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PAC-BAYESIAN BOUNDS FOR SPARSE REGRESSION
ESTIMATION WITH EXPONENTIAL WEIGHTS

PIERRE ALQUIER, KARIM LOUNICI

Abstract. We consider the sparse regression model where the number of pa-
rameters p is larger than the sample size n. The difficulty when considering
high-dimensional problems is to propose estimators achieving a good compro-
mise between statistical and computational performances. The BIC estimator
for instance performs well from the statistical point of view [11] but can only
be computed for values of p of at most a few tens. The Lasso estimator is
solution of a convex minimization problem, hence computable for large value
of p. However stringent conditions on the design are required to establish fast
rates of convergence for this estimator. Dalalyan and Tsybakov [19] propose
a method achieving a good compromise between the statistical and computa-
tional aspects of the problem. Their estimator can be computed for reasonably
large p and satisfies nice statistical properties under weak assumptions on the
design. However, [19] proposes sparsity oracle inequalities in expectation for
the empirical excess risk only. In this paper, we propose an aggregation pro-
cedure similar to that of [19] but with improved statistical performances. Our
main theoretical result is a sparsity oracle inequality in probability for the true
excess risk for a version of exponential weight estimator. We also propose a
MCMC method to compute our estimator for reasonably large values of p.

MSC 2000 subject classification: Primary: 62J07; Secondary: 62J05, 62G08,
62F15, 62B10, 68T05.

Key words and phrases: Sparsity Oracle Inequality, High-dimensional Re-
gression, Exponential Weights, PAC-Bayesian, RJMCMC

1. Introduction

We observe n independent pairs (X1, Y1), ..., (Xn, Yn) ∈ X × R (where X is any
measurable set) such that

(1.1) Yi = f(Xi) +Wi, 1 6 i 6 n,

where f : X → R is the unknown regression function and the noise variables
W1, . . . ,Wn are independent of the design (X1, . . . , Xn) and such that EWi = 0
and EW 2

i 6 σ2 for some known σ2 > 0 and any 1 6 i 6 n. The distribution of
the sample is denoted by P, the corresponding expectation is denoted by E. For
any function g : X → R define ‖g‖n =

(∑n
i=1 g(Xi)

2/n
)1/2 and ‖g‖ =

(
E‖g‖2n

)1/2.
Let F = {φ1, . . . , φp} be a set—called dictionary—of functions φj : X → R such
that ‖φj‖ = 1 for any j (this assumption can be relaxed). For any θ ∈ Rp define
fθ =

∑p
j=1 θjφj and the risk

R(θ) = E

[
1

n

n∑
i=1

(
Y ′i − fθ(X ′i)

)2
]
,

where {(X ′1, Y ′1), . . . , (X ′n, Y
′
n)} is an independent replication of the sample. Let us

choose θ ∈ arg minθ∈Rp R(θ). Note that the minimum may not be unique but since
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2 P. ALQUIER, K. LOUNICI

we consider in this paper the prediction problem, we do not need to deal with the
identifiability question.

It is a known fact that the least-square estimator θ̂LSEn ∈ arg minθ∈Θ r(θ) per-
forms poorly in high-dimension p > n. Indeed, consider for instance the determin-
istic design case with i.i.d. noise variables N (0, σ2) and a full-rank design matrix,
then θ̂LSE satisfies

E
[
‖fθ̂LSEn

− f‖2n
]
− ‖fθ − f‖

2
n = σ2.

In the same context, assume now there exists a vector θ ∈ arg minθRp R(θ) with
a number of nonzero coordinates p0 ≤ n. If the indices of these coordinates are
known, then we can construct an estimator θ̂0

n such that

E
[
‖fθ̂0n − f‖

2
n

]
− ‖fθ − f‖

2
n = σ2 p0

n
.

The estimator θ̂0
n is called oracle estimator since the set of indices of the nonzero

coordinates of θ is unknown in practice. The issue is now to build an estimator,
when the set of nonzero coordinates of θ is unknown, with statistical performances
close to that of the oracle estimator θ̂0

n.
A possible approach is to consider solutions of penalized empirical risk minimiza-

tion problems:

θ̂pen ∈ arg min
θ∈Θ

{
1

n

n∑
i=1

(
Yi − fθ(Xi)

)2

+ pen(θ)

}
,

where the penalization pen(θ) is proportional to the number of nonzero components
of θ as for instance Cp, AIC and BIC criteria [39, 1, 47]. Bunea, Tsybakov and
Wegkamp [11] established for the BIC estimator θ̂BICn the following non-asymptotic
sparsity oracle inequality. For any ε > 0 there exists a constant C(ε) > 0 such that
for any p > 2, n > 1 we have

E
[
‖fθ̂BICn

− f‖2n
]
6 (1 + ε)‖fθ − f‖

2
n + C(ε)σ2 p0

n
log

(
ep

p0 ∨ 1

)
.

Despite good statistical properties, these estimators can only be computed in prac-
tice for p of the order at most a few tens since they are solutions of non-convex
optimization problems.

Considering convex penalty function leads to computationally feasible optimiza-
tion problems. A popular example of convex optimization problem is the Lasso
estimator (cf. Frank and Friedman [25], Tibshirani [50], and the parallel work of
Chen et al on basis pursuit [17]) with the penalty term pen(θ) = λ|θ|1, where
λ > 0 is some regularization parameter and, for any integer d ≥ 2, real q > 0 and
vector z ∈ Rd we define |z|q = (

∑d
j=1 |θ

q
j |)1/q and |z|∞ = max1≤j≤d |θj |. Several

algorithms allow to compute the LASSO for very large p, one of the most popular
is known as LARS, introduced by Efron et al [24]. However, the Lasso estimator
requires strong assumptions on the matrix A = (φj(Xi))16i6n,16j6p to establish
fast rates of convergence results. Bunea, Tsybakov and Wegkamp [10] assume a
mutual coherence condition on the dictionary. Bickel, Ritov and Tsybakov [8] and
Koltchinskii [34] established sparsity oracle inequalities for the Lasso under a re-
stricted eigenvalue condition. Candès and Tao [13] proposed the Dantzig Selector
which is related to the Lasso estimator and suffers from the same restrictions. See
for example Bickel, Ritov and Tsybakov [8] for more details. Several alternative
penalties were recently considered. Zou [56] proposed the adaptive LASSO which
is the solution of a penalized empirical risk minimization problem with the penalty
pen(θ) = λ

∑p
j=1

1
|ŵj | |θj | where ŵ is an a priori estimator. Zou and Hastie [57]
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proposed the elastic net with the penalty pen(θ) = λ1|θ|1 + λ2|θ|22, λ1, λ2 > 0.
Meinshausen and Bühlmann [43] and Bach [6] considered bootstrapped LASSO.
See also Ghosh [28] or Cai, Xu and Zhang [12] for more alternatives to the LASSO.
All these methods were motivated by their superior performances over the LASSO
either from the theoretical or the practical point of view. However, strong assump-
tions on the design are still required to establish the statistical properties of these
methods (when such results exist). A recent paper by van de Geer and Bühlmann
[52] provides a complete survey and comparison of all these assumptions.

Simultaneously, the PAC-Bayesian approach for regression estimation was devel-
oped by Audibert [4, 5] and Alquier [2, 3], based on previous works in the classifica-
tion context by Catoni [14, 15, 16], Mc Allester [42], Shawe-Taylor and Williamson
[49], see also Zhang [55] in the context of density estimation. This framework is
very well adapted for studying the excess risk R(·)−R(θ) in the regression context
since it requires very weak conditions on the dictionary. However, the methods
of these papers are not computationally feasible when p becomes large. Dalalyan
and Tsybakov [19, 20, 21, 22] propose an exponential weights procedure related to
the PAC-Bayesian approach with good statistical and computational performances.
However they consider deterministic design, establishing their statistical result only
for the empirical excess risk instead of the true excess risk R(·)−R(θ).

In this paper, we propose to study two exponential weights estimation proce-
dures. The first one is an exponential weights combination of the least squares
estimators in all the possible sub-models. This estimator was initially proposed by
Leung and Barron [36] in the deterministic design setting. Note that in the litera-
ture on aggregation, the elements of the dictionary are often preliminary arbitrary
estimators computed from a frozen fraction of the initial sample so that these es-
timators are considered as deterministic functions, the aggregate is then computed
using this dictionary and the remaining data. This scheme is referred to as ’data
splitting’. See for instance Dalalyan and Tsybakov [20, 21] and Yang [54]. Leung
and Barron [36] proved that data splitting is not necessary in order to aggregate
least squares estimators and raised the question of computation of this estimator in
high dimension. In this paper we explicit the oracle inequality satisfied by this esti-
mator in the high-dimensional case and tackle the computational question. For the
second procedure, the design is assumed to be random. We use the PAC-Bayesian
techniques of Catoni [16] to build an estimator satisfying a sparsity oracle inequal-
ity for the true excess risk. Then we propose computationally efficient Monte Carlo
algorithms to compute both estimators. Our algorithms are inspired from the com-
putational Bayesian theory, see the monograph of Marin and Robert [40] for an
introduction to Monte Carlo algorithms in Bayesian theory. More specifically, the
Bayesian point of view for the variable selection problem was considered in several
papers: George [26], George and McCulloch [27], West [53], Jiang [32], Cui and
George [18], Bogdan et al [9], Liang et al [37], Scott and Berger [48] among others.
See in particular [27, 44] for the algorithmic aspects of Monte Carlo techniques. In
this paper, we use Hastings Metropolis algorithm to compute our first estimator
and we implement a version of the RJMCMC ("Reversible Jump Markov Chain
Monte Carlo") method proposed by Green [29] to compute our second estimator.
Note that in a work parallel to ours, Rigollet and Tsybakov [46] consider exponen-
tially weighted aggregates with discrete priors and suggest another version of the
Metropolis-Hastings algorithm to compute their estimator.

The paper is organized as follows. In Section 2 we define a general aggregation
procedure and derive a sparsity oracle inequality in the deterministic design case.
In Section 3 the design can be either deterministic or random. We propose a
modification of the first aggregation procedure for which we can establish a sparsity
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oracle inequality in probability for the true excess risk. Section 4 is devoted to the
RJMCMC algorithm used to effectively implement our estimators. In Section 5 we
carry out a simulation study and compare the performances of our methods with
the Lasso. Finally Section 6 contains all the proofs of our results.

2. Sparsity Oracle Inequality in Expectation

Throughout this section, we assume that the design is deterministic and the
noise variables W1, . . . ,Wn are i.i.d. gaussian N(0, σ2).

For any J ⊂ {1, ..., p} and K > 0 define

(2.1) Θ(J) =

{
θ ∈ Rp : ∀j /∈ J, θj = 0

}
,

and

(2.2) ΘK(J) =

{
θ ∈ Rp : |θ|1 ≤ K and ∀j /∈ J, θj = 0

}
.

For the sake of simplicity we will write ΘK = ΘK({1, ..., p}).
For any subset J ⊂ {1, ..., p} define

θ̂J ∈ arg min
θ∈Θ(J)

r(θ),

where r(θ) = 1
n

∑n
i=1

(
Yi − fθ(Xi)

)2

= ‖Y − fθ‖2n with Y = (Y1, ..., Yn)T . Denote
by Pn({1, . . . , p}) the set of all subsets of {1, . . . , p} containing at most n elements.
The aggregate f̂n is defined as follows

(2.3) f̂n = fθ̂n , θ̂n = θ̂n(λ, π)
4
=

∑
J∈Pn({1,...,p}) πJe

−λ
(
r(θ̂J )+

2σ2|J|
n

)
θ̂J∑

J∈Pn({1,...,p}) πJe
−λ

(
r(θ̂J )+

2σ2|J|
n

)

where λ > 0 is the temperature parameter, π is the prior probability distribution
on P({1, . . . , p}), the set of all subsets of {1, ..., p}, that is, for any J ∈ {1, ..., p},
πJ ≥ 0 and

∑
J∈P({1,...,p}) πJ = 1. In Section 4 we show that the estimator θ̂n

can be computed in reasonable time even when p is large using a MCMC scheme,
namely, Hastings-Metropolis algorithm. The parameters π and λ must be tuned in
a suitable way. The choice of π is discussed below. The choice of the temperature
parameter λ is discussed in Section 5.

We now state the main results of this section.

Proposition 1. Assume that the noise variables W1, . . . ,Wn are i.i.d. N(0, σ2).
Then the aggregate θ̂n defined by (2.3) with 0 < λ 6 n

4σ2 satisfies

(2.4) E
[
r(θ̂n)

]
6 min
J∈Pn({1,...,p})

{
E[r(θ̂J)] +

1

λ
log

(
1

πJ

)}
.

Proposition 1 holds true for any prior π and is due to Leung and Barron [36].
In what follows, we exploit this result in order to establish a sharp sparsity oracle
inequality for the aggregation procedure (2.3). We suggest the following prior. Fix
α ∈ (0, 1). Define π as follows

(2.5) πJ =
α|J|∑n
j=0 α

j

(
p

|J |

)−1

, ∀J ∈ P({1, ..., p}).

We have the following theorem
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Theorem 1. Assume that the noise variablesW1, . . . ,Wn are i.i.d. N(0, σ2). Then
the aggregate f̂n = fθ̂n , with λ = n

4σ2 and π taken as in (2.5), satisfies

(2.6) E
[
‖f̂n − f‖2n

]
6 min
θ∈Rp

‖fθ − f‖2n +
σ2|J(θ)|

n

(
4 log

(
pe

|J(θ)|α

)
+ 1

)
+

4σ2 log
(

1
1−α

)
n

 ,

where for any θ ∈ Rp J(θ) = {j : θj 6= 0}.

Tsybakov [51] introduced the notion of optimal rate of aggregation adapting
existing tools from the minimax theory. In particular, the rate derived in Theorem
1 is the optimal rate of sparse linear aggregation and does not depend on the
magnitude of the nonzero components of θ. This result can be compared with the
sparsity oracle inequalities established in [8, 13, 19] where the rates becomes very
large if the nonzero components of θ take large values.

3. Sparsity Oracle Inequality in Probability

From now on, the design can be either deterministic or random. We
make the following mild assumption:

L = max
1≤j≤M

‖φj‖∞ <∞.

We assume in this section that the noise variables are subgaussian. More pre-
cisely we have the following condition.

Assumption 1. The noise variablesW1, . . . ,Wn are independent and independent
of X1, . . . , Xn. We assume also that there exist two known constants σ > 0 and
ξ > 0 such that

E(W 2
i ) ≤ σ2

∀k ≥ 3, E(|Wi|k) ≤ σ2k!ξk−2.

The estimation method is a version of the Gibbs estimator introduced by Catoni
[15, 16]. Fix K ≥ 1 and c > 0. First we define the prior probability distribution as
follows. For any J ⊂ {1, ..., p} let uJ denote the uniform measure on ΘK+c(J). We
define

m(dθ) =
∑

J⊂{1,...,p}

πJuJ(dθ)

with π taken as in (2.5).
We are now ready to define our estimator. For any λ > 0 we consider the prob-

ability measure ρ̃λ admitting the following density w.r.t. the probability measure
m

(3.1)
dρ̃λ
dm

(θ) =
e−λr(θ)∫

ΘK
e−λrdm

.

The aggregate f̃n is defined as follows

(3.2) f̃n = fθ̃n , θ̃n = θ̃n(λ,m) =

∫
ΘK

θρ̃λ(dθ).

The practical computation of θ̃n is discussed in Section 4.
Define

C1 =
[
8σ2 + (2‖f‖∞ + L(2K + c))2

]
∨ [8[ξ + (2‖f‖∞ + L(2K + c))]L(2K + c)] .

We can now state the main result of this section.
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Theorem 2. Let Assumption 1 be satisfied. Take K > 1, c = n−1 and λ = λ∗ =
n

2C1 . Assume that arg minθ∈Rp R(θ) ∩ ΘK 6= ∅. Then we have, for any ε ∈ (0, 1)

and any θ̄ ∈ arg minθ∈Rp R(θ) ∩ΘK , with probability at least 1− ε,

R(θ̃n) ≤ R(θ̄) +
3L2

n2
+

8C1
n

[
|J(θ̄)| log (K + c)

+

(
|J(θ̄)| log

(
enp

α|J(θ̄)|

)
+ log

(
2

ε(1− α)

))]
.

This theorem improves upon previous results on the following points:

• Our result holds under mild conditions on the dictionary while majority of
the results under the sparsity scenario impose stringent conditions on the
dictionary (see, e.g, [6, 8, 13]).

• we state a sparsity oracle inequality in probability for the risk R(·) whereas
previous results concern either the empirical risk or are given in expectation
[19, 33, 38].

• Unlike mirror averaging or progressive mixture rules, satisfying similar in-
equalities in expectation, our estimator does not involve an averaging step.
As a consequence, its computational complexity is significantly reduced as
compared to those procedures with averaging step.

The choice λ = λ∗ comes from the optimization of a (rather pessimistic) upper
bound on the risk R (see Inequality (6.7) in the proof of this theorem, page 18).
However this choice is not necessarily the best choice in practice even though it
gives the good order of magnitude for λ. Section 5 illustrates this point. The
practitioner may use cross-validation to properly tune the temperature parameter.

4. Practical computation of the estimator

Practical computation of θ̃n and θ̂n, for a given temperature λ > 0, is deli-
cate. Indeed, exact computation of these estimators requires considering all subsets
ΘK(J), for any J ⊂ {1, ..., p}. Since there are 2p such subsets, exact computation
of θ̂n or θ̃n is not feasible for large p. However, since our estimators are defined
as expectations of posterior distributions, we can approximate them via Monte
Carlo computation. There exists an extensive literature on Monte Carlo compu-
tational methods, especially in Bayesian statistics where estimators can sometimes
be expressed as expectations of posterior distribution, see e.g. Marin and Robert
[40]. A standard Markov Chains Monte Carlo (MCMC) algorithm such as Hastings-
Metropolis can be used to compute θ̂n since the prior π used to define this estimator
is a discrete probability distribution. The computation of θ̃n is more delicate. In-
deed ρ̃λ is absolutely continuous w.r.t. the measure m(dθ) which involves a mixture
of Lebesgue measures on spaces of different dimensions. A way to proceed with such
measures was proposed by Green [29] under the name "Reversible Jump Markov
Chain Monte Carlo", RJMCMC, and applied successfully in various problems of
model selection like multiple change-point problems, image segmentation and par-
tition models in [29] or selection of the number of components in a mixture model
in Green and Richardson [30]. We propose to adapt this procedure to our setting
to compute θ̃n.

4.1. Computation of θ̂n via Hastings-Metropolis sampling. In this subsec-
tion, we write a particular form of Hastings-Metropolis algorithm that will allow to
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compute any estimator of the form

θ̂(w) =
∑

J∈Pn({1,...,p})

wJ θ̂J

where we already defined
θ̂J ∈ arg min

θ∈Θ(J)
r(θ),

and
wJ ≥ 0, ∀J ⊂ {1, ..., p} and

∑
J∈P({1,...,p})

wJ = 1.

Hastings-Metropolis algorithm starts from an arbitrary value (say J (0) = ∅), a
simple transition kernel k(·, ·) on the set {J ⊂ {1, ..., p}, |J | ≤ n} and updates J (t)

to J (t+1) using the following scheme:
• draw I(t) from k(J (t), ·);
• take

J (t+1) =

 I(t) with probability α(J (t), I(t)) = min

(
1,

w
I(t)

k(I(t),J(t))

w
J(t)k(J(t),I(t))

)
J (t) with probability 1− α(J (t), I(t)).

We stop after T steps and compute our estimator as the mean of the θ̂J(t) :

θ̂w,T,bo =
1

T − bo+ 1

T∑
t=bo

θ̂J(t)

where, as usual in MCMC methods, we remove the bo first simulations (burn-in
period).

This algorithm ensures that (J (t))t is a Markov chain with invariant probability
distribution (wJ)J (see Marin and Robert [40]). Here, the set {J ⊂ {1, ..., p}, |J | ≤
n} being finite, we just have to remark that the chain is irreducible and aperiodic
to obtain the convergence of θ̂w,T,bo to θ̂(w) (in probability).

In practice, we use the following kernel k:

k(J, ·) = k+(J, ·)1{|J|=0} +
k+(J, ·) + k−(J, ·)

2
1{0<|J|<n} + k−(J, ·)1{|J|=n}

where k+(·, ·) and k−(·, ·) are two kernels that we define now. The kernel k+ adds
an element to J whereas k− removes one element from J . When we try to add an
element, it is reasonable to consider first features that are the most correlated with
the current residual. Similarly when we try to remove one element, we give priority
the feature with the smallest coefficients in absolute value.

Formally, we choose some parameter ζ > 0. We put, for j /∈ J :

k+(J, J ∪ {j}) =
eζ|cj |∑
h/∈J e

ζ|ch|

where cj is the coefficient of linear correlation between
(
Yi − fθ̂J (Xi)

)
1≤i≤n

and

(φj(Xi))1≤i≤n. And, for j ∈ J :

k−(J, J \ {j}) =
e−ζ|(θ̂J )j|∑
h∈J e

−ζ|(θ̂J )h| .

Remark 1. The rationale behind our choice for k+(·, ·) is the following. If ζ =
0, then the above algorithm adds a new coordinate to the model uniformly at
random among the set of unused coordinates. This procedure, although reasonable
in theory, is not efficient in practice when p becomes large. Indeed for large p (say
p = 104 and p0 = 2) a large number of steps can be necessary before we select an
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interesting coordinate. On the other hand, for large ζ the above procedure selects
at each step the coordinate to incorporate to the model in a greedy way, that is
the coordinate corresponding to the most correlated element of the dictionary with
the current residual. For more details on greedy algorithms, see Barron et al [7, 31].
This procedure is computationally efficient and performs better in high-dimension
than the former one with ζ = 0. However it can sometimes be trapped in a local
minimum. Therefore using an intermediate value for ζ seems to give a good balance
in practice between these two extreme cases.

4.2. RJMCMC algorithm and computation of θ̃n. The RJMCMC algorithm
proposed by Green [29] is an application of the Hastings-Metropolis to the case of a
measure absolutely continuous with relation to a more sophisticated distribution (in
our case m). We use here this method to compute θ̃n =

∫
ΘK

θρ̃λ(dθ). We start from
θ(0) = 0 and then, at each step, update θ(t) to θ(t+1) using the transition kernel.
Note that we need to define a kernel k admitting a density w.r.t. the measure m.
For the sake of simplicity, we denote by ρ̃λ(·) the measure ρ̃λ as well as its density
with respect to m, this is a standard convention in the MCMC literature. We define
now the RJMCMC algorithm:

• draw τ (t) from k(θ(t), ·);
• take

ϑ(t) =

{
τ (t) with proba. α(θ(t), τ (t)) = min

(
1, ρ̃λ(τ(t))k(τ(t),θ(t))

ρ̃λ(τ(t))k(θ(t),τ(t))

)
θ(t) with proba. 1− α(θ(t), τ (t))

;

• draw θ(t+1) from the distribution ρ̃λ(dθ|θ ∈ Θ(J(ϑ(t+1)))).

This algorithm ensures that (θ(t))t is a Markov chain with invariant probability
distribution ρλ, see [40]. The last step ensures that we can make a move inside the
current model even if the model change was rejected by the Hastings-Metropolis
step.

We define now the kernel k:

k(θ, ·) = k+(θ, ·)1{J(θ)=∅} +
k+(θ, ·) + k−(θ, ·)

2
1{0<|J(θ)|<n}

+ k−(θ, ·)1{|J(θ)|=n}}

where, for some ζ > 0,

k+(θ, dθ′) =
∑
j /∈J(θ)

eζ|cj(θ)|∑
h/∈J(θ) e

ζ|ch(θ)| ρ̃λ(dθ′|θ′ ∈ Θ(J(θ) ∪ {j}))

and

k−(θ, dθ′) =
∑
j∈J(θ)

e−ζ|θj |∑
h∈J(θ) e

−ζ|θh|
ρ̃λ(dθ′|θ′ ∈ Θ(J(θ) \ {j})),

where cj(θ) is the coefficient of linear correlation between (Yi − fθ(Xi))1≤i≤n and
(φj(Xi))1≤i≤n.

5. Simulations

We compare in this section the exponential weights estimators θ̂n and θ̃n to the
LASSO [50] and the Elastic Net [57] on a toy example.
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5.1. Description of the experiments. We consider variants of the toy example
in [50]:

∀i ∈ {1, . . . , n = 20}, Yi = 〈θ,Xi〉+ εi

with Xi ∈ X = Rp, θ̄ ∈ Rp and the εi are i.i.d. from a gaussian distribution with
mean 0 and standard deviation σ.

The Xi’s are i.i.d. (and independent from the εi) and drawn from the gaussian
distribution with zero mean and variance matrix:

Σ(ρ) =
(
ρ|i−j|

)
i ∈ {1, . . . , p}
j ∈ {1, . . . , p}

for some ρ ∈ [0, 1). Note that Tibshirani’s toy example is set with p = 8 whereas
we will consider here p ∈ {8, 30, 100, 1000}.

Define the regression vector as either

θ̄ = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, ...)

or θ̄ = (5e−1, 5e−2, 5e−3, 5e−4, ...)

corresponding respectively to a «sparse situation», |J(θ̄)| = 3 whatever is the value
of p, and to an approximately sparse situation, with |J(θ̄)| = p but θ̄ well approxi-
mated in the l1 norm by a vector θ′ ∈ Rp with |J(θ′)| � p.

We will take σ2 respectively equal to 1 («low noise situation») and 3 («noisy
case»); the value of ρ is fixed to 0.5. We fix ζ = 2 in the RJMCMC algorithm,
α = 1/10, T = 12000 and bo = 2000.

The LASSO and the Elastic Net are defined respectively by

θ̂Ln = θ̂Ln (µ) = arg min
θ∈Rp

[r(θ) + µ|θ|1] , µ > 0

and
θ̂ENn = θ̂ENn (µ, γ) = arg min

θ∈Rp

[
r(θ) + µ|θ|1 + γ|θ|22

]
, µ, λ > 0.

For the LASSO, the ’optimal’ theoretical choice of µ is proportional to σ
√

log(p)/n
(see [8] for example). We see from Theorem 1 and 2 that the ’optimal’ theoretical
choice of λ for the exponential procedures is of the order n/σ2. Thus we take for
our experiment

Λ = (n/σ2)× G, Λ′ =
√
σ2 log(p)/n× G,

where G is defined as follows:

G = 0.01× {(1.5)i, i = 1, ..., 15} ∪ {0}.
We compute for our exponential weights estimators the oracle quadratic risk

infλ∈Λ |X(θ̂n(λ, π) − θ̄)|22 and infλ∈Λ |X(θ̃n(λ,m) − θ̄)|22, and similarly the oracle
quadratic risks for the Lasso and the Elastic Net infµ∈Λ′ |X(θ̂Ln (µ) − θ̄)|22 and
infµ,γ∈Λ′ |X(θ̂ENn (µ, γ)− θ̄)|22.

5.2. Numerical results. We perform every experiment 20 times and give the
results for the sparse situation in Table 1 and for the approximately sparse situation
in Table 2. Convergence of the estimators can be checked on Figure 1.

We can see on these experiments that the exponential weights estimators out-
performs the LASSO and the Elastic Net in the low noise case σ = 1. When σ
grows, the performances of our estimators are still better, but the difference is less
significative; moreover, θ̂n seems to become less stable (in particular Table 1, p = 30
and σ2 = 3).

This simulation study clearly shows the advantage to use the exponential weights
estimators, in particular θ̃n, especially in the situation of approximate sparsity. As
we mentioned in the introduction, the main advantage of the LASSO and the Elastic
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Table 1. Numerical results for the estimation of θ =
(3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, ...). For each possible combination of σ
and p, we report the median, mean and the standard deviation val-
ues of respectively infλ∈Λ |X(θ̂n(λ, π)− θ̄)|22, infλ∈Λ |X(θ̃n(λ,m)−
θ̄)|22, infµ∈Λ′ |X(θ̂Ln (µ)− θ̄)|22 and infµ,γ∈Λ′ |X(θ̂ENn (µ, γ)− θ̄)|22.

σ2 p what? θ̂Lµ θ̂ENµ,γ θ̂n θ̃n

1 8 median 0.302 0.302 0.176 0.172
mean 0.291 0.291 0.215 0.209
s.d. 0.211 0.211 0.190 0.185

3 8 median 0.437 0.437 0.533 0.370
mean 0.535 0.517 0.612 0.527
s.d. 0.398 0.388 0.420 0.395

1 30 median 0.355 0.355 0.157 0.143
mean 0.360 0.358 0.217 0.209
s.d. 0.189 0.188 0.151 0.150

3 30 median 1.459 1.459 1.511 1.267
mean 1.431 1.408 1.809 1.333
s.d. 0.702 0.690 1.143 0.607

1 100 median 0.399 0.399 0.244 0.204
mean 0.471 0.471 0.248 0.212
s.d. 0.222 0.222 0.162 0.130

3 100 median 1.378 1.374 1.674 1.409
mean 1.396 1.395 1.800 1.365
s.d. 0.687 0.688 0.653 0.562

Figure 1. Convergence of the first coefficient of θ̂n in an exper-
iment with σ = 1, p = 8. We represent the first coordinate of

1
N−bo+1

∑N
t=bo θ̂I(t) as a function of N = b0, ..., T .

Net is the computation time. When p becomes larger (p > 1000), the MCMC
takes much longer to converge and the computation time becomes prohibitive. The
strength of `1-penalized estimators is that they can be computed for large values of
the dimension p ' 107 in a reasonable amount of time. On the other hand, these
penalized methods are inferior to the exponential weights procedures in term of
statistical properties when we consider the prediction problem.

5.3. Some comments on computation time. We can roughly analyze the com-
putational complexity of our MCMC algorithm θ̂n as follows:
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Table 2. Results for θ = 5 × (e−1, e−2, ..., e−p). For each pos-
sible combination of σ and p, we report the median, mean and
the standard deviation values of respectively infλ∈Λ |X(θ̂n(λ, π)−
θ̄)|22, infλ∈Λ |X(θ̃n(λ,m) − θ̄)|22, infµ∈Λ′ |X(θ̂Ln (µ) − θ̄)|22 and
infµ,γ∈Λ′ |X(θ̂ENn (µ, γ)− θ̄)|22.

σ2 p what? θ̂Lµ θ̂ENµ,γ θ̂n θ̃n

1 8 median 0.138 0.138 0.089 0.121
mean 0.178 0.175 0.137 0.137
s.d. 0.145 0.145 0.121 0.116

3 8 median 0.397 0.397 0.437 0.364
mean 0.434 0.414 0.430 0.400
s.d. 0.178 0.286 0.271 0.282

1 30 median 0.262 0.262 0.203 0.205
mean 0.277 0.276 0.247 0.240
s.d. 0.147 0.147 0.149 0.149

3 30 median 0.593 0.593 0.519 0.423
mean 0.630 0.619 0.665 0.534
s.d. 0.409 0.420 0.684 0.383

1 100 median 0.276 0.271 0.256 0.261
mean 0.375 0.375 0.353 0.342
s.d. 0.256 0.256 0.200 0.199

3 100 median 1.045 1.045 0.687 0.680
mean 1.023 1.023 0.809 0.760
s.d. 0.364 0.363 0.476 0.464

1 1000 median 0.486 0.486 0.390 0.407
mean 0.464 0.464 0.373 0.386
s.d. 0.207 0.207 0.108 0.103

3 1000 median 1.549 1.547 1.199 1.288
mean 1.483 1.481 1.268 1.245
s.d. 0.460 0.458 0.702 0.692

(1) Fix T the number of MCMC steps.
(2) At each step t ≤ T , we have to choose which new component we want to add

(or remove) from the current model. There are at most p possible choices,
and for each choice j we have to compute the correlation between the vectors
(Yi − fθ̂

J(t)
)1≤i≤n and (φj(Xi))1≤i≤n, this takes O(np) operations.

(3) Finally, at each step t we have to compute θ̂J(t) , this takes at most O(|J |3)
operations.

Finally, the number of operations is O
(
T (np+ Eλ[|J |3])

)
where Eλ[|J |] is the ex-

pectation of |J | under the aggregation distribution with temperature parameter
λ

Eλ[|J |] =

∑
J∈Pn({1,...,p}) πJe

−λ
(
r(θ̂J )+

2σ2|J|
n

)
|J |∑

J∈Pn({1,...,p}) πJe
−λ

(
r(θ̂J )+

2σ2|J|
n

) .

For properly tuned λ, we observe E[|J |] ' |J(θ)|. We understand why the spar-
sity (or approximate sparsity) of the parameter has an important influence on
the computation time. Consider for example the case p = 100 and n = 50. If
|J(θ)| = 10 then n × p = 5000 > 1000 = |J(θ)|3 whereas if |J(θ)| = 25 then
n× p = 5000 < 15625 = |J(θ)|3.
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All the simulations were performed with the R software [45]. The code are
available on request by e-mail.

6. Proofs

6.1. Proofs of Section 2. This proof uses an argument from Leung and Barron
[36].

Proof of Proposition 1. The mapping Y → f̂n(Y )
4
= (f̂n(X1, Y ), . . . , f̂n(Xn, Y ))T

is clearly continuously differentiable by composition of elementary differentiable
functions. For any subset J ⊂ {1, . . . , p} define AJ = (φj(Xi))1≤i≤n,j∈J , ΣJ =
1
nA

T
JAJ , ΦJ(·) = (φj(·))j∈J and

gJ = e
−λ

(
‖Y−fJ‖2n+

2σ2|J|
n

)

where
fJ(x, Y ) =

1

n
Y TAJΣ+

J ΦJ(x)T ,

and Σ+
J denotes the pseudo-inverse of ΣJ . Denote by ∂i the derivative w.r.t. Yi.

Simple computations give

∂ifJ(x, Y ) =
1

n
ΦJ(Xi)Σ

+
J ΦJ(x)T ,

(∂ifJ(X1, Y ), . . . , ∂ifJ(Xn, Y ))Y = fJ(Xi, Y ),

and
n∑
l=1

fJ(Xl, Y )∂ifJ(Xl, Y ) = fJ(Xi, Y ).

Thus we have

∂i(gJ) = −λ∂i
(
‖Y − fJ‖2n

)
gJ

= −2λ

n

(
(Yi − fJ(Xi, Y ))−

n∑
l=1

∂ifJ(Xl, Y )(Yl − fJ(Xl, Y ))

)
gJ

= −2λ

n
(Yi − fJ(Xi, Y ))gJ ,

Recall that

f̂n(·, Y )) =

∑
J∈Pn({1,...,p}) πJgJfJ(·, Y )∑

J∈Pn({1,...,p}) πJgJ
.

We have

∂if̂n(Xi, Y ) =

∑
J∈Pn({1,...,p}) πJ (∂i(gJ)fJ(Xi, Y ) + gJ∂i(fJ(Xi, Y )))∑

J∈Pn({1,...,p}) πJgJ

−

(∑
J∈Pn({1,...,p}) πJgJfJ(Xi, Y )

)(∑
J∈Pn({1,...,p}) πJ∂i(gJ)

)
(
∑
J∈Pn({1,...,p}) πJgJ)2

= −2λ

n
Yif̂n +

2λ

n

∑
J∈Pn({1,...,p}) fJ(Xi, Y )2πJgJ∑

J∈Pn({1,...,p}) πJgJ

+
1

n

∑
J∈Pn({1,...,p}) ΦJ(Xi)Σ

+
J ΦJ(Xi)

TπJgJ∑
J∈Pn({1,...,p}) πJgJ

+
2λ

n
Yif̂n(Xi, Y )− 2λ

n
f̂2
n(Xi, Y )
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=
2λ

n

∑
J∈Pn({1,...,p})(fJ(Xi, Y )− f̂n(Xi, Y ))2πJgJ∑

J∈Pn({1,...,p}) πJgJ

+
1

n

∑
J∈Pn({1,...,p}) ΦJ(Xi)Σ

+
J ΦJ(Xi)

TπJgJ∑
J∈Pn({1,...,p}) πJgJ

≥ 0.(6.1)

Consider the following estimator of the risk

(6.2) r̂n(Y ) = ‖f̂n(Y )− Y ‖2n +
2σ2

n

n∑
i=1

∂if̂n(Xi, Y )− σ2.

Using an argument based on Stein’s identity as in [35] we now prove that

E[r̂n(Y )] = E
[
‖f̂n(Y )− f‖2n

]
.

We have

E
[
‖f̂n(Y )− f‖2n

]
= E

[
‖f̂n(Y )− Y ‖2n +

2

n

n∑
i=1

Wi(f̂n(Xi, Y )− f(Xi))

]
− σ2

= E

[
‖f̂n(Y )− Y ‖2n +

2

n

n∑
i=1

Wif̂n(Xi, Y )

]
− σ2.(6.3)

For z = (z1, . . . , zn)T ∈ Rn write FW,i(z) =
∏
j 6=i FW,i(zj), where FW denotes the

c.d.f. of the random variable W1. Since E(Wi) = 0 we have

E
[
Wif̂n(Xi, Y )

]
= E

[
Wi

∫ Wi

0

∂if̂n(Xi, Y1, . . . , Yi−1, f(Xi) + z, Yi+1, . . . , Yn)dz

]

=

∫
Rn−1

(∫
R
y

∫ y

0

∂if̂n(Xi, f + z)dzidFW (y)

)
dFW,i(z).(6.4)

In view of (6.1) we can apply Fubini’s Theorem to the right-hand-side of (6.4). We
obtain under the assumption W ∼ N (0, σ2) that∫

R+

∫ y

0

∂if̂n(Xi, f + z)dzidFW (y) =

∫
R+

∫ ∞
zi

ydFW (y)∂if̂n(Xi, f + z)dzi

=

∫
R+

σ2∂if̂n(Xi, f + z)dFW (zi),

A Similar equality holds for the integral over R−. Thus we obtain

E
[
Wif̂n(Xi, Y )

]
= σ2E

[
∂if̂n(Xi, Y )

]
.

Combining (6.2), (6.3) and the above display gives

E [r̂n(Y )] = E
[
‖f̂n(Y )− f‖2n

]
.

Since f̂n(·, Y ) is the expectation of fJ(·, Y ) w.r.t. the probability distribution∝ g·π,
we have

‖f̂n(·, Y )− Y ‖2n =

∑
J∈Pn({1,...,p})

(
‖fJ(·, Y )− Y ‖2n − ‖fJ(·, Y )− f̂n(Y )‖2n

)
gJπJ∑

J∈Pn({1,...,p}) gJπJ
.

For the sake of simplicity set fJ = fJ(·, Y ) and f̂n = f̂n(·, Y ). Combining (6.2),
the above display and λ 6 n

4σ2 yields

r̂n(Y ) =

∑
J∈Pn({1,...,p})

(
‖fJ − Y ‖2n +

∑n
i=1

(
4λσ2

n − 1
)
‖fJ − f̂n‖2n

)
gJπJ∑

J∈Pn({1,...,p}) πJgJ
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+
2σ2

n2

n∑
i=1

∑
J∈Pn({1,...,p}) ΦJ(Xi)Σ

+
J ΦJ(Xi)

TπJgJ∑
J∈Pn({1,...,p}) πJgJ

− σ2

6
∑

J∈Pn({1,...,p})

(
‖fJ − Y ‖2n +

2σ2

n
|J |
)
gJπJ − σ2.

By definition of gJ we have

‖fJ − Y ‖2n +
2σ2|J |
n

= − 1

λ
log

(
gJ∑

J∈Pn({1,...,p}) gJπJ

)
− 1

λ
log

 ∑
J∈Pn({1,...,p})

gJπJ

 .

Integrating the above inequality w.r.t. the probability distribution 1
C g · π (where

C =
∑
J∈Pn({1,...,p}) gJπJ is the normalization factor) and using the fact that∑

J∈Pn({1,...,p})

1

C
gJπJ log

(
1

C
gJ

)
= K

(g · π
C

, π
)
> 0

as well as a convex duality argument (cf., e.g., [23], p. 264) we get

r̂n(Y ) 6
∑

J∈Pn({1,...,p})

(
‖Y − fJ‖2n +

2σ2

n
|J |
)
π′J +

1

λ
K(π′, π)− σ2,

for all probability measure π′ on P({1, . . . , p}). Taking the expectation in the last
inequality we get for any π′

E
[
‖f̂n − f‖2n

]
= E[r̂n(Y )]

6
∑

J∈Pn({1,...,p})

(
E[‖fJ − Y ‖2n] +

2σ2

n
|J |
)
π′J +

1

λ
K(π′, π)− σ2

6
∑

J∈Pn({1,...,p})

(
E[‖fJ − f‖2n] +

2

n

n∑
i=1

E[WifJ(Xi, Y )] +
2σ2

n
|J |

)
π′J

+
1

λ
K(π′, π)

6
∑

J∈Pn({1,...,p})

(
E[‖fJ − f‖2n] +

4σ2

n
|J |
)
π′J +

1

λ
K(π′, π),

where we have used Stein’s argument E[WifJ(Xi, Y )] = σ2E [∂ifJ(Xi, Y )] and the
fact that

∑n
i=1 ∂ifJ(Xi, Y ) = 1 in the last line. Finally taking π′ in the set of Dirac

distributions on the subset J of {1, . . . , p} yields the theorem. �

Proof of Theorem 1. First note that any minimizer θ ∈ Rp of the right-hand-side in
(2.6) is such that |J(θ)| 6 rank(A) 6 n where we recall thatA = (φj(Xi))16i6n,16j6p.
Indeed, for any θ ∈ Rp such that |J(θ)| > rank(A) we can construct a vector θ′ ∈ Rp
such that fθ = fθ′ and |J(θ′)| 6 rank(A) and the mapping x→ x log

(
epα
x

)
is non-

decreasing on (0, p].
Next for any J ∈ Pn({1, . . . , p}) we have

E[‖fJ − f‖2n] = min
θ∈Θ(J)

{
‖fθ − f‖2n

}
+
σ2|J |
n

= min
θ∈Θ(J)

{
‖fθ − f‖2n +

σ2|J(θ)|
n

}
.

Thus

min
J∈Pn({1,...,p})

{
E[‖fJ − f‖2n] +

1

λ
log

(
1

πJ

)
+
σ2J

n

}
= min
J∈Pn({1,...,p})

min
θ∈Θ(J)

{
‖fθ − f‖2n +

1

λ
log

(
1

πJ(θ)

)
+
σ2|J(θ)|

n

}
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= min
θ∈Rp

{
‖fθ − f‖2n +

1

λ
log

(
1

πJ(θ)

)
+
σ2|J(θ)|

n

}
.

Combining the above display with Proposition 1 and our definition of the prior π
gives the result. �

6.2. Proof of Theorem 2. We state below a version of Bernstein’s inequality
useful in the proof of Theorem 2. See Proposition 2.9 page 24 in [41], more precisely
Inequality (2.21).

Lemma 1. Let T1, ..., Tn be independent real valued random variables. Let us
assume that there is two constants v and w such that

n∑
i=1

E[T 2
i ] ≤ v

and for all integers k ≥ 3,
n∑
i=1

E
[
(Ti)

k
+

]
≤ v k!wk−2

2
.

Then, for any ζ ∈ (0, 1/w),

E exp

[
ζ

n∑
i=1

[Ti − E(Ti)]

]
≤ exp

(
vζ2

2(1− wζ)

)
.

Proof of Theorem 2. For any θ ∈ ΘK+c define the random variables

Ti = Ti(θ) = − (Yi − fθ(Xi))
2

+ (Yi − fθ̄(Xi))
2
.

Note that these variables are independent. We have
n∑
i=1

E[T 2
i ] =

n∑
i=1

E
[
[2Yi − fθ̄(Xi)− fθ(Xi)]

2
[fθ̄(Xi)− fθ(Xi)]

2
]

=

n∑
i=1

E
[
[2Wi + 2f(Xi)− fθ̄(Xi)− fθ(Xi)]

2
[fθ̄(Xi)− fθ(Xi)]

2
]

≤
n∑
i=1

E
[[

8W 2
i + 2(2‖f‖∞ + L(2K + c))2

]
[fθ̄(Xi)− fθ(Xi)]

2
]

=

n∑
i=1

E
[
8W 2

i + 2(2‖f‖∞ + L(2K + c))2
]
E
[
[fθ̄(Xi)− fθ(Xi)]

2
]

≤ n
[
8σ2 + 2(2‖f‖∞ + L(2K + c))2

] [
R(θ)−R(θ̄)

]
=: v(θ, θ̄) = v,

where we have used in the last line that ‖fθ − fθ̄‖2 = R(θ)−R(θ̄). Next we have,
for any integer k ≥ 3, that

n∑
i=1

E
[
(Ti)

k
+

]
≤

n∑
i=1

E
[
|2Yi − fθ̄(Xi)− fθ(Xi)|k |fθ̄(Xi)− fθ(Xi)|k

]
≤

n∑
i=1

E
[
22k−1

[
|Wi|k + (‖f‖∞ + L(K + c/2)k

]
|fθ̄(Xi)− fθ(Xi)|k

]
≤

n∑
i=1

E
[
22k−1

[
|Wi|k + (‖f‖∞ + L(K + c/2)k

]
[L(2K + c)]k−2 [fθ̄(Xi)− fθ(Xi)]

2
]

≤ 22k−1
[
σ2k!ξk−2 + (‖f‖∞ + L(K + c/2))k

]
[L(2K+c)]k−2

n∑
i=1

E
[
[fθ̄(Xi)− fθ(Xi)]

2
]
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≤ (σ2k!ξk−2 + (‖f‖∞ + L(K + c/2))k)(4L(2K + c))k−2

4(σ2 + (‖f‖∞ + L(K + c/2))2)
v

≤ 1

4

(
k!ξk−2 + [‖f‖∞ + L(K + c/2)]k−2

)
[4L(2K + c)]k−2v

≤ 2

4
k! (ξ + [‖f‖∞ + L(K + c/2)])

k−2
[4L(2K + c)]k−2v ≤ v k!wk−2

2
,

with w := 8(ξ + [‖f‖∞ + L(K + c/2)])L(K + c/2).
Next, for any λ ∈ (0, n/w) and θ ∈ ΘK+c, applying Lemma 1 with ζ = λ/n gives

E exp
[
λ
(
R(θ)−R(θ̄)− r(θ) + r(θ̄)

)]
≤ exp

[
vλ2

2n2(1− wλ
n )

]
.

Set C = 8
(
σ2 + [‖f‖∞ + L(K + c/2)]2

)
. For any ε > 0 the last display yields

E exp

[(
λ− λ2C

2n(1− wλ
n )

)(
R(θ)−R(θ̄)

)
+ λ
(
−r(θ) + r(θ̄)

)
− log

2

ε

]
≤ ε

2
.

Integrating w.r.t. the probability distribution m(·) we get∫
E exp

[(
λ− λ2C

2n(1− wλ
n )

)(
R(θ)−R(θ̄)

)
+ λ
(
−r(θ) + r(θ̄)

)
− log

2

ε

]
m(dθ) ≤ ε

2
.

Next, Fubini’s theorem gives

E
∫

exp

[(
λ− λ2C

2n(1− wλ
n )

)(
R(θ)−R(θ̄)

)
+ λ
(
−r(θ) + r(θ̄)

)
− log

2

ε

]
m(dθ) ≤ ε

2
.

E
∫

exp

[(
λ− λ2C

2n(1− wλ
n )

)(
R(θ)−R(θ̄)

)
+ λ
(
−r(θ) + r(θ̄)

)
− log

[
dρ̃λ
dm

(θ)

]
− log

2

ε

]
ρ̃λ(dθ) ≤ ε

2
.

Jensen’s inequality yields

E exp

[(
λ− λ2C

2n(1− wλ
n )

)(∫
Rdρ̃λ −R(θ̄)

)

+ λ

(
−
∫
rdρ̃λ + r(θ̄)

)
−K(ρ̃λ,m)− log

2

ε

]
≤ ε

2
.

Now, using the basic inequality exp(x) ≥ 1R+(x) we get

P

{(
λ− λ2C

2n(1− wλ
n )

)(∫
Rdρ̃λ −R(θ̄)

)

+ λ

(
−
∫
rdρ̃λ + r(θ̄)

)
−K(ρ̃λ,m)− log

2

ε

]
≥ 0

}
≤ ε

2
.
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Using Jensen’s inequality again gives∫
Rdρ̃λ ≥ R

(∫
θρ̃λ(dθ)

)
= R(θ̃λ).

Combining the last two displays we obtain

P

{
R(θ̃λ)−R(θ̄) ≤

∫
rdρ̃λ − r(θ̄) + 1

λ

[
K(ρ̃λ,m) + log 2

ε

]
1− λC

2(n−wλ)

}
≥ 1− ε

2
.

Now, using Lemma 1.1.3 in Catoni [16] we obtain that
(6.5)

P

{
R(θ̃λ)−R(θ̄) ≤ inf

ρ∈M1
+(ΘK+c)

∫
rdρ− r(θ̄) + 1

λ

[
K(ρ,m) + log 2

ε

]
1− λC

2(n−wλ)

}
≥ 1− ε

2
.

We now want to bound from above r(θ)−r(θ̄) by R(θ)−R(θ̄). Applying Lemma
1 to T̃i(θ) = −Ti(θ) and similar computations as above yield successively

E exp
[
λ
(
R(θ̄)−R(θ) + r(θ)− r(θ̄)

)]
≤ exp

[
vλ2

2n2(1− wλ
n )

]
,

and so for any (data-dependent) ρ,

E exp

[(
λ+

λ2C

2(n− wλ)

)(
−
∫
Rdρ+R(θ̄)

)
+ λ

(∫
rdρ− r(θ̄)

)

−K(ρ,m)− log
2

ε

]
≤ ε

2
,

and

(6.6) P

{∫
rdρ− r(θ̄) ≤

(
1 +

λC

2(n− wλ)

)[∫
Rdρ−R(θ̄)

]

+
1

λ

[
K(ρ,m) + log

2

ε

]}
≥ 1− ε

2
.

Combining (6.6) and (6.5) with a union bound argument gives

P

{
R(θ̃λ)−R(θ̄)

≤ inf
ρ∈M1

+(ΘK+c)

(
1 + λC

2(n−wλ)

) [∫
Rdρ−R(θ̄)

]
+ 2

λ

[
K(ρ,m) + log 2

ε

]
1− λC

2(n−wλ)

}
≥ 1− ε,

whereM1
+(ΘK+c) is the set of all probability measures over ΘK+c.

Now for any δ ∈ (0, c] taking ρ as the uniform probability measure on the set
{t ∈ Θ(J(θ̄)) : |t− θ̄|1 ≤ δ} ⊂ ΘK+c(J(θ̄)) gives

P

{
R(θ̃λ) ≤ R(θ̄) +

1

1− λC
2(n−wλ)

[(
1 +

λC

2(n− wλ)

)
L2δ2

+
2

λ

(
|J(θ̄)| log

K + c

δ
+ |J(θ̄)| log

1

α
+ log

(
1

1− α

)
+ log

(
p

|J(θ̄)|

)
+ log

2

ε

)]}
≥ 1− ε.



18 P. ALQUIER, K. LOUNICI

Taking δ = c = n−1 and the inequality log
( p
|J(θ̄)|

)
≤ |J(θ̄)| log pe

|J(θ̄)| gives

(6.7) P

{
R(θ̃λ) ≤ R(θ̄) +

1

1− λC
2(n−wλ)

[(
1 +

λC

2(n− wλ)

)
L2

n2

+
2

λ

(
|J(θ̄)| log (K + c) + |J(θ̄)| log

(
epn

α|J(θ̄)|

)
+ log

(
2

ε(1− α)

))]}
≥ 1− ε

Taking now λ = n/(2C1) (where we recall that C1 = C ∨ w) in (6.7) gives

P

{
R(θ̃λ) ≤ R(θ̄) +

3L2

n2
+

8C1
n

[
|J(θ̄)| log (K + c)

+

(
|J(θ̄)| log

(
enp

α|J(θ̄)|

)
+ log

(
2

ε(1− α)

))])}
≥ 1− ε,

where we have used that 1− λC
2(n−wλ) ≥ 1/2 and 1 + λC

2(n−wλ) ≤ 3/2. �
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