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PAC-BAYESIAN BOUNDS FOR SPARSE REGRESSION

ESTIMATION WITH EXPONENTIAL WEIGHTS

PIERRE ALQUIER, KARIM LOUNICI

Abstract. We consider the sparse regression model where the number of pa-
rameters p is larger than the sample size n. The di�culty when considering
high-dimensional problems is to propose estimators achieving a good compro-
mise between statistical and computational performances. The BIC estimator
for instance performs well from the statistical point of view [BTW07b] but
can be computed for values of p of at most a few tens. The Lasso estimator
is solution of a convex minimization problem. Hence it can be computed for
large value of p. However stringent conditions on the design are required to
establish the statistical properties of this estimator. Dalalyan and Tsybakov
[DT08] propose a method achieving a good compromise between the statistical
and computational aspects of the problem. Their estimator can be computed
for reasonably large p and satis�es nice statistical properties under weak as-
sumptions on the design. However, [DT08] concerns only the empirical risk
and proposes only results in expectation. In this paper, we propose an ag-
gregation procedure similar to that of [DT08] but with improved statistical
performances. Our main result concerns the expected risk and is given in
probability. We also propose a MCMC method to compute our estimator for
reasonably large values of p.

MSC 2000 subject classi�cation: Primary: 62J07; Secondary: 62J05, 62G08,
62F15, 62B10, 68T05.

Key words and phrases: Sparsity Oracle Inequality, High-dimensional Re-
gression, Exponential Weights, PAC-bayesian, RJMCMC

1. Introduction

We observe n independent pairs (X1, Y1), ..., (Xn, Yn) ∈ X × R (where X is any
measurable set) such that

(1.1) Yi = f(Xi) +Wi, 1 6 i 6 n,

where f : X → R is the unknown regression function and the noise variables
W1, . . . ,Wn are independent of X1, . . . , Xn and such that EWi = 0 and EW 2

i 6 σ
2

for some known σ2 > 0 and any 1 6 i 6 n. The distribution of the sample is denoted
by P, the corresponding expectation is denoted by E. For any function g : X → R
de�ne ‖g‖n =

(∑n
i=1 g(Xi)2/n

)1/2
and ‖g‖ =

(
E‖g‖2n

)1/2
. Let F = {φ1, . . . , φp}

be a set of functions φj : X → R such that w.l.o.g. ‖φj‖ = 1 for any j (this
assumption can be relaxed). For any θ ∈ Rp de�ne fθ =

∑p
j=1 θjφj and the risk

R(θ) = E[r(θ)]

where

r(θ) =
1
n

n∑
i=1

(
Yi − fθ(Xi)

)2

= ‖Y − fθ‖2n
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2 P. ALQUIER, K. LOUNICI

and Y = (Y1, ..., Yn)T . Let us choose θ ∈ arg minRp R. Note that the minimum
may not be unique but this does not matter since we consider here the prediction
problem, that is the estimation of minRp R.

It is a known fact that the least-square estimator θ̂LSE ∈ arg minΘ r performs
poorly in high-dimension p > n since it satis�es

E
(
R(θ̂LSE)−R(θ)

)
6 Cσ2,

for some C > 0. Assume now there exists a vector θ ∈ arg minRp R with a number
of nonzero coordinates p0 ≤ n. If the indexes of these coordinates are known, then
we can construct an estimator θ̂0

n such that

E
(
R(θ̂0

n)−R(θ)
)
6 Cσ2 p0

n
.

The estimator θ̂0
n is called oracle estimator since the set of indexes of the nonzero co-

ordinates of θ is unknown in practice. The problematic is now to build an estimator,
when the set of nonzero coordinates of θ is unknown, with statistical performances

closed to that of the oracle estimator θ̂0
n.

A possible approach is to consider solutions of penalized empirical risk minimiza-
tion problems:

θ̂pen ∈ arg min
θ∈Θ

[r(θ) + pen(θ)] ,

where the penalization pen(θ) is proportional to the number of nonzero components
of θ as for instance Cp, AIC and BIC criteria [Mal73, Aka73, Sch78]. Bunea,

Tsybakov and Wegkamp [BTW07b] established for the BIC estimator θ̂BICn the
following result

E
(
R(θ̂BICn )−R(θ)

)
6 Cσ2 p0

n
log p,

for some C > 0. The above inequality is called sparsity oracle inequality be-
cause the upper bound is linear in p0, the number of nonzero coordinates of θ,
and logarithmic in p, the total number of coordinates. Despite some good statisti-
cal properties, these estimators can be computed in practice for p of the order at
most a few tens since they are solutions of nonconvex optimization problems (the
only way to compute the estimator is to perform an exhaustive research among all
the possible submodels). Considering convex penalty function leads to computa-
tionally feasible optimization problems. A popular example is the Lasso estimator
(cf. Frank and Friedman [FF93] and Tibshirani [Tib96]) with the penalty term
pen(θ) = λ

∑p
j=1 |θj |, where λ > 0 is some regularization parameter. However, the

Lasso estimator requires strong assumptions on the dictionary D and the design
to establish the statistical properties. Bunea, Tsybakov and Wegkamp [BTW07a]
assume a mutual coherence condition on the dictionary, Bickel, Ritov and Tsy-
bakov [BTW07a] and Koltchinskii [Kol] established their results under a restricted
eigenvalue condition. An alternative to penalization, the LOL method, proposed
by Kerkyacharian, Mougeot, Picard and Tribouley [KMPT10], also requires the
mutual coherence assumption.

Simultaneously, the PAC-Bayesian approach for regression estimation was devel-
oped by Audibert [Aud04a, Aud04b] and Alquier [Alq06, Alq08], based on previous
works in the classi�cation context by Catoni [Cat03, Cat04, Cat07], Mc Allester
[McA98], Shawe-Taylor and Williamson [STW97]. This framework is very interest-
ing to study the excess risk R(·) − R(θ) in the regression context since it requires
very weak conditions on the dictionary. However, the methods of these papers
are not computationally feasible when p becomes large. Dalalyan and Tsybakov
[DT08, DT09, DT10a, DT10b] propose an exponential weights procedure related to
the PAC-Bayesian approach with good statistical and computational performances.
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However they consider deterministic design, thus they established their statistical
result only for the empirical excess risk instead of the true excess risk R(·)−R(θ).

In this paper, we propose two exponential weights estimation procedures. The
�rst one is an exponential weights combination of the least squares estimators in all
the possible sub-models. Note that in the literature on aggregation, the elements
of the dictionary are often preliminary estimators computed with a frozen frac-
tion of the initial sample so that these estimators are considered as deterministic
functions. Next the aggregate is computed using this dictionary and the remain-
ing data. This scheme is referred to as 'data splitting'. Experiments were carried
out on the necessity of data splitting. They tend to show that data splitting may
not be necessary in practice in some situations. However, to our knowledge, these
observations lack theoretical con�rmation. In this paper, our framework does not
require any data splitting scheme. The same sample is used to build the preliminary
estimators and to construct the aggregate. We establish for this procedure a spar-
sity oracle inequality with optimal bounds in the deterministic design case in the
spirit of [DT08]. For the second procedure, the design is assumed to be random.
We use the PAC-bayesian techniques of Catoni [Cat07] to produce an estimator
satisfying a sparsity oracle inequality for the true excess risk. Then we propose an
e�cient Monte Carlo computation algorithms to compute both estimators. Our al-
gorithms are inspired from the computational bayesian theory for model selection,
see George and McCulloch [GM97] or Cui and George [CG08] among others. A re-
view on Monte Carlo algorithms applied to bayesian analysis and variable selection
can be found in Casella and Robert [MR07] or George [Geo00]. Both estimators are
computed using the Hastings-Metropolis algorithm. For the second one, we use a
particular form of the RJMCMC ("Reversible Jump Markov Chain Monte Carlo")
method proposed by Green [Gre95]. Note that in a work parallel to ours, Rigollet
and Tsybakov [RT10] consider exponentially weighted aggregates with discrete pri-
ors and suggest another version of the Metropolis-Hastings algorithm to compute
them.

The paper is organized as follows. In Section 2 we de�ne a general aggregation
procedure and derive a sparsity oracle inequality in the deterministic design case.
In Section 3 the design can be either deterministic or random. We propose a
modi�cation of the �rst aggregation procedure for which we can establish a sparsity
oracle inequality in probability for the true excess risk. Section 4 is devoted to the
RJMCMC algorithm used to e�ectively implement our estimators. In Section 5 we
carry out a simulation study and compare the performances of our methods with
the Lasso. Finally, Section 6 is devoted to the proofs of our results.

2. Sparsity Oracle Inequality in Expectation

Throughout this section, we assume that the design is deterministic and the
noise variables W1, . . . ,Wn are i.i.d. gaussian N(0, σ2). For any integer d ≥ 2, real
p > 0 and vector z ∈ Rd de�ne |z|p = (

∑M
j=1 |θ

p
j |)1/p and |z|∞ = max1≤j≤M |θj |.

For any J ⊂ {1, ..., p} and K > 0 de�ne

(2.1) Θ(J) =
{
θ ∈ Rp : ∀j /∈ J, θj = 0

}
,

and

(2.2) ΘK(J) =
{
θ ∈ Rp : |θ|1 ≤ K and ∀j /∈ J, θj = 0

}
.

For the sake of simplicity we will write ΘK = ΘK({1, ..., p}).
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For any subset J ⊂ {1, ..., p} de�ne

θ̂J ∈ arg min
θ∈Θ(J)

r(θ).

The aggregate f̂n is de�ned as follows

(2.3) f̂n = fθ̂n , θ̂n = θ̂n(λ, π)
4
=

∑n
k=0

∑
J ⊂ {1, ..., p}
|J| = k

πJe
−λ

„
r(θ̂J )+

2σ2|J|
n

«
θ̂J∑n

k=0

∑
J ⊂ {1, ..., p}
|J| = k

πJe
−λ

“
r(θ̂J )+

2σ2|J|
n

”

where λ > 0 is the temperature parameter, π is the prior probability distribution
on P({1, . . . , p}) ( the set of all subset of {1, ..., p}), that is, for any J ∈ {1, ..., p},
πJ ≥ 0 and

∑
J∈P({1,...,p}) πJ = 1). In Section 4 we show that the estimator θ̂n

can be computed in reasonable time even when p is large using a MCMC scheme,
namely, Hastings-Metropolis algorithm. The parameters π and λ must be tuned in
a suitable way. The choice of π is discussed below. The choice of the temperature
parameter λ is discussed in Section 5.

We now state the main results of this section.

Proposition 1. Assume that the noise variables W1, . . . ,Wn are i.i.d. N(0, σ2).
Then the aggregate θ̂n de�ned by (2.3) with 0 < λ 6 n

4σ2 satis�es

(2.4) E
[
r(θ̂n)

]
6 min

J ∈ P({1, ..., p})
|J| 6 n

{
E[r(θ̂J)] +

1
λ

log
(

1
πJ

)}
.

Proposition 1 can be compared with [DT08]. We emphasize that contrary to
[DT08] which considered the pure aggregation problem with the dictionary F , here
we consider the dictionary D = {f̂θ̂J , J ∈ P({1, . . . , p}), |J | 6 n} which depends
on the data. Note also that the same data set is used to build the dictionary D and

the aggregate f̂n, which shows in this case that data splitting is not necessary.
Proposition 1 holds true for any prior π. We now de�ne a prior yielding an

interesting sparsity oracle inequality. Fix α ∈ (0, 1). De�ne π as follows

(2.5) πJ =
α|J|∑n
j=0 α

j

(
p

|J |

)−1

, ∀J ∈ P({1, ..., p}).

We have the following theorem

Theorem 1. Assume that the noise variablesW1, . . . ,Wn are i.i.d. N(0, σ2). Then
the aggregate f̂n = fθ̂n , with λ = n

4σ2 and π taken as in (2.5), satis�es

(2.6) E
[
‖f̂n − f‖2n

]
6 min
θ∈Rp

‖fθ − f‖2n +
σ2|J(θ)|

n

(
4 log

(
pe

|J(θ)|α

)
+ 1
)

+
4σ2 log

(
1

1−α

)
n

 ,

where for any θ ∈ Rp J(θ) = {j : θj 6= 0}.

Tsybakov [Tsy03] introduced the notion of optimal rate of aggregation adapting
existing tools from the minimax theory. Note that the rate we derive in Theorem
1 is the optimal rate of sparse aggregation if M > n and |J(θ)| 6

√
n (this is a

straightforward consequence of Theorem 5 in [Lou07]). Theorem 1 improves upon
[DT08] where a similar sparsity oracle inequality is derived with sub-optimal rate
of aggregation and the restriction θ ∈ ΘK for some K > 0 in the right-hand-side
whereas our result holds for any θ ∈ Rp.
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3. Sparsity Oracle Inequality in Probability

From now on, the design can be either deterministic or random. We
make the mild assumption that L := max1≤j≤M ‖φj‖∞ <∞.

We also make the following assumption on the noise in this section.

Assumption 1. The noise variablesW1, . . . ,Wn are independent and independent
from X1, . . . , Xn. We assume also that there exists two known constants σ > 0 and
ξ > 0 such that

E(W 2
i ) ≤ σ2

∀k ≥ 3, E(|Wi|k) ≤ σ2k!ξk−2.

Remark 1. This just mean that the Wi are sub-gaussian random variables.

The estimation method is a version of the Gibbs estimator introduced by Catoni
[Cat04, Cat07]. Fix K ≥ 1 and c > 0. First we de�ne the prior probability
distribution as follows. For any J ⊂ {1, ..., p} let uJ denote the uniform measure
on ΘK+c(J). We de�ne

m(dθ) =
∑

J⊂{1,...,p}

πJuJ(dθ)

with π taken as in (2.5).
We are now ready to de�ne our estimator. For any λ > 0 we consider the prob-

ability measure ρ̃ admitting the following density w.r.t. the probability measure
m

(3.1)
dρ̃

dm
(θ) =

e−λr(θ)∫
ΘK

e−λrdm
.

The aggregate f̃n is de�ned as follows

(3.2) f̃n = fθ̃n , θ̃n = θ̃n(λ,m) =
∫

ΘK

θρ̃λ(dθ).

The practical computation of θ̃n is discussed in Section 4, using Green's [20] RJM-
CMC method.

De�ne

C1 =
[
8σ2 + (2‖f‖∞ + L(2K + c))2

]
∨ [8[ξ + (2‖f‖∞ + L(2K + c))]L(2K + c)] ,

and

C2 = L[2‖f‖∞ + L(2K + c) + 2σ].
We can now state the main result of this section.

Theorem 2. Let Assumption 1 be satis�ed. Take K > 1, c = n−1 and λ = λ∗ =
n

2C1 . Then we have, for any ε ∈ (0, 1), with probability at least 1− ε,

R(θ̃λ) ≤ min
θ∈ΘK

{
R(θ) +

3C2
n

+
8C1
n

[
|J(θ)| log (K + c)

+
(
|J(θ)| log

(
enp

α|J(θ)|

)
+ log

(
2

ε(1− α)

))]}
.

The choice λ = λ∗ comes from the optimization of a (rather pessimistic) upper
bound on the risk R (see Inequality (6.5) below). However this choice is not neces-
sarily the best choice in practice even though it gives the good order of magnitude
for λ. Section 5 illustrates this point. The practitioner may use cross-validation to
properly tune the temperature parameter.
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"Localization" techniques introduced by Catoni [Cat04] would allow us to replace
the log np term by log p. We refrain from implementing these techniques here for
the sake of simplicity.

4. Practical computation of the estimator

Practical computation of θ̃n and θ̂n, for a given temperature λ > 0, is deli-
cate. Indeed, exact computation of these estimators requires considering all subsets
ΘK(J), for any J ⊂ {1, ..., p}. Since there are 2p such subsets, exact computation

of θ̂n or θ̃n is not feasible for large p. However, since our estimators are de�ned as
expectations of posterior distributions, we can approximate them via a Monte Carlo
procedure. There is an extensive literature on Monte Carlo computational meth-
ods, especially in bayesian statistics where estimators can sometimes be expressed
as expectations of posterior distribution, see Marin and Robert [MR07] for example.
Markov Chains Monte Carlo (MCMC) algorithms such as Hastings-Metropolis or
Gibbs sampling are classical in the case where we integrate w.r.t a discrete distri-
bution, or to an absolutely continuous probability distribution w.r.t. the Lebesgue

measure on Rp. We use this procedure to compute θ̂n. The computation of θ̃n is
more delicate. Indeed ρ̃λ is absolutely continuous w.r.t. the measure m(dθ) that
involves a mixture of Lebesgue measures on spaces of di�erent dimensions. A way
to proceed with such measures was proposed by Green [Gre95] under the name
"Reversible Jump Markov Chain Monte Carlo", RJMCMC, and applied success-
fully in various problems of model selection like multiple change-point problems,
image segmentation and partition models in [Gre95] or selection of the number of
components in a mixture model in Green and Richardson [GR97]. We propose to

adapt this procedure to our setting to approximate θ̃n.

4.1. Computation of θ̂n via Hastings-Metropolis sampling. In this subsec-
tion, we write a particular form of Hastings-Metropolis algorithm that will allow to
compute any estimator of the form

θ̂(w) =
∑

J ⊂ {1, ..., p}
|J| ≤ n

wJ θ̂J

where we already de�ned

θ̂J ∈ arg min
θ∈Θ(J)

r(θ),

and

wJ ≥ 0, ∀J ⊂ {1, ..., p} and
∑

J ⊂ {1, ..., p}
|J| ≤ n

wJ = 1.

Hastings-Metropolis algorithm starts from an arbitrary value (say J (0) = ∅), a
simple transition kernel k(·, ·) on the set {J ⊂ {1, ..., p}, |J | ≤ n} and updates J (t)

to J (t+1) using the following scheme:

• draw I(t) from k(J (t), ·);
• take

J (t+1) =

 I(t) with probability α(J (t), I(t)) = min
(

1,
w
I(t)

k(I(t),J(t))

w
J(t)k(J(t),I(t))

)
J (t) with probability 1− α(J (t), I(t)).

We stop after T steps and compute our estimator as the mean of the θ̂J(t) :

θ̂w,T,bo =
1

T − bo+ 1

T∑
t=bo

θ̂J(t)
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where, as usual in MCMC methods, we remove the bo �rst simulations (burn-in
period).

This algorithm ensures that (J (t))t is a Markov chain with invariant proba-
bility distribution (wJ)J (see Marin and Robert [MR07]). Here, the set {J ⊂
{1, ..., p}, |J | ≤ n} being �nite, we just have to remark that the chain is irreducible

and aperiodic to obtain the convergence of θ̂w,T,bo to θ̂(w) (in probability).
In practice, we use the following kernel k:

k(J, ·) = k+(J, ·)1{|J|=0} +
k+(J, ·) + k−(J, ·)

2
1{0<|J|<n} + k−(J, ·)1{|J|=n}

where k+(·, ·) and k−(·, ·) are two kernels that we de�ne now. The kernel k+ adds
an element to J whereas k− removes one element from J . When we try to add an
element, it is reasonable to consider �rst features that are the most correlated with
the current residual. Similarly when we try to remove one element, we give priority
the feature with the smallest coe�cients in absolute value.

Formally, we choose some parameter ζ > 0. We put, for j /∈ J :

k+(J, J ∪ {j}) =
eζ|cj |∑
h/∈J e

ζ|ch|

where cj is the coe�cient of linear correlation between
(
Yi − fθ̂J (Xi)

)
1≤i≤n

and

(φj(Xi))1≤i≤n. And, for j ∈ J :

k−(J, J \ {j}) =
e−ζ|(θ̂J )j|∑
h∈J e

−ζ|(θ̂J )h| .

Remark 2. The motivation for this choice for k+(., .) is quite obvious. If ζ = 0,
then we choose to add any possible new coordinate in the model, with a uniform
distribution on the coordinates. This choice seems reasonnable, but if p is large
(think of p = 10000 and p0 = 2), a large number of steps can be necessary before
we reach an interesting coordinate. On the other hand, if ζ is very large, we try to
add the coordinate corresponding to the feature φj that is the most correlated with
the current residual. This is the strategy of so-called greedy algorithms, see Barron
et al [BCDD08, HCB08]. It is computationnaly e�cient, but can be trapped in
local minimas in some cases. An intermediary value for ζ seems to give a good
balance between these extreme cases.

4.2. RJMCMC algorithm and computation of θ̃n. The RJMCMC algorithm
proposed by Green [Gre95] is an application of the Hastings-Metropolis to the case
of a measure absolutely continuous with relation to a more sophisticated distribu-
tion (in our case m). We use here this method to compute θ̃n =

∫
ΘK

θρ̃λ(dθ). We

start from θ(0) = 0 and then, at each step, update θ(t) to θ(t+1) using the transition
kernel. Be careful, this time k has a density w.r.t. the measure, say m, and for the
sake of simplicity, we let ρ̃λ(·) denote indi�erently the measure ρ̃λ and its density
with respect to m. This is a standard notation in the MCMC literature:

• draw τ (t) from k(θ(t), ·);
• take

ϑ(t) =

{
τ (t) with proba. α(θ(t), τ (t)) = min

(
1, ρ̃λ(τ(t))k(τ(t),θ(t))

ρ̃λ(τ(t))k(θ(t),τ(t))

)
θ(t) with proba. 1− α(θ(t), τ (t))

;

• draw θ(t+1) from the distribution ρ̃λ(dθ|θ ∈ Θ(J(ϑ(t+1)))).
This algorithm ensures that (θ(t))t is a Markov chain with invariant probability

distribution ρλ, see [MR07]. The last step ensures that we can make a move inside
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the current model even if the model change was rejected by the Hastings-Metropolis
step. Note that is is straightforward to draw θ(t+1) as, for any J , the distribution

ρ̃λ(dθ|θ ∈ Θ(J)) ∝ e−λr(θ)uJ(dθ)

is a truncated gaussian distribution

N
(
θ̂J ,

Σ−1
J

2λ

)
where

ΣJ =
1
n
ATJAJ and AJ = (φj(Xi))1≤i≤n,j∈J .

Moreover, this step does not a�ect the fact that ρ̃λ is an invariant distribution of
the simulated Markov chain

Here, we use the following kernel k:

k(θ, ·) = k+(θ, ·)1{J(θ)=∅} +
k+(θ, ·) + k−(θ, ·)

2
1{0<|J(θ)|<n}

+ k−(θ, ·)1{|J(θ)|=n}}

where, for some ζ > 0,

k+(θ, dθ′) =
∑
j /∈J(θ)

eζ|cj(θ)|∑
h/∈J(θ) e

ζ|ch(θ)| ρ̃λ(dθ′|θ′ ∈ Θ(J(θ) ∪ {j}))

with cj(θ) is the coe�cient of linear correlation between (Yi − fθ(Xi))1≤i≤n and

(φj(Xi))1≤i≤n and,

k−(θ, dθ′) =
∑
j∈J(θ)

e−ζ|θj |∑
h∈J(θ) e

−ζ|θh|
ρ̃λ(dθ′|θ′ ∈ Θ(J(θ) \ {j})).

5. Simulations

We compare in this section the exponential weights estimators θ̂n and θ̃n to the
LASSO on a toy example introduced by Tibshirani [Tib96].

5.1. Description of the experiments. We consider the toy example of [Tib96]:

∀i ∈ {1, . . . , n = 20}, Yi = 〈β,Xi〉+ εi

with Xi ∈ X = Rp, β ∈ Rp and the εi are i.i.d. from a gaussian distribution with
mean 0 and standard deviation σ.

The Xi's are i.i.d. (and independent from the εi) and drawn from the gaussian
distribution with zero mean and variance matrix:

Σ(ρ) =
(
ρ|i−j|

)
i ∈ {1, . . . , p}
j ∈ {1, . . . , p}

for some ρ ∈ [0, 1). Note that Tibshirani's toy example is set with p = 8 whereas
we consider here p ≥ 8.

De�ne the regression vector as follows

β = (3, 1.5, 0, 0, 2, 0, 0, 0, ...),

corresponding to a "sparse situation".
We will take σ respectively equal to 1 ("low noise") and 3 ("noisy case"); the

value of ρ is �xed to 0.5.
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Table 1. Results for the estimation of β, with small p. For each
possible combination of σ and p, we report the median, mean and

the standard deviation values of respectively infλ∈Λ |X(θ̂n − β)|22,
infλ∈Λ |X(θ̃n − β)|22 and infµ∈Λ′ |X(θ̂Ln − β)|22.

σ p what? θ̂LASSOµ θ̂n θ̃n

3 8 median 0.70 0.99 0.94
mean 0.75 0.94 0.83
s.d. 0.40 0.47 0.37

1 8 median 0.17 0.14 0.14

mean 0.23 0.20 0.19

s.d. 0.17 0.16 0.15
3 30 median 0.82 1.47 0.88

mean 1.03 1.81 1.02

s.d. 0.66 1.00 0.57
1 30 median 0.34 0.20 0.19

mean 0.40 0.24 0.20

s.d. 0.22 0.16 0.12

5.2. Estimation results for small p. In this subsection, we carry out experiments
for p = 8 and p = 30.

We compute for our exponential weights estimator the oracle quadratic risk

infλ∈Λ |X(θ̂n(λ, π)− β)|2 where the temperature parameter λ is taken in a grid Λ.
We proceed similarly for θ̃n = θ̃n(λ,m) and for the LASSO estimator

θLn = θLn (µ) = arg min
θ

[r(θ) + µ|θ|1]

for µ taken in a grid Λ′. We take

Λ = {2, 3, 4, ..., 25} 1
20

n

s2

(motivated by our theoretical results) and

Λ′ = {1, 2, 3, ..., 70} 1
10

√
σ2 log(p)

n

(motivated, for example, by [BTW07a]). We �x ζ = 2 in the algorithm and α =
1/10. The MCMC algorithms are implemented with T = 12000 and bo = 2000.

We perform every experiment 20 times and give the results in Table 1. Conver-
gence of the estimator can be checked, see for example Figure 1.

We can see on these experiments that the exponential weights estimators out-
performs the LASSO in the low noise model σ = 1. When σ grows, our procedures

seem to become less stable, especially the estimator θ̂n. However for p = 30, we
observe that the estimator θ̃n performs better than the LASSO for both value of
the noise.

5.3. Estimation results for large p. In this subsection, we consider the cases

p = 100 and p = 1000. As θ̂n becomes unstable when the dimension grows so
that we simply remove it from the simulation study and focus on the comparison
between θ̃n and the LASSO. The results are given in Table 2.

We observe on these simulations that θ̃n outperforms the LASSO in all cases.

5.4. Some comments on model selection. It is a known fact that the regular-
ization parameter should be chosen di�erently for the LASSO depending on the

problem at hand: prediction (minimization of |X(θ̂Ln (µ) − β)|22) or variable selec-
tion. Denote for the Lasso estimator by µ(S) the set of regularization parameters
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Figure 1. Convergence of the �rst coe�cient of θ̂ in an experi-
ment with σ2 = 1, p = 8. We represent the �rst coordinate of

1
N−bo+1

∑N
t=bo θ̂I(t) as a function of N = b0, ..., T .

Table 2. Results for the estimation of β, with large p. For
each possible combination of σ and p, we report the median,
mean and the standard deviation values of infλ∈Λ |X(θ̃n − β)|22
and infµ∈Λ′ |X(θ̂Ln − β)|22.

σ p what? θ̂LASSOµ θ̃n

3 100 median 1.55 1.46

mean 1.69 1.58

s.d. 0.86 0.92
1 100 median 0.44 0.14

mean 0.47 0.22

s.d. 0.23 0.20
3 1000 median 2.13 1.96

mean 2.11 2.03

s.d. 0.62 0.56
1 1000 median 0.72 0.40

mean 0.75 0.50

s.d. 0.32 0.31

yielding a good result for the variables selection problem and by µ(P ) the set of
regularization parameters yielding a good result for the prediction problem. We

consider below the estimators θ̂Ln (µ(P )) and θ̂Ln (µ(S)). Note that if the sets µ(S)
and µ(P ) contain more than one element, we consider the value of the regulariza-
tion parameter µ yielding the best possible performance depending on the criterion
of interest, prediction risk or variable selection. We de�ne the selected number of
components as the bayesian MAP, maximum a posteriori). We de�ne similarly for

the exponential weights estimator θ̃n(λ,m) the regularization parameters λ(S) and
λ(P ).

We propose some additional results on the �rst experiment (p = 8, σ = 1) in
Table 3. We compare the performances of θ̂Ln (µ(P )), θ̂Ln (µ(S), θ̃n(λ(P ),m) and

θ̃n(λ(S),m).
The results show that our method can perform variables selection and estimation

simultaneously while the LASSO cannot.



PAC-BAYESIAN BOUNDS FOR SPARSE REGRESSION ESTIMATION 11

Table 3. Additional results for the case p = 8, σ = 1. First array:
prediction result. Second array: number of selected components
(the target is 3).

θ̂Ln (µ(S)) θ̂Ln (µ(P )) θ̃n(λ(S),m) θ̃n(λ(P ),m)
median 1.30 0.17 0.24 0.14
mean 2.03 0.23 0.27 0.19
s.d. 1.77 0.17 0.16 0.15

θ̂Ln (µ(S)) θ̂Ln (µ(P )) θ̂n(λ(S),m) θ̃n(λ(P ),m)
median 3.00 6.00 3.00 2.50
mean 3.00 5.65 3.00 2.40
s.d. 0.00 1.04 0.00 1.19

5.5. Some comments on computation time. We can roughly analyze the com-

putational complexity of our MCMC algorithm θ̂n:

(1) First, there are T MCMC steps.
(2) At each step t ≤ T , we have to choose which new component we want

to add (or remove) from the current model. There are at most p possible
choices, and for each choice j we have to compute the correlation between
(Yi − fθ̂

J(t)
)ni and (φj(Xi))ni , so this takes O(np) operations.

(3) Finally, at each step t we have to compute θ̂J(t) , this takes at most O(|J |3)
operations.

So �nally, the number of operations is O
(
T (np+ Eλ(|J |3))

)
where Eλ(|J |) is the

expectation of |J | under the aggregation distribution with temperature parameter
λ

Eλ(|J |) =

∑n
k=0

∑
J ⊂ {1, ..., p}
|J| = k

πJe
−λ

„
r(θ̂J )+

2σ2|J|
n

«
|J |

∑n
k=0

∑
J ⊂ {1, ..., p}
|J| = k

πJe
−λ

“
r(θ̂J )+

2σ2|J|
n

” .

For properly tuned λ, we observe E(|J |) ' |J(θ)|. We understand why the sparsity
of the parameter has an important in�uence on the computation time. Consider
for example the case p = 100 and n = 50. If |J(θ)| = 10 then n × p = 5000 >
1000 = |J(θ)|3 whereas if |J(θ)| = 25 then n× p = 5000 < 15625 = |J(θ)|3.

All the simulations were performed with the R software [R D08]. The code are
available on request by e-mail.

6. Proofs

6.1. Proofs of Section 2. This proof uses an argument from Leung and Barron
[LB06].

Proof of Proposition 1. The mapping Y → f̂n(Y )
4
= (f̂n(X1, Y ), . . . , f̂n(Xn, Y ))T

is clearly continuously di�erentiable by composition of elementary di�erentiable
functions. For any subset J ⊂ {1, . . . , p} de�ne AJ = (φj(Xi))1≤i≤n,j∈J , ΣJ =
1
nA

T
JAJ , ΦJ(·) = (φj(·))j∈J and

gJ = e
−λ

„
‖Y−fJ‖2n+

2σ2|J|
n

«

where

fJ(x, Y ) =
1
n
Y TAJΣ+

J ΦJ(x)T ,
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and Σ+
J denotes the pseudo-inverse of ΣJ . Denote by ∂i the derivative w.r.t. Yi.

Simple computations give

∂ifJ(x, Y ) =
1
n

ΦJ(Xi)Σ−1
J ΦJ(x)T ,

(∂ifJ(X1, Y ), . . . , ∂ifJ(Xn, Y ))Y = fJ(Xi, Y ),

and
n∑
l=1

fJ(Xl, Y )∂ifJ(Xl, Y ) = fJ(Xi, Y ).

Thus we have

∂i(gJ) = −λ∂i
(
‖Y − fJ‖2n

)
gJ

= −2λ
n

(
(Yi − fJ(Xi, Y ))−

n∑
l=1

∂ifJ(Xl, Y )(Yl − fJ(Xl, Y ))

)
gJ

= −2λ
n

(Yi − fJ(Xi, Y ))gJ ,

Recall that

f̂n =

∑n
k=0

∑
J∈P({1,...,p}),|J|=k πJgJfJ∑n

k=0

∑
J∈P({1,...,p}),|J|=k πJgJ

.

We have

∂if̂n(Xi, Y ) =

∑n
k=0

∑
J∈P({1,...,p}),|J|=k πJ (∂i(gJ)fJ(Xi, Y ) + gJ∂i(fJ(Xi, Y )))∑n

k=0

∑
J∈P({1,...,p}),|J|=k πJgJ

−

(∑n
k=0

∑
J∈P({1,...,p}),|J|=k πJgJfJ

)(∑n
k=0

∑
J∈P({1,...,p}),|J|=k πJ∂i(gJ)

)
(
∑n
k=0

∑
J∈P({1,...,p}),|J|=k πJgJ)2

= −2λ
n
Yif̂n +

2λ
n

∑n
k=0

∑
J∈P({1,...,p}),|J|=k fJ(Xi, Y )2πJgJ∑n
k=0

∑
J∈P({1,...,p}),|J|=k πJgJ

+
1
n

∑n
k=0

∑
J∈P({1,...,p}),|J|=k ΦJ(Xi)Σ−1

J ΦJ(Xi)TπJgJfJ∑n
k=0

∑
J∈P({1,...,p}),|J|=k πJgJ

+
2λ
n
Yif̂n −

2λ
n
f̂2
n

=
2λ
n

∑n
k=0

∑
J∈P({1,...,p}),|J|=k(fJ(Xi, Y )− f̂n(Xi, Y ))2πJgJ∑n

k=0

∑
J∈P({1,...,p}),|J|=k πJgJ

+
1
n

∑n
k=0

∑
J∈P({1,...,p}),|J|=k ΦJ(Xi)Σ−1

J ΦJ(Xi)TπJgJ∑n
k=0

∑
J∈P({1,...,p}),|J|=k πJgJ

≥ 0.(6.1)

Consider the following estimator of the risk

(6.2) r̂n(Y ) = ‖f̂n(Y )− Y ‖2n +
2σ2

n

n∑
i=1

∂if̂n(Xi, Y )− σ2.

Using an argument based on Stein's identity as in [LC98] we now prove that

E(r̂n(Y )) = E
(
‖f̂n(Y )− f‖2n

)
.

We have

E
(
‖f̂n(Y )− f‖2n

)
= E

(
‖f̂n(Y )− Y ‖2n +

2
n

n∑
i=1

Wi(f̂n(Xi, Y )− f(Xi))

)
− σ2
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= E

(
‖f̂n(Y )− Y ‖2n +

2
n

n∑
i=1

Wif̂n(Xi, Y )

)
− σ2.(6.3)

For z = (z1, . . . , zn)T ∈ Rn write FW,i(z) =
∏
j 6=i FW,i(zj), where FW denotes the

c.d.f. of the random variable W1. Since E(Wi) = 0 we have

E
(
Wif̂n(Xi, Y )

)
= E

(
Wi

∫ Wi

0

∂if̂n(Xi, Y1, . . . , Yi−1, f(Xi) + z, Yi+1, . . . , Yn)dz

)

=
∫

Rn−1

(∫
R
y

∫ y

0

∂if̂n(Xi, f + z)dzidFW (y)
)
dFW,i(z).(6.4)

In view of (6.1) we can apply Fubini's Theorem to the right-hand-side of (6.4). We
obtain under the assumption W ∼ N (0, σ2) that∫

R+

∫ y

0

∂if̂n(Xi, f + z)dzidFW (y) =
∫

R+

∫ ∞
zi

ydFW (y)∂if̂n(Xi, f + z)dzi

=
∫

R+
σ2∂if̂n(Xi, f + z)dFW (zi),

A Similar equality holds for the integral over R−. Thus we obtain

E
(
Wif̂n(Xi, Y )

)
= σ2E

(
∂if̂n(Xi, Y )

)
.

Combining (6.2), (6.3) and the above display gives

E (r̂n(Y )) = E
(
‖f̂n(Y )− f‖2n

)
.

Since f̂n(·, Y ) is the expectation of fJ(·, Y ) w.r.t. the probability distribution∝ g·π,
we have

‖f̂n(·, Y )−Y ‖2n =

∑n
k=0

∑
J∈P({1,...,p}), |J|=k

(
‖fJ(·, Y )− Y ‖2n − ‖fJ(·, Y )− f̂n(Y )‖2n

)
gJπJ∑n

k=0

∑
J∈P({1,...,p}), |J|=k gJπJ

.

For the sake of simplicity set fJ = fJ(·, Y ) and f̂n = f̂n(·, Y ). Combining (6.2),
the above display and λ 6 n

4σ2 yields

r̂n(Y ) =

∑n
k=0

∑
J∈P({1,...,p}), |J|=k

(
‖fJ − Y ‖2n −

∑n
i=1

(
4λσ2

n − 1
)
‖fJ − f̂n‖2n

)
gJπJ∑n

k=0

∑
J∈P({1,...,p}), |J|=k πJgJ

+
2σ2

n2

n∑
i=1

∑n
k=0

∑
J∈P({1,...,p}),|J|=k ΦJ(Xi)Σ−1

J ΦJ(Xi)TπJgJ∑n
k=0

∑
J∈P({1,...,p}),|J|=k πJgJ

− σ2

6
n∑
k=0

∑
J∈P({1,...,p}),|J|=k

(
‖fJ − Y ‖2n +

2σ2

n
|J |
)
gJπJ − σ2.

By de�nition of gJ we have

‖fJ − Y ‖2n +
2σ2|J |
n

= − 1
λ

log

(
gJ∑n

k=0

∑
J∈P({1,...,p}),|J|=k gJπJ

)

+
1
λ

log

 n∑
k=0

∑
J⊂{1,...,p}, |J|=k

gJπJ

 .
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Summing the above inequality w.r.t. the probability distribution g · π (with the
suitable normalization) and using the fact that

n∑
k=0

∑
J⊂{1,...,p}, |J|=k

θJ(Y ) log

(
gJ∑n

k=0

∑
J∈P({1,...,p}),|J|=k gJπJ

)
= K(g · π, π) > 0

as well as a convex duality argument (cf., e.g., [DZ98], p. 264) we get

r̂n(Y ) 6
n∑
k=0

∑
J∈P({1,...,p}),|J|=k

(
‖Y − fJ‖2n +

2σ2

n
|J |
)
π′J +

1
λ
K(π′, π)− σ2,

for all probability measure π′ on P({1, . . . , p}). Taking the expectation in the last
inequality we get for any π′

E
(
‖f̂n − f‖2n

)
= E(r̂n(Y ))

6
n∑
k=0

∑
J∈P({1,...,p}),|J|=k

(
E(‖fJ − Y ‖2n) +

2σ2

n
|J |
)
π′J +

1
λ
K(π′, π)− σ2

6
n∑
k=0

∑
J∈P({1,...,p}),|J|=k

(
E(‖fJ − f‖2n) +

2
n

n∑
i=1

E(WifJ(Xi, Y )) +
2σ2

n
|J |

)
π′J

+
1
λ
K(π′, π)

6
n∑
k=0

∑
J∈P({1,...,p}),|J|=k

(
E(‖fJ − f‖2n) +

4σ2

n
|J |
)
π′J +

1
λ
K(π′, π),

where we have used Stein's argument E(WifJ(Xi, Y )) = σ2E (∂ifJ(Xi, Y )) and the
fact that

∑n
i=1 ∂ifJ(Xi, Y ) = 1 in the last line. Finally taking π′ in the set of Dirac

distributions on the subset J of {1, . . . , p} yields the theorem. �

Proof of Theorem 1. First note that any minimizer θ ∈ Rp of the right-hand-side in
(2.6) is such that |J(θ)| 6 rank(A) 6 n where we recall thatA = (φj(Xi))16i6n,16j6p.
Indeed, for any θ ∈ Rp such that |J(θ)| > rank(A) we can construct a vector θ′ ∈ Rp
such that fθ = fθ′ and |J(θ′)| 6 rank(A) and the mapping x→ x log

(
epα
x

)
is non-

decreasing on (0, p].
Next for any J ∈ P({1, . . . , p}) we have

E[‖fJ − f‖2n] = min
θ∈Θ(J)

‖fθ − f‖2n +
σ2|J |
n

= min
θ∈Θ(J)

{
‖fθ − f‖2n +

σ2|J(θ)|
n

}
.

Thus

min
J∈P({1,...,p}),|J|6n

(
E[‖fJ − f‖2n] +

1
λ

log
(

1
πJ

)
+
σ2J

n

)
= min
J∈P({1,...,p}):|J|6n

min
θ∈Θ(J)

(
‖fθ − f‖2n +

1
λ

log
(

1
πJ(θ)

)
+
σ2|J(θ)|

n

)
= min
θ∈Rp

(
‖fθ − f‖2n +

1
λ

log
(

1
πJ(θ)

)
+
σ2|J(θ)|

n

)
.

Combining the above display with Proposition 1 and our de�nition of the prior π
gives the result. �
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6.2. Proof of Theorem 2. We state below a version of Bernstein's inequality
useful in the proof of Theorem 2. See Proposition 2.9 page 24 in [Mas07], more
precisely Inequality (2.21).

Lemma 1. Let T1, ..., Tn be independent real valued random variables. Let us
assume that there is two constants v and w such that

n∑
i=1

E(T 2
i ) ≤ v

and for all integers k ≥ 3,
n∑
i=1

E
[
(Ti)k+

]
≤ v k!wk−2

2
.

Then, for any ζ ∈ (0, 1/w),

E exp

{
ζ

n∑
i=1

[Ti − E(Ti)]

}
≤ exp

(
vζ2

2(1− wζ)

)
.

Proof of Theorem 2. For any θ ∈ ΘK+c and θ
′ ∈ ΘK de�ne the random variables

Ti = − (Yi − fθ(Xi))
2 + (Yi − fθ′(Xi))

2
.

Note that these variables are independent. We have

n∑
i=1

E(T 2
i ) =

n∑
i=1

E
{

[2Yi − fθ′(Xi)− fθ(Xi)]
2 [fθ′(Xi)− fθ(Xi)]

2
}

=
n∑
i=1

E
{

[2Wi + 2f(Xi) + fθ′(Xi)− fθ(Xi)]
2 [fθ′(Xi)− fθ(Xi)]

2
}

≤
n∑
i=1

E
{[

8W 2
i + (2‖f‖∞ + L(2K + c))2

]
[fθ′(Xi)− fθ(Xi)]

2
}

=
n∑
i=1

E
[
8W 2

i + (2‖f‖∞ + L(2K + c))2
]
E
{

[fθ′(Xi)− fθ(Xi)]
2
}

≤ n
[
8σ2 + (2‖f‖∞ + L(2K + c))2

]
2 [R(θ)−R(θ′)] =: v(θ, θ′) = v.

For any integer k ≥ 3 we have

n∑
i=1

E
[
(Ti)k+

]
≤

n∑
i=1

E
[
|2Yi − fθ′(Xi)− fθ(Xi)|k |fθ′(Xi)− fθ(Xi)|k

]
≤

n∑
i=1

E
[
22k−1

[
|Wi|k + (‖f‖∞ + L(K + c/2)k

]
|fθ′(Xi)− fθ(Xi)|k

]
≤

n∑
i=1

E
[
22k−1

[
|Wi|k + (‖f‖∞ + L(K + c/2)k

]
[L(2K + c)]k−2 [fθ′(Xi)− fθ(Xi)]

2
]

≤ 22k−1
[
σ2k!ξk−2 + (‖f‖∞ + L(K + c/2))k

]
[L(2K+c)]k−2

n∑
i=1

E
{

[fθ′(Xi)− fθ(Xi)]
2
}

≤ 8(σ2k!ξk−2 + (‖f‖∞ + L(K + c/2))k)(4L(2K + c))k−2

8σ2 + (2‖f‖∞ + L(2K + c))2
v ≤ v k!wk−2

2

with w := 8[ξ + 2(‖f‖∞ + L(K + c/2))]L(2K + c).
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Next, for any λ ∈]0, n/w[ and θ ∈ ΘK+c, applying Lemma 1 with ζ = λ/n gives

E exp
[
λ
(
R(θ)−R(θ′)− r(θ) + r(θ′)

)]
≤ exp

[
vλ2

2n2(1− wλ
n )

]
.

Set C = 8σ2 + (2‖f‖∞ + L(2K + c))2. For any ε > 0 the last display yields

E exp

[(
λ− λ2C

2n(1− wλ
n )

)(
R(θ)−R(θ′)

)
+ λ

(
−r(θ) + r(θ′)

)
− log

1
ε

]
≤ ε.

Integrating w.r.t. the probability distribution m(·) we get∫
E exp

[(
λ− λ2C

2n(1− wλ
n )

)(
R(θ)−R(θ′)

)
+ λ
(
−r(θ) + r(θ′)

)
− log

1
ε

]
m(dθ) ≤ ε.

Next, Fubini's theorem gives

E
∫

exp

[(
λ− λ2C

2n(1− wλ
n )

)(
R(θ)−R(θ′)

)
+ λ
(
−r(θ) + r(θ′)

)
− log

1
ε

]
m(dθ) ≤ ε.

E
∫

exp

[(
λ− λ2C

2n(1− wλ
n )

)(
R(θ)−R(θ′)

)
+ λ
(
−r(θ) + r(θ′)

)
− log

[
dρ̃λ
dm

(θ)
]
− log

1
ε

]
ρ̃λ(dθ) ≤ ε.

Jensen's inequality yields

E exp

[(
λ− λ2C

2n(1− wλ
n )

)(∫
Rdρ̃λ −R(θ′)

)

+ λ

(
−
∫
rdρ̃λ + r(θ′)

)
−K(ρ̃λ,m)− log

1
ε

]
≤ ε.

Now, using the basic inequality exp(x) ≥ 1R+(x) we get

P

{(
λ− λ2C

2n(1− wλ
n )

)(∫
Rdρ̃λ −R(θ′)

)

+ λ

(
−
∫
rdρ̃λ + r(θ′)

)
−K(ρ̃λ,m)− log

1
ε

]
≥ 0

}
≤ ε.

Using Jensen's inequality again gives∫
Rdρ̃λ ≥ R

(∫
θρ̃λ(dθ)

)
= R(θ̃λ).

Combining the last two displays we obtain

P

{
R(θ̃λ)−R(θ′) ≤

∫
rdρ̃λ − r(θ′) + 1

λ

[
K(ρ̃λ,m) + log 1

ε

]
1− λC

2(n−wλ)

}
≥ 1− ε.
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Now, using Lemma 1.1.3 (page 4) in Catoni [Cat07] we obtain that

P

{
R(θ̃λ)−R(θ′) ≤ inf

ρ∈M1
+(ΘK+c)

∫
rdρ− r(θ′) + 1

λ

[
K(ρ,m) + log 1

ε

]
1− λC

2(n−wλ)

}
≥ 1− ε

where M1
+(ΘK) is the set of all probability measures over ΘK (with the borel σ-

algebra). A similar argument to upper bound r by R combined with the union
bound yield

P

{
R(θ̃λ)−R(θ′)

≤ inf
ρ∈M1

+(ΘK+c)

(
1 + λC

2(n−wλ)

) (∫
Rdρ−R(θ′)

)
+ 2

λ

[
K(ρ,m) + log 2

ε

]
1− λC

2(n−wλ)

}
≥ 1− ε.

Now for any θ′ ∈ ΘK and any δ ∈]0, c] taking ρ as the uniform probability measure
on the set {t ∈ Θ(J(θ′)) : |t− θ′|1 ≤ δ} ⊂ ΘK+c(J(θ′)) gives

P

{
R(θ̃λ) ≤ R(θ′) +

1
1− λC

2(n−wλ)

[(
1 +

λC

2(n− wλ)

)
C2δ

+
2
λ

(
|J(θ′)| log

K + c

δ
+ |J(θ′)| log

1
α

+ log
(

1
1− α

)
+ log

(
p

|J(θ′)|

)
+ log

2
ε

)]}
≥ 1− ε.

Taking δ = c = n−1, applying the inequality log
(

p
|J(θ′)|

)
≤ |J(θ′)| log pe

|J(θ′)| and

choosing θ′ as the minimizer of the right-hand side leads to

(6.5) P

{
R(θ̃λ) ≤ min

θ′∈ΘK

(
R(θ′) +

1
1− λC

2(n−wλ)

[(
1 +

λC

2(n− wλ)

)
C2
n

+
2
λ

(
|J(θ′)| log (K + c) + |J(θ′)| log

(
epn

α|J(θ′)|

)
+ log

(
2

ε(1− α)

))])}
≥ 1−ε

Taking now λ = n/(2C1) (where we recall that C1 = C ∨ w) in (6.5) gives

P

{
R(θ̃λ) ≤ min

θ′∈ΘK

(
R(θ′) +

3C2
n

+
8C1
n

[
|J(θ′)| log (K + c)

+
(
|J(θ′)| log

(
enp

α|J(θ′)|

)
+ log

(
2

ε(1− α)

))])}
≥ 1− ε,

where we have used that 1− λC
2(n−wλ) ≥ 1/2 and 1 + λC

2(n−wλ) ≤ 3/2. �
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