NYi€]  jeTk¢]

We consider the following modified determinant det(l + A) where A =
(ajk)1<jk<m is the matrix defined as :

C2A-1YK; | K+ K

ajr = Kj+ Ky i | K — K

Kj—l-Kk

K, — K, exp(—2z ) K;). (19)

jeJ

exp(i(2K x4+ 8Kt + 2K x;5), (20)

where z; in an arbitrary parameter.
Using the same strategy, we can compute det(/ + A) which has the following
form

det(I+4)= > JI-1 ]I

Jc{1,...,.N}ieJ jeJk¢J

Kj—i-Kk

If we compare this expression to (13), we have clearly the equality
0 = det(I + A). (22)

It remains to find the link between this Fredholm determinant and a certain
wronskian.



5.2 From Fredholm to Wronskians

In this section, we consider the following functions
¢;(x) = sin(Kjz + 4Kt + K;x;), (23)

where K; are real numbers such that K; < ... < Ky, and z; an arbitrary
constant independent of x.

We use the following notations :

Qj = Kjl’ + 4Kj3t + Kjﬂfj.

W =W(¢;,...,¢n) is the classical Wronskian W = det[(87¢;);, jen

.....

(—1)/2K;

_ - 3
— mexp 2i(Kjr + 4Kt + Kjxj). (24)

Qi

Then we have the following statement

Theorem 5.1

N R exp(i Zéyzl 6;)

A T T R 0 - k)
j=2 Lli= i

W(o1,...,on) (25)

Proof : We start to remove the factor (2i)~'e? in each row j in the

Wronskian W for 1 <j < N.

Then
N .
W =[] e 2i)™ x W, (26)
j=1
with
(1—e ™) QK (1—e™) o (KN (1 —e720)
| (e (e (RN (L= e
1 — . . . .
(1—e20n) Kyl —e ) . (iKy)V 11 —e??)

The determinant W; can be written as

W1 = det(ozjkej + ﬂjk),



where g, = (=1)*(iK;)"", e; = e7% and [, = (iK;)"".
The determinant U = det(a;y)) is clearly equal to

N(N+1) N(N—1)
2 2

U=(-1) (49) I (K -Kp,). (27)

N>I>m>1

Then we use the following Lemma

of B
Then

det(Hw)

det(aijxi + sz) = det(aij) X det(éz-jxi +
az-j

) (28)

Proof : For A the matrix of cofactors of A, we have the well known formula

A xt A= det Al

So it is clear that det(A) = (det(A))N1.

The general term of the product (¢;;); je,.,. Ny = (@i + bij)i,je[l,..,N] X (Aji)ijel,. . N]
can be written as

Cij = Zi\le(aisxi + bis) X Ajs

= Zs],il a;sAjs + Zévzl bisAjs

= §;j det(A)x; + det(H,;).

We get

det(ci;) = det(agm; + b)) X (det(A)N1 = (det(A))N x det(dyz; + iy,

det(A)
de Hz'j
r;hus det(aijz; + bi;) = det(A) x det(d;;2; + dZE(A))>‘

Using the previous lemma (28), we get :

det(Hw)

det(ozijei -+ ﬂzj) = det(&ij) X det(dijyci + o
ij

)

where (Hjj); jen,...n is the matrix formed by replacing the jth row of U by
the ith row of V' defined previously.

We compute det(H;;) and we get

det(Hy) = ()" = @) T T (- K [T — K) T(K — K0)(29)

N>I>m>11#£], m#j I<j I>j



det(Hij) .
det(ayy)

(—1) Ty (Ko + Ky)
(=) Ty (K — K)
(1)K T (K + Ky

(K + Ki) [T (K — Ky)
(C192Ky o | Ko+ K
T Ky A K K

So, we can simplify the quotient ¢ =

14k

So det(d,,e; + %}f")) can be expressed as
jk

det(H N (—1)72K}
det(8pe; + ———2%) 2105 et (85 + otk
Y %k: U (K + Ky lg

K, + Kk
K, — K

H 220.

Then dividing each column &k by K, 1 < k < N and multipling each row j
by K;,1<j <N, we get

det(H N (—1)72K; K + Ky Kk
det(dpe; + ———% 205 det (6, + bt 2105
( JjkCj a]k ]1_[1 Jk (Kj + Kk)) H
and therefore
det(H N
det(djpe; + —— 2y = T e 2% det(I + A).
O‘Jk j=1
The Wronskian can be written as
N 1 y N j—1 N
W(gbl, ol ng) — H 619_7(2i)—N(_1)N(N+ ) N(N ) H H —2i0; det ]—I—A)
Jj=1 j=2i=1 j=1
It follows that
i SN 05 (o N [ NAED)
e —i=17(2)V (1) 2
det(l + A) = (2)70) W(o1,...,0n) (31)

NLTEZ (K — K)
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6 Conclusion

e Now it is clear how to get multi-positons. It is the same strategy used
for the preceding examples.
If we want to get the following general positon

w=22mW(dy,.... 6% by 65 g, oM, (32)

we consider a Riemann surface of genus g = 22:1 ki + 1.

As defined in the first section, we suppose that E; are real, E,, < E;
if m < j and we evaluate the limits of all objects in formula (2).

We consider K; > 0, for 1 < m < g such that K, < K if m < j. We
choose the following limits :

FE; tends to O.

for 1 <i<ky+1, Ey, Eyq tends to —a; = K3,

for 1 <i <ko+1, Eapy1)+2i, Eogr+1)+2i41 tends to —an = K3;

we continue until;

for 1 <4 < ki + 1, Esgysobyy+1-1)42i> Eo(ky+..ky_1+1—-1)+2i+1 tends to

—Q = K 12 .
From the result (25), we get clearly in the limit the positon defined by
(32).

e For the case of a soliton, it is more simple.
If we want to get the following soliton

u:28§lnw(¢17"'7¢l)7 (33)

we consider a Riemann surface of genus g = .

We choose Ej real such that £, < E; if m < j.

We consider K; > 0, for 1 < m < g. We choose the following limits :
FE; tends to O.

for 1 <1 <, Ey;, Fyiyq tends to —a; = Kf;

Then we get clearly in the limit the soliton defined by (33).

e We can also get the DPT potential.
Let n and d be some non negative integers, m = n + d, If we choose
the coefficients K; defined by

K,=p, if d#0, 1<p<m-—n,

11



Ki=n—-m+2j, if n#0, m-n+1<j<m,

Taking t = 0 and x; = 0, then u = 202In W (¢, ..., d,), is exactly the
DPT potential
m(m+1)  n(n+1)
sin?(x) cos?(z)

We refer the reader to the paper [4] for the details or to an another
forthcoming publication containing a different approach.
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