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Abstract

Graphs provide an efficient tool for object representation in various com-
puter vision applications. Once graph-based representations are constructed,
an important question is how to compare graphs. This problemis often for-
mulated as a graph matching problem where one seeks a mappingbetween
vertices of two graphs which optimally aligns their structure. In the classical
formulation of graph matching, only one-to-one correspondences between
vertices are considered. However, in many applications, graphs cannot be
matched perfectly and it is more interesting to consider many-to-many cor-
respondences where clusters of vertices in one graph are matched to clusters
of vertices in the other graph. In this paper, we formulate the many-to-many
graph matching problem as a discrete optimization problem and propose
an approximate algorithm based on a continuous relaxation of the combi-
natorial problem. We compare our method with other existingmethods on
several benchmark computer vision datasets.

1 Introduction

Graphs provide a convenient and efficient tool for object representation in various
computer vision applications. An image or an object in an image can typically

1



be represented by a segmentation, contours, shock graph, orinterest points (see,
e.g., [2]). Once a graph representation is chosen, a fundamental question that of-
ten arises is that ofcomparing graphs in order to compare images or objects. In
particular, it is important in many applications to assess quantitatively the simi-
larity between graphs (e.g., for applications in supervised or unsupervised clas-
sification), and to detect similar parts between graphs (e.g., for identification of
interesting patterns in the data).

Graph matching is one approach to perform these tasks. In graph matching,
one tries to “align” two graphs by matching their vertices insuch a way that most
edges are conserved across matched vertices. Graph matching is useful both to
assess the similarity between graphs (e.g., by checking howmuch the graphs differ
after alignment), and to capture similar parts between graphs (e.g., by extracting
connected sets of matched vertices). This graph matching framework has many
applications in computer vision, e.g., to match 2D or 3D shapes [3–5], or to match
deformable objects [6], where methods based on linear or projective transforms
usually fail [7].

Classically, only one-to-one mappings are considered in graph matching. In
other words, each vertex of the first graph can be matched to only one vertex of the
second graph, and vice-versa1. This problem can be formulated as a discrete op-
timization problem, where one wishes to find a one-to-one matching which max-
imizes the number of conserved edges after alignment. This problem is NP-hard
for general graphs, and remains impossible to solveexactly in practice for graphs
with more than 30 vertices or so. Therefore much effort has been devoted to the
development of approximate methods which are able to find a “good” solution in
reasonable time. These methods can roughly be divided into two large classes.
The first group consists of various local optimization algorithms on the set of per-
mutation matrices, includingA∗-Beam-search [8] and genetic algorithms.The sec-
ond group consists in solving a continuous relaxation of thediscrete optimization
problem, such as theℓ1-relaxation [9], the Path algorithm [10], various spectral
relaxations [5,11–14] or power methods [6].

In practice, we are sometimes confronted with situations where the notion of
one-to-one mapping is too restrictive, and where we would like to allow the pos-
sibility to match groups of vertices of the first graph to groups of vertices of the
second graph. We call such a mappingmany-to-many. For instance, in computer
vision, the same parts of the same object may be represented by different numbers

1Note that with the introduction of dummy nodes, one may matcha vertex of the first graph to
up to one vertex of the second graph (see, e.g., [3])
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of vertices depending on the noise in the image or on the choice of object view,
and it could be relevant to match together groups of verticesthat represent the
same part. From an algorithmic point of view, this problem has been much less
investigated than the one-to-one matching problem. Some one-to-one matching
methods based on local optimization over the set of permutation matrices have
been extended to many-to-many matching, e.g., by considering the possibility to
merge vertices and edges in the course of optimization [15,16]. Spectral methods
have also been extended to deal with many-to-many matching by combining the
idea of spectral decomposition of graph adjacency matriceswith clustering meth-
ods [12,17]. However, while the spectral approach for one-to-one matching can
be interpreted as a particular continuous relaxation of thediscrete optimization
problem [11], this interpretation is lost in the extension to many-to-many match-
ing. In fact, we are not aware of a proper formulation of the many-to-many graph
matching problem as an optimization problem solved by relaxation techniques.

Our main contribution is to propose such a formulation of themany-to-many
graph matching problem as a discrete optimization problem,which generalizes
the usual formulation for one-to-one graph matching (Section 2), and to present
an approximate method based on a continuous relaxation of the problem (Sec-
tion 3). The relaxed problem is not convex, and we solve it approximately with
a conditional gradient method. We also study different waysto map back the
continuous solution of the relaxed problem into a many-to-many matching. We
present experimental evidence in Section5, both on simulated and simple real
data, that this formulation provides a significant advantage over other one-to-one
or many-to-many matching approaches.

2 Many-to-many graph matching as an optimiza-
tion problem

In this section we derive a formulation of the many-to-many graph matching prob-
lem as a discrete optimization problem. We start by recalling the classical ex-
pression of the one-to-one matching problem as an optimization problem. We
then show how to extend the one-to-one formulation to the case of one-to-many
matchings. Finally we describe how we can define many-to-many matchings via
two many-to-one mappings.

One-to-one graph matching. LetG andH be two graphs withN vertices (if the
graphs have different numbers of vertices, we can always adddummy nodes with
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no connection to the smallest graph). We also denote byG andH their respective
adjacency matrices, i.e, square{0, 1}-valued matrices of sizeN×N with element
(i, j) equal to1 if and only if there is an edge between vertexi and vertexj.

A one-to-one matching betweenG andH can formally be represented by a
N × N permutation matrixP , wherePij = 1 if the i-th vertex of graphG is
matched to thej-th vertex of graphH, andPij = 0 otherwise. Denoting by‖ · ‖F
the Frobenius norm of matrices, defined as‖A‖2F = trA⊤A = (

∑
i

∑
j A

2
ij), we

note that‖G − PHP⊤‖2F is twice the number of edges which are not conserved
in the matching defined by the permutationP . The one-to-one graph matching
problem is therefore classically expressed as the following discrete optimization
problem:

min
P

||G− PHP⊤||2F subject toP ∈ Poto, with

Poto={P ∈ {0, 1}N×N, P1N =1N , P
⊤1N =1N},

(1)

where1N denotes the constantN-dimensional vector of all ones. We note that
Poto simply represents the set of permutation matrices. The convex hull of this set
is the set of doubly stochastic matrices, where the the constraintP ∈ {0, 1}N×N

is replaced byP ∈ [0, 1]N×N .

From one-to-one to one-to-many. Suppose now thatG has less vertices thanH,
and that our goal is to find a matching that associates each vertex ofG with one
or more vertices ofH in such a way that each vertex ofH is matched to a vertex
of G. We call such a matchingone-to-many (or many-to-one). The problem of
finding an optimal one-to-many matching can be formulated asminimizing the
same criterion as (1) but modifying the optimization set as follows:

Potm(NG, NH) = {P ∈ {0, 1}NG×NH ,

P1NH
≤ kmax1NG

, P1NH
≥ 1NG

, P⊤1NG
= 1NH

} ,

whereNG denotes the size of graphG,NH denotes the size of graphH, andkmax
denotes an optional upper bound on the number of vertices that can be matched to
a single vertex. As opposed to the one-to-one matching case,each row sum ofP
is allowed to be larger than one, and the non-zero elements ofthe i-th row ofP
corresponds to the vertices of graphH which are matched to thei-th vertex ofG.

Most of existing continuous relaxation techniques may be adopted for one-
to-many matching. For example, [14] describes how spectral relaxation methods
may be used in the case of one-to-many matching. Other techniques like convex
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relaxation [10] may be used as well since the convex hull ofPotm is also obtained
by relaxing the constraintP ∈ {0, 1}N×N to P ∈ [0, 1]N×N .

From one-to-many to many-to-many. Now to match two graphsG andH un-
der many-to-many constraints we proceed as if we matched these two graphs to a
virtual graphS under many-to-one constraints, minimizing the differencebetween
the transformed graph obtained fromG and the transformed graph obtained from
H. The idea of many-to-many matching as a double one-to-many matching is
illustrated in Figure1. GraphS (assumed to haveL vertices) represents the graph

Figure 1: Many-to-many matching betweenG andH via many-to-one matching
of both graphs to a virtual graphS.

of matched vertex clusters. Each vertex ofS corresponds to a group of vertices
of G and a group of vertices ofH matched to each other. LetP1 ∈ Pmto(L,NG)
denote a many-to-one matchingG → S, andP2 ∈ Pmto(L,NH) a many-to one
matchingH → S; we propose to formulate the many-to-many graph matching
problem as an optimization problem where we seekS, P1 andP2 which minimize
the difference betweenS andP1GP⊤

1 and betweenS andP2HP⊤

2 . The interme-
diate graphS may be squeezed out by considering directly the difference between
P1GP⊤

1 andP2HP⊤

2 . We end up with the following objective function for the
many-to-many graph matching problem:

F (P1, P2) = ||P1G
⊤

1 P
⊤

1 − P2HP⊤

2 ||2F , (2)

whereP1 ∈ Pmto(L,NG) andP2 ∈ Pmto(L,NH) denote two many-to-one map-
pings. The objective function (2) is similar to the objective function for the one-
to-one case (1). In (1), we seek a permutation which makes the second graphH as
similar as possible toG. In (2), we seekcombinations of merges and permutations
which makesG andH as similar as possible to each other. The only difference
between both formulations is that in the many-to-many case we add the merging
operation.
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There are two slightly different ways of defining the set of matrices over which
(2) is minimized. We can fix in advance the number of matching clustersL,
which corresponds to the size ofS, in which case the optimization set isP1 ∈
Pmto(L,NG) andP2 ∈ Pmto(L,NH). An alternative way which we follow in the
paper is to remove the constraintP1NG

≥ 1L from the definition ofPmto(L,NG),
in this case the method estimates itself the number of matching clusters (number
of rows with non-zero sum). Finally, we thus formulate the many-to-many graph
matching problem as follows:

min
P1,P2

||P1G
⊤

1 P
⊤

1 − P2HP⊤

2 ||2F subject to

P1 ∈ {0, 1}NK×NG , P11NG
≤ kmax1NK

, P⊤

1 1NK
= 1NG

,

P2 ∈ {0, 1}NK×NH , P21NH
≤ kmax1NK

, P⊤

2 1NK
= 1NH

,

(3)

whereNK = min(NG, NH) represents the maximal number of matching clusters.
This formulation is in fact valid for many kinds of graphs, inparticular graphs
may be directed (with asymmetric adjacency matrices), haveedge weights (with
real-valued adjacency matrices), and self-loops (with non-zero diagonal elements
in the adjacency matrices). We also describe in Section3 how this formulation
can be modified to include information about vertex labels, which are important
for computer vision (see, e.g., [3]).

3 Continuous relaxations of the many-to-many graph
matching problem

The many-to-many graph matching problem (3) is a hard discrete optimization
problem. We therefore need an approximate method to solve itin practice. In this
section we propose an algorithm based on a continuous relaxation of (3). For that
purpose we propose to replace the binary constraintsP1 ∈ {0, 1}NK×NG , P2 ∈
{0, 1}NK×NH by continuous constraintsP1 ∈ [0, 1]NK×NG , P2 ∈ [0, 1]NK×NH .
Note that if we had a linear objective function in(P1, P2), the continuous relax-
ation would be exact because we simply replace the optimization set by its convex
hull. However, our objective function (3) is quartic, and its optimum is in general
not an extreme point of the optimization set. To solve the relaxed optimization
problem we propose to use the following version of the conditional gradient (a.k.a.
Franck-Wolfe method [18]):

• Input: initial valuesP 0
1 andP 0

2 , t = 0,
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• Do

1. compute∇F (P t
1, P

t
2)

2. find the minimum of∇F (P t
1, P

t
2)

⊤(P1, P2) w.r.t. (P1, P2)

3. perform line search in the direction of the optimum found in Step 2,
assign the result toP t+1

1 , P t+1
2 , t = t+ 1

• Until |∆F |+ ||∆P1||F + ||∆P2||F < ε

• Output:P t
1, P t

2.

The minimization of a linear function in step 2, i.e.,minP ∇F (P t
1, P

t
2)

⊤(P1, P2)
is a version of the linear semi-assignment problem, and reduces to the classical
linear assignment problem by adding dummy nodes. We then have to solve a
linear assignment problem for akmax(NG+NH)×NH matrix, which can be done
efficiently by the Hungarian algorithm [19]. The solution of the line search step
can be found in closed form since the objective function is a polynomial of the
fourth order.

The conditional descent algorithm converges to a stationary point of (3) [18].
Because of the non-convex nature of the objective function,we can only hope to
reach a local minimum (or more generally a stationary point)and it is important
to have a good initialization. In our experiments we found that a good choice is
the fixed “uniform” initialization, where we initializeP1 by 1

NK
1NG

1⊤NH
andP2

by the identity matrixI. Another option would be to use a convex relaxation of
one-to-one matching [10].

Algorithm complexity is mainly defined by two parameters:N = kmax(NG +
NH) and ε. In general the number of iterations of the gradient descentscales
asO(κ

ε
) whereκ is the condition number of the Hessian matrix describing the

objective function near a local minima [18]. N has no direct influence on the
number of iterations, but it defines the cost of one iteration, i.e., the complexity of
the Hungarian algorithmO(N3).

Projection. Once we have reached a local optimum of the relaxed optimization
problem, we still need to projectP1 andP2 to the set of matrices with values in
{0, 1} rather than in[0, 1]. Several alternatives can be considered. A first idea is to
use the columns ofP1 andP2 to define a similarity measure between the vertices
of both graphs, e.g., by computing the dot products between columns. Indeed,
the more similar the columns corresponding to two vertices,the more likely these
vertices are to be matched if they are from different graphs,or merged if they are
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from the same graph. Therefore a first strategy is to run a clustering algorithm
(e.g., K-means or spectral clustering) on the column vectors of the concatenated
matrix (P1, P2) and then use the resulting clustering to construct the final many-
to-many graph matching.

An alternative to clustering is an incremental projection or forward selection
projection, which uses the matching objective function at every step. OnceP1 and
P2 are obtained from the continuous relaxation, we take the pair of vertices(g, h)
from the union of the graphs having the most similar column vectors in(P1, P2).
We then re-run the continuous relaxation with the new (linear) constraint that
these two vertices remain matched. We then go on and find the most similar pair
of vertices from the constrained continuous solution. Thisgreedy scheme can be
iterated until all vertices are matched.

In our experiments, the second approach produced better results. This is
mainly due to the fact that when we just run a clustering algorithm we do not
use the objective function, while when we use incremental projection we adapt
column vectors of unmatched vertices according to earlier established matchings.

Neighbor merging. In many cases, it can be interesting to favor the merging of
neighboring vertices, as opposed to merging of any sets of vertices. To that end
we propose the following modification to (3):

FN(P1, P2) = F (P1, P2)− trG⊤P⊤

1 P1 − trH⊤P⊤

2 P2.

The matrix productP⊤

1 P1 is aNG × NG matrix, with (i, j)-th entry equal to1
if i and j are merged into the same cluster. Therefore, the new components in
the objective function represent the number of pairs of adjacent vertices merged
together inG andH, respectively.

Local similarities. Like the one-to-one formulation, we can easily modify the
many-to-many graph matching formulation to include information on vertex pair-
wise similarities by modifying the objective function as follows:

Fλ(P1, P2) = (1− λ)F (P1, P2) + λtrC⊤P⊤

1 P2 , (4)

where the matrixC ∈ R
NG×NH is a matrix of local dissimilarities between graph

vertices, and parameterλ controls the relative impact of information on graph
vertices and information on graph structures. The new objective function is again a
polynomial of the fourth order, so our algorithm may still beused directly without
any additional modifications.
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4 Related methods

There exist two major groups of methods for many-to-many graph matching,
which we briefly describe in this section. The first one consists of local search
algorithms, generally used in the context of the graph edit distance, while the
second one is composed of variants of the spectral approach.

Local search algorithms. Examples of this kind of approach are given in [15]
and [16]. In the classical formulation of the graph edit distance, the set of graph
edit operations consists of deletion, insertion and substitution of vertices and
edges. Each operation has an associated cost, and the objective is to find a se-
quence of operations with the lowest total cost transforming one graph into an-
other. In the case of many-to-many graph matching, this set of operations is com-
pleted by merging (and splitting if necessary) operations.Since the estimation
of the optimal sequence is a hard combinatorial problem, approximate methods
such as beam search [8] as well as other examples of best-first, breadth-first and
depth-first searches are used.

Spectral approach. Caelli and Kosinov [12] discuss how spectral matching
may be used for many-to-many graph matching. Their algorithm is similar to the
Umeyama method [11] but instead of one-to-one correspondences, they search a
many-to-many mapping by running a clustering algorithm. Inthe first step, the
spectral decomposition of graph adjacency matrices is considered

G = VGΛGV
⊤

G , H = VHΛHV
⊤

H . (5)

Rows of eigenvector matricesVG andVH are interpreted as spectral coordinates
of graph vertices. Then vertices having similar spectral coordinates are clustered
together by a clustering algorithm, and vertices grouped inthe same cluster are
considered to be matched.

Another example of spectral approach is given in [17] where, roughly speak-
ing, the adjacency matrix is replaced by the matrix of shortest path distances, and
then spectral decomposition with further clustering is used.

5 Experiments

In this section we compare the new method proposed in this paper with existing
techniques (beam-search and spectral approach). We thus test three competitive
approaches on several experiments: beam-search “Beam” (A*-beam search from
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[8]), the spectral approach “Spec” [12], and our new gradient descent method
“Grad” (from Section3).

5.1 Synthetic examples

In this section, we compare the three many-to-many graph matching algorithms
on pairs of randomly generated graphs with similar structures. We generate graphs
according to the following procedure: (1) generate a randomgraphG of sizeN ,
where each edge is present with probabilityp, (2) build a randomly permuted copy
H of G, (3) randomly split the vertices inG (and inH) by taking a random vertex
in G (and inH) and split it into two vertices (operation repeatedM times), (4)
introduce noise by adding/deletingσ × p×N2 random edges in both graphs.

As already mentioned, our principal interest here is to understand the behavior
of graph matching algorithms as a function of the graph sizeN , and their ability
to resist to structural noise. Indeed, in practice we never have identical graphs and
it is important to have a robust algorithm which is able to deal with noise in graph
structures. The objective functionF (P1, P2) in (3) represents the quality of graph
matching, so to compare different graph matching algorithms we plotF (P1, P2)
as a function ofN (Figure2a), andF (P1, P2) as a function ofσ (Figure2b) for
the three algorithms. In both cases, we observe that “Grad” significantly outper-
forms both “Beam” and “Spec”. “Beam” was run with beam width equal to 3,
which represents a good trade-off between quality and complexity, “Spec” was
run with projection on the first two eigenvectors with the normalization presented
in [12]2. Figure2c shows how algorithms scale in time with the graph sizeN . The
“Spec” algorithm is the fastest one, but “Grad” has the same complexity order as
“Spec” (corresponding curves are almost parallel lines in log-log scale, so both
functions are polynomials with the same degree and different multiplication con-
stants), these curves are coherent with theoretical valuesof algorithm complexity
summarized in Section3. The “Beam” algorithm is much slower, and it also has
worse complexity order.

5.2 Chinese characters

In this section wequantitatively compare many-to-many graph matching algo-
rithms as parts of a classification framework. We use graph matching algorithms

2“Spec” variants with three and more eigenvectors were also tested, but two eigenvectors pro-
duced almost the same matching quality and worked faster.
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Figure 2: (a)F (P1, P2) (mean value over 30 repetitions) as a function of graph size
N , simulation parameters:p = 0.1, σ = 0.05,M = 3. (b)F (P1, P2) (mean value
over 30 repetitions) as a function of noise parameterσ, simulation parameters:
N = 30, p = 0.1,M = 3. (c) Algorithm running time (mean value over 30
repetitions) as a function ofN (log-log scale), other parameters are the same as in
(a), “Beam” slope≈ 3.8, “Grad” slope≈ 2.5, “Spec” slope≈ 2.7.
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to compute similarity/distance between objects of interest on the basis of their
graph-based representations. As the classification problem, we chose the ETL9B
dataset of Chinese characters. This dataset is well suited for our purposes, since
Chinese characters may be naturally represented by graphs with variable non-
trivial structures.

Figure3 illustrates how “Grad” works on graphs representing Chinese char-
acters. We see that our algorithm produces a good matching, although not per-
fect, providing a correspondence between “crucial” vertices. The characters rep-
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Figure 3: Different writings of the same Chinese character and the matching
of the corresponding graphs made by “Grad”. Vertices havingthe same id’s are
matched to each other.

resented in Figure3 are however very easy to recognize, and most classification
algorithms show a good performance on them; for example, “Grad” produces a
classification error rate below0.2%. To test graph matching algorithms on more
challenging situations, we chose three “hard to classify” Chinese characters, i.e.,
three characters sharing similar graph structures, as illustrated in Table1. We
ran k-nearest neighbor (k-NN) with graph matching algorithms used as distance
measures. The dataset consists of 600 images, 200 images of each class.

Table1 shows classification results for the three many-to-many graph match-
ing algorithms. In addition we report results for other popular approaches, namely,
a SVM classifier with linear and Gaussian kernels, one-to-one matching with the
Path algorithm (taken from [10]) and two versions of the shape context method [3],
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with or without thin plate spline smoothing. The version named “shape con-
text” computes polar histograms with further bipartite graph matching. To run
the “shape context+tps” method we used code available online3.

Graph matching algorithms are run using information on vertex coordinates
through (2). The elements of the matrixC are defined asCij = e−(xi−xj)2−(yi−yj)2 .
The parameterλ in (2) as well ask (number of neighbors in k-NN classifier) are
learned via cross-validation. We see that the “Grad” algorithm shows the best
performance, outperforming other many-to-many graph matching algorithms as
well as other competitive approaches.

Table 1: Top: chinese characters from three different classes. Bottom: classifica-
tion results (mean and standard deviation of test error overcross-validation runs,
with 50 repetitions of five folds)

Method error STD

Linear SVM 0.377 ± 0.090
SVM with Gaussian kernel 0.359 ± 0.076
k-NN (one-to-one, Path) 0.248 ± 0.075
k-NN (shape context) 0.399 ± 0.081
k-NN (shape context+tps) 0.435 ± 0.092
k-NN (Spec) 0.254 ± 0.071
k-NN (Beam) 0.283 ± 0.079
k-NN (Grad) 0.191 ± 0.063

5.3 Deformable objects matching

One advantage of graph-based image alignment algorithms isthat they can be used
in problems with deformable objects. Figure4 shows how the “Grad” algorithm
aligns a pair of photos of spiders (for which the graphs have been constructed by
hand). These photos are taken from completely different viewpoints, which is a
significant difficulty for many existing image alignment approaches based on the
grouping of superpixels, such as [20, 21]. Some methods generate various rota-
tions or linear transforms of the same image and then take thebest alignment (see,

3http://www.eecs.berkeley.edu/vision/shape/
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e.g., [1, 7]), but such approaches are not possible here because of deformations.
Since image alignment should be rotation invariant we can not use the explicit ver-
tex coordinates to construct the matrixC as it was done in the previous section.
Instead, we use the shape context features [3]; namely, each vertex gets a feature
vector representing the polar histogram of the vectors joining this vertex to the
other graph vertices. To make the polar histogram rotation invariant, we align the
polar histograms by taking as an origin for angle the direction to the center of
mass of all graph vertices. Under such a setup, polar histograms are invariant with
respect to rotations around the graph center of mass.

We see in Figure4 that “Grad” figures out that the top of the first image cor-
responds to the bottom of the second image, for example, it groups two vertices
representing the left part of the second spider head and matches them to one ver-
tex of the left graph representing the same part in the first spider (vertices indexed
by number 10).

Figure 4: Illustration of rotation invariant matching madeby “Grad”. Original
spider photos with corresponding graph-based representations are given on the
left. On the right, two spider graphs are aligned by “Grad”. Vertices with the
same id’s are matched to each other.
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5.4 Identification of object composite parts

While the pattern recognition framework is interesting andimportant for the com-
parison of different graph matching algorithms, it evaluates only one aspect of
these algorithms, namely, their ability to detect similar graphs. A second and im-
portant aspect is their ability to correctly align verticescorresponding to the same
parts of two objects. To test this capability, we performed the following series
of experiments. We chose ten camel images from the MPEG7 dataset and we
divided by hand each image into 6 parts: head, neck, legs, back, tail and body
(Figure5). This image segmentation automatically defines a partitioning of the
corresponding graph shown in the column (c) in Figure5: all graph vertices are
labeled according to the image part which they represent. Figure5 gives two illus-
trations of how this procedure works. A good graph matching algorithm should
map vertices from corresponding image parts to each other, i.e., heads to heads,
legs to legs, and so on. Therefore to evaluate the matching quality of the mapping,
we use the following score. First, we match two graphs and then we try to predict
vertex labels of one graph given the vertex labels of the second one. For instance,
if vertex g1 of the first image is matched to verticesh1 andh2 representing the
head of the second image, then we predict thatg1 is of class “head”. The better
the graph matching, the smaller the prediction error and vice-versa.

(a) (b) (c) (d)

Figure 5: (a) Original images. (b) Manual segmentation (c) Graph-based repre-
sentation (obtained automatically from subsampled contours and shock graphs)
with induced vertex labels (d) Prediction of vertex labels on the basis of graph
matching made by “Grad”. Best seen in color.

This experiment illustrates a promising application of graph matching algo-
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rithms. Usually segmentation algorithms extract image parts on the basis of dif-
ferent characteristics such as changing of color, narrowing of object form, etc.
With our graph matching algorithm, we can extract segments which does not only
have a specific appearance, but also have a semantic interpretation defined by a
user (e.g., through the manual labelling of a particular instance).

Table 2 presents mean prediction error over 45 pairs of camel images(we
exclude comparison of identical images). Each pair has two associated scores:
prediction error of the first image given the second one and vice-versa. We thus
have 90 scores for each algorithm, which are used to compute means and standard
deviations. Like in the previous sections, graph matching algorithms are run using
information on vertex coordinates (using Eq. (2)), with Cij = e−(xi−xj)

2
−(yi−yj)

2

.
The parameterλ in (2) as well ask (number of neighbors in k-NN classifier) are
learned via cross-validation. Here, again we observe that the “Grad” algorithm
works better than other methods.

Table 2: Identification of object composite parts: mean and standard deviation
of prediction error (see text for details). Note that standard deviations are not
divided by the square root of the sample size (therefore differences are statistically
significant).

Grad Spec Beam One-to-one
Error 0.303 0.351 0.432 0.342
STD 0.135 0.095 0.092 0.094

6 Conclusion and Future work

The main contribution of this paper is the new formulation ofthe many-to-many
graph matching problem as a discrete optimization problem and the approximate
algorithm “Grad” based on a continuous relaxation. The success of the proposed
method compared to other competitive approaches may be explained by two rea-
sons. First, methods based on continuous relaxations of discrete optimization
problems often show a better performance than local search algorithm due to their
ability to better explore the optimization set with potentially large moves. Second,
the “Grad” algorithm aims to optimize a clear objective function naturally repre-
senting the quality of graph matching instead of a sequence of unrelated steps.

Besides a natural application of graph matching as a similarity measure be-
tween objects with complex structures, graph matching can also be used for ob-
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ject alignment. However, the structural noise usually encountered in graph-based
representations have slightly hampered its application tonatural images; but we
believe that the many-to-many graph matching framework presented in this paper
can provide an appropriate notion of robustness, which is necessary for computer
vision applications. Of course, this requires the validation of our approach with
graphs obtained from more cluttered images, which we are currently experiment-
ing with.
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