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Abstract

Graphs provide an efficient tool for object representatiovarious com-
puter vision applications. Once graph-based representaére constructed,
an important question is how to compare graphs. This proldesften for-
mulated as a graph matching problem where one seeks a mapgtingen
vertices of two graphs which optimally aligns their struetuln the classical
formulation of graph matching, only one-to-one correspougs between
vertices are considered. However, in many applicationsplig cannot be
matched perfectly and it is more interesting to considery¥tarmany cor-
respondences where clusters of vertices in one graph acheukto clusters
of vertices in the other graph. In this paper, we formulagerttany-to-many
graph matching problem as a discrete optimization probleoh @opose
an approximate algorithm based on a continuous relaxaficgheocombi-
natorial problem. We compare our method with other existimathods on
several benchmark computer vision datasets.

1 Introduction

Graphs provide a convenient and efficient tool for objectesentation in various
computer vision applications. An image or an object in angenaan typically



be represented by a segmentation, contours, shock grapitemgst points (see,
e.g., ]). Once a graph representation is chosen, a fundamentstignehat of-
ten arises is that afomparing graphs in order to compare images or objects. In
particular, it is important in many applications to assesangjtatively the simi-
larity between graphs (e.g., for applications in super/igeunsupervised clas-
sification), and to detect similar parts between graphs,(fagidentification of
interesting patterns in the data).

Graph matching is one approach to perform these tasks. phgratching,
one tries to “align” two graphs by matching their verticesuth a way that most
edges are conserved across matched vertices. Graph ngpishiseful both to
assess the similarity between graphs (e.g., by checkingvari the graphs differ
after alignment), and to capture similar parts betweenlgdp.g., by extracting
connected sets of matched vertices). This graph matchamgefwork has many
applications in computer vision, e.g., to match 2D or 3D glsgp-5], or to match
deformable objectss], where methods based on linear or projective transforms
usually fail [7].

Classically, only one-to-one mappings are consideredaplymatching. In
other words, each vertex of the first graph can be matchedymaoe vertex of the
second graph, and vice-vets& his problem can be formulated as a discrete op-
timization problem, where one wishes to find a one-to-onehiag) which max-
imizes the number of conserved edges after alignment. Thidgm is NP-hard
for general graphs, and remains impossible to sekaetly in practice for graphs
with more than 30 vertices or so. Therefore much effort hanlwkevoted to the
development of approximate methods which are able to findadysolution in
reasonable time. These methods can roughly be divided waddrge classes.
The first group consists of various local optimization aitjons on the set of per-
mutation matrices, including*-Beam-searcht] and genetic algorithms.The sec-
ond group consists in solving a continuous relaxation offikerete optimization
problem, such as thg-relaxation pP], the Path algorithm1(], various spectral
relaxations , 11-14] or power methods{].

In practice, we are sometimes confronted with situationsrerthe notion of
one-to-one mapping is too restrictive, and where we woldel o allow the pos-
sibility to match groups of vertices of the first graph to grswf vertices of the
second graph. We call such a mappmgny-to-many. For instance, in computer
vision, the same parts of the same object may be representifidrent numbers

Note that with the introduction of dummy nodes, one may matebrtex of the first graph to
up to one vertex of the second graph (see, e.g]) [



of vertices depending on the noise in the image or on the ehafiobject view,
and it could be relevant to match together groups of vertibas represent the
same part. From an algorithmic point of view, this problers haen much less
investigated than the one-to-one matching problem. Soree@ione matching
methods based on local optimization over the set of pernoataihatrices have
been extended to many-to-many matching, e.g., by conamgléne possibility to
merge vertices and edges in the course of optimizafiénlf]. Spectral methods
have also been extended to deal with many-to-many matchirgimbining the
idea of spectral decomposition of graph adjacency matviggsclustering meth-
ods [L2, 17]. However, while the spectral approach for one-to-one hiatccan
be interpreted as a particular continuous relaxation ofdikerete optimization
problem [L1], this interpretation is lost in the extension to many-taay match-
ing. In fact, we are not aware of a proper formulation of thenyaeo-many graph
matching problem as an optimization problem solved by @giar techniques.

Our main contribution is to propose such a formulation ofrireny-to-many
graph matching problem as a discrete optimization probl®hch generalizes
the usual formulation for one-to-one graph matching (®ect), and to present
an approximate method based on a continuous relaxationegbribblem (Sec-
tion 3). The relaxed problem is not convex, and we solve it appraséhy with
a conditional gradient method. We also study different wiysnap back the
continuous solution of the relaxed problem into a many-emynmatching. We
present experimental evidence in Sectigrboth on simulated and simple real
data, that this formulation provides a significant advaatager other one-to-one
or many-to-many matching approaches.

2 Many-to-many graph matching as an optimiza-
tion problem

In this section we derive a formulation of the many-to-margpdy matching prob-
lem as a discrete optimization problem. We start by reaalthre classical ex-
pression of the one-to-one matching problem as an optiroizgdroblem. We
then show how to extend the one-to-one formulation to the cd®ne-to-many
matchings. Finally we describe how we can define many-toymaeatchings via
two many-to-one mappings.

One-to-one graph matching. Let G andH be two graphs withV vertices (if the
graphs have different numbers of vertices, we can alwaysladuny nodes with



no connection to the smallest graph). We also denot@ byd H their respective
adjacency matrices, i.e, squdfe 1}-valued matrices of siz& x N with element
(1, 7) equal tol if and only if there is an edge between verieand vertex;.

A one-to-one matching between and H can formally be represented by a
N x N permutation matrixP, whereP;; = 1 if the ¢-th vertex of graph’ is
matched to thg-th vertex of graph¥{, andP;; = 0 otherwise. Denoting by - ||
the Frobenius norm of matrices, defined|af;. = trATA = (37, 3. A7), we
note that||G — PH P ||% is twice the number of edges which are not conserved
in the matching defined by the permutatiGnh The one-to-one graph matching
problem is therefore classically expressed as the follgwililscrete optimization
problem:

min |G — PHP'||% subject toP € P,,, with

(1)
Poo={P € {0, 1}V*N Ply=1y, P 1xy=1y},

wherely denotes the constan-dimensional vector of all ones. We note that
P.io SIMply represents the set of permutation matrices. Theeonull of this set

is the set of doubly stochastic matrices, where the the @inst® € {0, 1}V*V

is replaced by € [0, 1]V*V.

From one-to-one to one-to-many. Suppose now that has less vertices tha,
and that our goal is to find a matching that associates eatéxveirG with one

or more vertices off in such a way that each vertex af is matched to a vertex
of G. We call such a matchingne-to-many (or many-to-one). The problem of
finding an optimal one-to-many matching can be formulatechasmizing the
same criterion aslj but modifying the optimization set as follows:

Potm(Ne, Nig) = {P € {0, 1}V N,
Plny, < Emaelng, Plyy > Ing, Pl = 1y, ),

whereN denotes the size of grajgh Ny denotes the size of gragh, andkmax

denotes an optional upper bound on the number of verticésdindbe matched to

a single vertex. As opposed to the one-to-one matching easé, row sum of’

is allowed to be larger than one, and the non-zero elemeritgeaéfth row of P

corresponds to the vertices of grafihwhich are matched to theth vertex ofG.
Most of existing continuous relaxation techniques may bapgetl for one-

to-many matching. For examplée,4] describes how spectral relaxation methods

may be used in the case of one-to-many matching. Other gabsilike convex



relaxation [L0] may be used as well since the convex hulfR)f,,, is also obtained
by relaxing the constrain® € {0, 1}*¥ to P € [0, 1]V*V.

From one-to-many to many-to-many. Now to match two graph& and H un-
der many-to-many constraints we proceed as if we matchee tfne graphs to a
virtual graphS under many-to-one constraints, minimizing the differelpegveen
the transformed graph obtained frarand the transformed graph obtained from
H. The idea of many-to-many matching as a double one-to-maatghing is
illustrated in Figurel. GraphS (assumed to have vertices) represents the graph

Figure 1: Many-to-many matching betweénhand H via many-to-one matching
of both graphs to a virtual graph.

of matched vertex clusters. Each vertexStorresponds to a group of vertices
of G and a group of vertices aff matched to each other. L& € P,;,(L, N¢g)
denote a many-to-one matchigg— S, andP, € P,,(L, Ng) a many-to one
matchingH — S; we propose to formulate the many-to-many graph matching
problem as an optimization problem where we ségk; and P, which minimize

the difference betweefi and P,G P, and betweer$ and P, H P,. The interme-
diate graphS may be squeezed out by considering directly the differeeteden
PGP/ and ,HP,”. We end up with the following objective function for the
many-to-many graph matching problem:

F(Py, Py) = ||PGi P — RHP, |7, (@)

whereP, € Pu.(L, Ng) and Py € Ppo(L, Ny) denote two many-to-one map-
pings. The objective functior®) is similar to the objective function for the one-
to-one casel(). In (1), we seek a permutation which makes the second gkaph
similar as possible t&:. In (2), we seekcombinations of merges and permutations
which makes and H as similar as possible to each other. The only difference
between both formulations is that in the many-to-many caseaed the merging
operation.



There are two slightly different ways of defining the set otmeas over which
(2) is minimized. We can fix in advance the number of matchingtels L,
which corresponds to the size 8f in which case the optimization set 3 <
Puto(L, Ng) and P, € P,,io(L, Ny). An alternative way which we follow in the
paper is to remove the constraifit v, > 1, from the definition ofP,.;,(L, N¢),
in this case the method estimates itself the number of magatiusters (number
of rows with non-zero sum). Finally, we thus formulate thengr#éo-many graph
matching problem as follows:

min ||P,G| P, — P,HP,||% subjectto
1,472

Pe {0, 13V Ne PN < pae g, P v = Ing, (3)
P2 € {07 1}NK><NH7 P21NH S kmamlNK7 P2T1NK = 1NH )

whereN = min(Ng, Ny) represents the maximal number of matching clusters.
This formulation is in fact valid for many kinds of graphs, particular graphs
may be directed (with asymmetric adjacency matrices), leage weights (with
real-valued adjacency matrices), and self-loops (with-neno diagonal elements

in the adjacency matrices). We also describe in Se@ibow this formulation
can be modified to include information about vertex labelsiciv are important
for computer vision (see, e.g3]).

3 Continuous relaxations of the many-to-many graph
matching problem

The many-to-many graph matching probleB) (s a hard discrete optimization
problem. We therefore need an approximate method to solveractice. In this
section we propose an algorithm based on a continuous teleda (3). For that
purpose we propose to replace the binary constrdits {0, 1}¥x*Ve P, ¢
{0, 1}¥xxNr py continuous constraint®, € [0, 1|Vx*Ne | P, e [0, 1]NxxNn,
Note that if we had a linear objective function i/, 1), the continuous relax-
ation would be exact because we simply replace the optirizaét by its convex
hull. However, our objective functior8) is quartic, and its optimum is in general
not an extreme point of the optimization set. To solve thexadl optimization
problem we propose to use the following version of the coowl# gradient (a.k.a.
Franck-Wolfe method1€]):

e Input: initial valuesP and P, t = 0,
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e Do

1. computeVF (P, Pi)
2. find the minimum oV F(P!, PY) T (Py, Py) w.r.t. (P, P)

3. perform line search in the direction of the optimum foundsiep 2,
assign the result t&/ ™, Pit t =t + 1

o Until |AF| + ||AP|r + ||AR||F < €
e Output: P, PL.

The minimization of a linear function in step 2, i.eajnp VF(Pf, P (P, P,)

is a version of the linear semi-assignment problem, andcesito the classical
linear assignment problem by adding dummy nodes. We thea teagolve a
linear assignment problem forka,...(N¢ + Ny ) x Ny matrix, which can be done
efficiently by the Hungarian algorithm.f]. The solution of the line search step
can be found in closed form since the objective function i®lymomial of the
fourth order.

The conditional descent algorithm converges to a statjopaint of (3) [14].
Because of the non-convex nature of the objective functi@n¢an only hope to
reach a local minimum (or more generally a stationary p@nt] it is important
to have a good initialization. In our experiments we founat t good choice is
the fixed “uniform” initialization, where we initializé®, by NiKlNcleVH and P,
by the identity matrix/. Another option would be to use a convex relaxation of
one-to-one matchindL[)].

Algorithm complexity is mainly defined by two parametefés:= k4. (Ng +
Ny) ande. In general the number of iterations of the gradient desseales
asO(Z) wherer is the condition number of the Hessian matrix describing the
objective function near a local miniméad]. N has no direct influence on the
number of iterations, but it defines the cost of one iteratien, the complexity of
the Hungarian algorithr(N3).

Projection. Once we have reached a local optimum of the relaxed optiraizat
problem, we still need to projed?, and P; to the set of matrices with values in
{0, 1} rather than irj0, 1]. Several alternatives can be considered. A firstidea is to
use the columns aP; and P, to define a similarity measure between the vertices
of both graphs, e.g., by computing the dot products betwedmms. Indeed,
the more similar the columns corresponding to two vertittesmore likely these
vertices are to be matched if they are from different graphsjerged if they are



from the same graph. Therefore a first strategy is to run aering algorithm
(e.g., K-means or spectral clustering) on the column veabthe concatenated
matrix (P, P») and then use the resulting clustering to construct the firzadym
to-many graph matching.

An alternative to clustering is an incremental projectioricyward selection
projection, which uses the matching objective functiorvatg step. Oncé’ and
P, are obtained from the continuous relaxation, we take thegbaiertices(g, h)
from the union of the graphs having the most similar columetmes in(P;, P,).
We then re-run the continuous relaxation with the new (liheanstraint that
these two vertices remain matched. We then go on and find tisesimoilar pair
of vertices from the constrained continuous solution. Tneedy scheme can be
iterated until all vertices are matched.

In our experiments, the second approach produced betteltgesThis is
mainly due to the fact that when we just run a clustering atlgor we do not
use the objective function, while when we use incrementajegtion we adapt
column vectors of unmatched vertices according to earfit#ished matchings.

Neighbor merging. In many cases, it can be interesting to favor the merging of
neighboring vertices, as opposed to merging of any setsrtitgs. To that end
we propose the following modification t8)(

Fn(P, Py) = F(P,,P,) —ttG"P/ P, —trtH' P} P,.

The matrix product?’ P, is a Ng x Ng matrix, with (i, j)-th entry equal tal

if ¢ andj are merged into the same cluster. Therefore, the new comgire
the objective function represent the number of pairs of @djavertices merged
together inGG and H, respectively.

Local similarities. Like the one-to-one formulation, we can easily modify the
many-to-many graph matching formulation to include infatimn on vertex pair-
wise similarities by modifying the objective function adléovs:

E\(P, Py) = (1= NF(Py, P) + MrC P Py, (4)

where the matrixC € RYe*Nr js a matrix of local dissimilarities between graph
vertices, and parameter controls the relative impact of information on graph
vertices and information on graph structures. The new tlgefunction is again a
polynomial of the fourth order, so our algorithm may stilldseed directly without
any additional modifications.



4 Related methods

There exist two major groups of methods for many-to-manylgrenatching,
which we briefly describe in this section. The first one cassid local search
algorithms, generally used in the context of the graph ediiadce, while the
second one is composed of variants of the spectral approach.

Local search algorithms. Examples of this kind of approach are given iy
and [L€]. In the classical formulation of the graph edit distante, $et of graph
edit operations consists of deletion, insertion and stuigin of vertices and
edges. Each operation has an associated cost, and theivabjsdb find a se-
guence of operations with the lowest total cost transfognune graph into an-
other. In the case of many-to-many graph matching, thisfsgperations is com-
pleted by merging (and splitting if necessary) operatio§sice the estimation

of the optimal sequence is a hard combinatorial problemreqmate methods
such as beam searcf] fas well as other examples of best-first, breadth-first and
depth-first searches are used.

Spectral approach. Caelli and Kosinov 17] discuss how spectral matching
may be used for many-to-many graph matching. Their algorithsimilar to the
Umeyama methodL[l] but instead of one-to-one correspondences, they search a
many-to-many mapping by running a clustering algorithmthe first step, the
spectral decomposition of graph adjacency matrices isiderex

G =VaheVg, H=VgAgVy. (5)

Rows of eigenvector matricég; andV are interpreted as spectral coordinates
of graph vertices. Then vertices having similar spectrardmates are clustered
together by a clustering algorithm, and vertices groupetthénsame cluster are
considered to be matched.

Another example of spectral approach is givenlir] where, roughly speak-
ing, the adjacency matrix is replaced by the matrix of stsbpath distances, and
then spectral decomposition with further clustering isduse

5 Experiments

In this section we compare the new method proposed in thisrpajh existing
techniques (beam-search and spectral approach). We stusitee competitive
approaches on several experiments: beam-search “BearAiéAfm search from



[8]), the spectral approach “Spec?]], and our new gradient descent method
“Grad” (from Section3).

5.1 Synthetic examples

In this section, we compare the three many-to-many graplehimgg algorithms
on pairs of randomly generated graphs with similar striestuvWe generate graphs
according to the following procedure: (1) generate a randaaphG of size N,
where each edge is present with probabjity2) build a randomly permuted copy
H of G, (3) randomly split the vertices i@ (and in /) by taking a random vertex
in G (and in H) and split it into two vertices (operation repeatéttimes), (4)
introduce noise by adding/deletingx p x N? random edges in both graphs.

As already mentioned, our principal interest here is to ustded the behavior
of graph matching algorithms as a function of the graph 8izend their ability
to resist to structural noise. Indeed, in practice we neseelidentical graphs and
it is important to have a robust algorithm which is able toldéth noise in graph
structures. The objective functidn( P, P,) in (3) represents the quality of graph
matching, so to compare different graph matching algorithwve plotF' (P, P,)
as a function ofV (Figure2a), andF' (P, P,) as a function ot (Figure 2b) for
the three algorithms. In both cases, we observe that “Grigdifecantly outper-
forms both “Beam” and “Spec”. “Beam” was run with beam widtjual to 3,
which represents a good trade-off between quality and cexitg) “Spec” was
run with projection on the first two eigenvectors with thematization presented
in[12)2. Figure2c shows how algorithms scale in time with the graph $izéThe
“Spec” algorithm is the fastest one, but “Grad” has the saomepiexity order as
“Spec” (corresponding curves are almost parallel lineogilbg scale, so both
functions are polynomials with the same degree and diffareritiplication con-
stants), these curves are coherent with theoretical valiuglgorithm complexity
summarized in Sectio. The “Beam” algorithm is much slower, and it also has
worse complexity order.

5.2 Chinese characters

In this section wequantitatively compare many-to-many graph matching algo-
rithms as parts of a classification framework. We use graptichmrey algorithms

2“Spec” variants with three and more eigenvectors were astetl, but two eigenvectors pro-
duced almost the same matching quality and worked faster.

10
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Figure 2: (a)F' (P, P») (mean value over 30 repetitions) as a function of graph size
N, simulation parameterg.= 0.1,0 = 0.05, M = 3. (b) F'(P;, P») (mean value
over 30 repetitions) as a function of noise parametesimulation parameters:

N = 30,p = 0.1, M = 3. (c) Algorithm running time (mean value over 30
repetitions) as a function d¥ (log-log scale), other parameters are the same as in
(@), “Beam” slopex~ 3.8, “Grad” slopex 2.5, “Spec” slopex 2.7.



to compute similarity/distance between objects of inteogsthe basis of their
graph-based representations. As the classification prolle chose the ETL9B
dataset of Chinese characters. This dataset is well switeouf purposes, since
Chinese characters may be naturally represented by graphs/aviable non-
trivial structures.
Figure 3 illustrates how “Grad” works on graphs representing Chenesar-

acters. We see that our algorithm produces a good matchihgugh not per-
fect, providing a correspondence between “crucial” vedicThe characters rep-

Figure 3: Different writings of the same Chinese charactet #the matching
of the corresponding graphs made by “Grad”. \Vertices hatliegsame id’s are
matched to each other.

resented in Figur& are however very easy to recognize, and most classification
algorithms show a good performance on them; for exampleadGproduces a
classification error rate below2%. To test graph matching algorithms on more
challenging situations, we chose three “hard to classif§in€se characters, i.e.,
three characters sharing similar graph structures, astridited in Tablel. We

ran k-nearest neighbor (k-NN) with graph matching algonshused as distance
measures. The dataset consists of 600 images, 200 imagashotlass.

Table1 shows classification results for the three many-to-mangtyraatch-
ing algorithms. In addition we report results for other plapapproaches, namely,
a SVM classifier with linear and Gaussian kernels, one-®+oatching with the
Path algorithm (taken froni [J]) and two versions of the shape context methdd [

12



with or without thin plate spline smoothing. The version mahishape con-
text” computes polar histograms with further bipartitegranatching. To run
the “shape context+tps” method we used code available@nlin

Graph matching algorithms are run using information oneredoordinates
through ). The elements of the matriX are defined ag);; = ¢~ (*i—#)~(i—w)*,
The parametek in (2) as well ask (number of neighbors in k-NN classifier) are
learned via cross-validation. We see that the “Grad” athorishows the best
performance, outperforming other many-to-many graph hagcalgorithms as
well as other competitive approaches.

Table 1: Top: chinese characters from three different easBottom: classifica-
tion results (mean and standard deviation of test error ones-validation runs,
with 50 repetitions of five folds)

2 38 ¥

Method ‘enor‘ STD

Linear SVM 0.377| + 0.090
SVM with Gaussian kernel 0.359| 4+ 0.076
k-NN (one-to-one, Path) | 0.248| + 0.075
k-NN (shape context) 0.399| + 0.081
k-NN (shape context+tps)| 0.435| + 0.092

k-NN (Spec) 0.254| & 0.071
k-NN (Beam) 0.283| & 0.079
k-NN (Grad) 0.191| & 0.063

5.3 Deformable objects matching

One advantage of graph-based image alignment algorithimatithey can be used
in problems with deformable objects. Figuteshows how the “Grad” algorithm
aligns a pair of photos of spiders (for which the graphs haenlconstructed by
hand). These photos are taken from completely differewpaents, which is a
significant difficulty for many existing image alignment apaches based on the
grouping of superpixels, such as)[ 21]. Some methods generate various rota-
tions or linear transforms of the same image and then takiegsiealignment (see,

Shtt p: // ww. eecs. ber kel ey. edu/ vi si on/ shape/
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e.g., [L, 7]), but such approaches are not possible here because ofragions.
Since image alignment should be rotation invariant we cans®the explicit ver-
tex coordinates to construct the matéixas it was done in the previous section.
Instead, we use the shape context featutgsnpmely, each vertex gets a feature
vector representing the polar histogram of the vectorsrgithis vertex to the
other graph vertices. To make the polar histogram rotatigariant, we align the
polar histograms by taking as an origin for angle the dicecto the center of
mass of all graph vertices. Under such a setup, polar hestegare invariant with
respect to rotations around the graph center of mass.

We see in Figurd that “Grad” figures out that the top of the first image cor-
responds to the bottom of the second image, for exampleoitpy two vertices
representing the left part of the second spider head andhestbem to one ver-
tex of the left graph representing the same part in the fiidesgvertices indexed
by number 10).

Figure 4: lllustration of rotation invariant matching mallg “Grad”. Original
spider photos with corresponding graph-based represaméatre given on the
left. On the right, two spider graphs are aligned by “Gradertices with the
same id’s are matched to each other.

14



5.4 Identification of object composite parts

While the pattern recognition framework is interesting angdortant for the com-
parison of different graph matching algorithms, it evaéisabnly one aspect of
these algorithms, namely, their ability to detect simileaghs. A second and im-
portant aspect is their ability to correctly align vertioesresponding to the same
parts of two objects. To test this capability, we performied following series
of experiments. We chose ten camel images from the MPEG &etagmd we
divided by hand each image into 6 parts: head, neck, leg¥, bait and body
(Figure5). This image segmentation automatically defines a pantitmp of the
corresponding graph shown in the column (c) in Figbirall graph vertices are
labeled according to the image part which they represegurgs gives two illus-
trations of how this procedure works. A good graph matchiggrithm should
map vertices from corresponding image parts to each otleerhieads to heads,
legs to legs, and so on. Therefore to evaluate the matchiggyjaf the mapping,
we use the following score. First, we match two graphs and wWetry to predict
vertex labels of one graph given the vertex labels of thersgtome. For instance,
if vertex ¢g; of the first image is matched to verticés and h, representing the
head of the second image, then we predict thas of class “head”. The better
the graph matching, the smaller the prediction error ane-versa.

X

(@) (b) (€) (d)

Figure 5: (a) Original images. (b) Manual segmentation (QpB-based repre-
sentation (obtained automatically from subsampled costand shock graphs)
with induced vertex labels (d) Prediction of vertex labefstbe basis of graph
matching made by “Grad”. Best seen in color.

This experiment illustrates a promising application ofgyranatching algo-

15



rithms. Usually segmentation algorithms extract imagespan the basis of dif-
ferent characteristics such as changing of color, narrgwinobject form, etc.
With our graph matching algorithm, we can extract segmehisiwdoes not only
have a specific appearance, but also have a semantic ingigpnedefined by a
user (e.g., through the manual labelling of a particulatainse).

Table 2 presents mean prediction error over 45 pairs of camel images
exclude comparison of identical images). Each pair has sso@ated scores:
prediction error of the first image given the second one and-versa. We thus
have 90 scores for each algorithm, which are used to compesa@sand standard
deviations. Like in the previous sections, graph matchiggr&hms are run using
information on vertex coordinates (using ER))( with C;; = e~ (#i=)°~(vi=4;)*,
The parametek in (2) as well ask (number of neighbors in k-NN classifier) are
learned via cross-validation. Here, again we observe tiat®&rad” algorithm
works better than other methods.

Table 2: Identification of object composite parts: mean aaddard deviation

of prediction error (see text for details). Note that stadd@eviations are not
divided by the square root of the sample size (thereforemdiffces are statistically
significant).

Grad | Spec | Beam| One-to-oneg
Error | 0.303| 0.351| 0.432 0.342
STD | 0.135| 0.095| 0.092 0.094

6 Conclusion and Future work

The main contribution of this paper is the new formulatiortte many-to-many
graph matching problem as a discrete optimization probledithe approximate
algorithm “Grad” based on a continuous relaxation. The sssof the proposed
method compared to other competitive approaches may baiegglby two rea-
sons. First, methods based on continuous relaxations ofediés optimization
problems often show a better performance than local se&gohtam due to their
ability to better explore the optimization set with potaiiti large moves. Second,
the “Grad” algorithm aims to optimize a clear objective ftion naturally repre-
senting the quality of graph matching instead of a sequehaerelated steps.
Besides a natural application of graph matching as a siityilareasure be-
tween objects with complex structures, graph matching tsml@e used for ob-
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ject alignment. However, the structural noise usually entered in graph-based
representations have slightly hampered its applicatiomataral images; but we
believe that the many-to-many graph matching frameworkegarted in this paper
can provide an appropriate notion of robustness, whichdsseary for computer
vision applications. Of course, this requires the valmaf our approach with
graphs obtained from more cluttered images, which we ameitly experiment-
ing with.
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